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The linear stability analysis has been performed for the thermocapillary liquid layers of a shear-
thinning fluid. The Carreau fluid model is applied to describe the rheological property. The critical
parameters are determined as a function of Prandtl number (Pr), degree of shear-thinning, and gravity
level. For linear flow, the shear-thinning effect is destabilizing for small and moderate Pr but increases
the stability slightly for large Pr. For return flow, the perturbation kinetic energy concentrates near
the surface, and the flow is stabilized when the surface viscosity is used. The streamwise wave is
excited at large Pr, and a new mechanism is found at moderate Pr, where the hot spots appear at
the bottom of the layer. In the presence of gravity, the viscosity stratification is enhanced and more
kinds of different modes are excited. The preferred mode changes to downstream at large Pr while the
gravity becomes an important perturbation energy source at small Pr. The shear-thinning effect for
the instability mechanism is discussed and the comparisons are made with channel flows. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4994596]

I. INTRODUCTION

Thermocapillary flow is the fluid motion driven by the
temperature-induced surface tension gradient. As the flow sta-
bility is crucial in many applications, such as crystal growth1

and fusion welding,2 the instability of thermocapillary flow
has been studied over the years. The theoretical and experi-
mental studies have been reviewed by Davis3 and Schatz and
Neitzel.4 The thermocapillary flows of polymer liquids appear
in many practical applications, such as film coating,5,6 dry-
ing of polymer solution,7–9 deliberate patterning of polymer,10

lithography,11,12 inkjet printing,13 and polymer processing in
microgravity.14

It is worth noting that the rheological property of polymer
liquids varies considerably from Newtonian fluid. The shear
thinning combined with elastic effects is produced in the poly-
mer processing, which have great impacts on the flow. The
effect of viscoelasticity on the stability of thermocapillary liq-
uid layers has been investigated in some previous studies,15–17

which show that the instability can be markedly affected by
elasticity.

A few papers have been devoted to the study of ther-
mocapillary flows for shear-thinning fluid. The Marangoni
convection in a shallow rectangular cavity of a power-law
fluid has been investigated by Naimi, Hasnaoui, and Platten18

and Alloui and Vasseur.19 The shear-thinning effect on the
fluid flow, temperature field, and heat transfer is discussed.
Chen20 has examined the influence of Marangoni convec-
tion for a power-law liquid film on an unsteady stretching
sheet. The effect of thermocapillary force for the velocity and
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temperature is demonstrated for several power-law indexes.
However, the shear-thinning effect for the stability of thermo-
capillary flow has not been discussed thoroughly in previous
studies.

The viscosity often varies in space in shear-thinning fluid
flows. There are two ways in which the viscosity variation
can affect the flow stability. The first is viscosity stratifica-
tion.21 The instabilities in viscosity-stratified flow have been
reviewed by Govindarajan and Sahu.22 The second is the vis-
cosity disturbance, which yields an anisotropic disturbance
stress tensor.23 Liu and Liu24 have examined the non-modal
instability in plane Couette flow of a power-law fluid, which
has no viscosity stratification. The results show that the shear-
thinning significantly increases the amplitude of response to
external excitations and initial conditions. In common cases,
there are both stratification and disturbance for the viscos-
ity. The stability of shear-thinning fluids in channel flow has
been examined by Nouar, Bottaro, and Brancher.23 The vis-
cosity disturbance is accounted. The results show that viscous
stratification can stabilize the flow when an appropriate vis-
cosity scale is employed in the definition of the Reynolds
number. Nouar and Frigaard25 have studied the stability of
plane Couette–Poiseuille flow of shear-thinning fluid, which
indicates that the effect of the shear thinning leads to a decrease
in the phase velocity of the traveling waves and an increase in
stability. Thus, one would expect that the shear-thinning effect
may have a great impact on the stability of thermocapillary
flow.

In the present work, the instability of thermocapillary
convection for a shear-thinning fluid is investigated by three-
dimensional linear stability analysis. The model of thermo-
capillary liquid layer is considered, while the Carreau fluid
is applied to model the polymer liquid. The flows with and
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without viscosity stratification are discussed, and the effect of
gravity is demonstrated.

The paper is organized as follows. In Sec. II, the physi-
cal models and mathematical formulation are presented. The
property of basic flow is discussed and the governing equations
are derived. Then in Sec. III, numerical results for linear flow,
return flow, and the flow under gravity are obtained, respec-
tively. The perturbation flow field is displayed and the energy
mechanism is studied. After that, the instability mechanism is
discussed in Sec. IV. Finally, we summarize the results and
present the conclusions in Sec. V.

II. PROBLEM FORMULATION

We use the model of thermocapillary liquid layer pro-
posed by Smith and Davis,26 where a fluid layer is above
an infinite rigid plane and a temperature gradient is imposed
on its free surface (see Fig. 1). The convection is driven by
the thermocapillary force while the surface tension is large
enough to keep the surface flat. x, y, and z are the stream-
wise, spanwise, and wall-normal direction, respectively. This
model has been widely adopted in the theoretical study of ther-
mocapillary convection and has proven capable of predicting
the oblique hydrothermal waves observed in the experiment27

and numerical simulation.28 The linear flow and return flow
are considered, which will be introduced later. The magnitude
of the surface deformation can be measured by the capillary
number,26,27 Ca = µ̂0Û0/σ̂, where µ̂0, Û0, and σ̂ are the char-
acteristic viscosity, velocity, and surface tension, respectively.
In some practical applications, such as liquid silicon26 and
silicone oil,27 O(Ca) ≈ 10�3 <<1. So the assumption of a
non-deformable free surface is satisfied.

A. Governing equations

We choose the Carreau fluid model to describe the behav-
ior of the shear-thinning fluid, as this model can be obtained
from Lodge’s molecular network theory29 and is sufficient to
fit a wide variety of polymer liquids in the experiment.30 Its
constitutive equation is

τ = µ̂ (γ̇) γ̇, (2.1)

where τ is the stress tensor, γ̇ is the strain-rate tensor with
the form γ̇ = ∇u + u∇, u is the velocity, µ̂ is the viscos-
ity that depends on the magnitude of the strain-rate tensor γ̇

=
(

1
2 γ̇ : γ̇

)1/2
,

µ̂ = µ̂∞ + (µ̂0 − µ̂∞)
[
1 +

(
λ̂γ̇

)2
] (n−1)/2

. (2.2)

Here, µ̂0 and µ̂∞ are the viscosities at zero and infinite shear
rate (µ̂0 ≥ µ̂∞), respectively, the power-law index n repre-
sents the degree of shear-thinning (n ≤ 1), and λ̂ is the
material time constant. It can be seen that the extent of shear-
thinning always increases with the increasing of λ̂ or decreas-
ing of n, and the Carreau fluid recovers Newtonian fluid when
n = 1.

The characteristic viscosity is chosen as µ̂0, which is
similar as that in Ref. 23. The dimensionless parameters are
defined as follows: R is the Reynolds number R = ρÛ0d/µ̂0,
where ρ is the fluid density, Û0 is the characteristic veloc-
ity with the expression Û0 = bγd/µ̂0. Here, b is the tem-
perature gradient on the surface and γ is the negative rate
of change of surface tension with temperature. Ma is the
Marangoni number defined as Ma = bγd2/ (µ̂0 χ), where χ
is the thermal diffusivity. Ma and R have the relation Ma
= R ·Pr, where Pr is the Prandtl number Pr = µ̂0/ (ρχ).
In the presence of gravity, Boussinesq approximation is
used. The fluid density is associated with the temperature ρ

= ρ0

[
1 − a

(
T̃ − T̃0

)]
, where a is the thermal expansion coef-

ficient, T̃ and T̃0 are the temperature of fluid and the reference
temperature, respectively. The gravity effect is measured by the
dynamic Bond number Bo = ρgad2/γ and g is the gravitational
acceleration.

Then, the dimensionless expression of viscosity µ has the
form

µ = µ∞ + (1 − µ∞)
[
1 + (λγ̇)2

] (n−1)/2
, (2.3)

where µ∞ = µ̂∞/µ̂0, λ = λ̂Û0/d. In the following, we restrict
our attention to the case µ∞ = 0.01. The dimensionless gov-
erning equations are given below, which are the continuity
equation, the momentum equation, and the energy equation,
respectively.

∇ · u = 0, (2.4)

R

(
∂u
∂t

+ u · ∇u
)
= −∇p + ∇ · τ + Bo · Te3, (2.5)

∂T
∂t

+ u · ∇T =
1

Ma
∇2T . (2.6)

Here p and T stand for the pressure and temperature, respec-
tively. The viscous dissipation of fluid is ignored in (2.6). The
boundary conditions are set in the following:

u = (u, v, w) = 0,
∂T
∂z
= 0, z = 0, (2.7)

τ13 +
∂T
∂x
= 0, τ23 +

∂T
∂y
= 0, w = 0,

−
∂T
∂z
= Bi · (T − T∞) + Q̃, z = 1. (2.8)

FIG. 1. Schematic of thermocapillary
liquid layers: (a) linear flow and (b)
return flow. Here, d is the depth of the
layer, Tb is the temperature distribution
in vertical direction, U0 is the velocity
field.
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Here, there is no slip and zero heat flux on the rigid plane.
On the free surface, the stress on the surface is caused by the
thermocapillary effect. T∞ is the temperature of the bounding
gas far from the surface. Bi is the Biot number. As it always
makes the flow more stable,26 for simplicity, we set it as zero.
Q̃ is the imposed heat flux to the environment, which can be
determined by the form of basic flow.26

We assume that the basic flow is parallel while its tem-
perature is linear in x as imposed plus a distribution in z as
following:

u = (U0 (z) , 0, 0) , T0 (x, z) = −x + Tb (z). (2.9)

Two kinds of flows are investigated. The first kind is the
linear flow whose velocity is linear in z. The solution has the
form as following. It is easy to find that this flow can only exist
when Bo = 0.

u = (z, 0, 0) , T0 (x, z) = −x + Ma ·
1
6

(
1 − z3

)
. (2.10)

The second kind is the return flow, which has zero mass
flux in the vertical section,

1∫
0

U0 (z) dz = 0. (2.11)

The analytical solution of return flow cannot be obtained
for the Carreau model. However, it can be derived numerically.
The details for the derivation are described in the Appendix.
The distributions of basic velocity and temperature for return
flow are displayed in Fig. 2. Here, U0 is independent on Pr,
as it can be derived from the distribution of shear stress in
(A4). The latter can be obtained with the boundary condition
τ13 |z=1 = 1 and the return flow condition (2.11), which are
both independent on Pr. However, the temperature of basic
flow depends on Ma, which can be seen from (A5). It can be
seen in Fig. 2 that the gradients of velocity and temperature
in vertical direction always increase with the extent of shear-
thinning (increasing of λ or decreasing of n) and Bo.

B. Perturbation equations

An infinitesimal perturbation in the normal mode form is
added to the basic flow,

(u, T , P, τ) = (u0, T0, P0, τ0) + δ, (2.12a)

δ =

(
_
u, _

v , _
w,

_

T ,
_

P,
_
τ

)
exp

[
σt + i (αx + βy)

]
. (2.12b)

The subscript 0 stands for the basic flow and hereafter, the vari-
ables without subscript 0 stand for the perturbation. σ = σr

+ iσi, where σr and σi are the growth rate and frequency,
respectively. α and β are the wave number in the x and y
directions, respectively. The wave number and the propaga-
tion angle are defined as k =

√
α2 + β2 and φ = tan−1 (β/α),

respectively. Due to symmetry, we shall confine ourselves to
the case of φ ∈

[
0◦, 180◦

]
.

As the viscosity depends on the shear rate [see (2.3)], the
perturbation of strain-rate γ̇ can lead to the viscosity perturba-
tion µ′. Thus, it can be inferred from (2.1) that the perturbation
stress τ consists of two parts: the first is caused by the perturba-
tion of strain-rate γ̇while the second is caused by the viscosity
perturbation µ′,

τ = µγ̇ + µ′γ̇0, (2.13)

where γ̇0 is the strain-rate of the basic flow. In this paper,

γ̇0 =
*..
,

0 0 γ̇0

0 0 0

γ̇0 0 0

+//
-

, γ̇0 = DU0, D =
d
dz

. (2.14)

Substituting (2.12a) and (2.12b) into (2.3) and (2.13), the
linearized relation between the perturbation of stress and
strain-rate is obtained as follows:

_
τ = µ

*.....
,

2iα_
u iα_

v + iβ
_
u D

_
u + iα

_
w

iα_
v + iβ

_
u 2iβ_

v iβ_
w + D

_
v

D
_
u + iα

_
w iβ_

w + D
_
v 2D

_
w

+/////
-

+
dµ
dγ̇0

γ̇0

*....
,

0 0 D
_
u + iα_

w

0 0 0

D
_
u + iα_

w 0 0

+////
-

, (2.15)

where

dµ
dγ̇0

γ̇0 = (1 − µ∞) (n − 1)
[
1 + (λγ̇0)2

] (n−3)/2
(λγ̇0)2. (2.16)

FIG. 2. The distributions of (a) basic
velocity and (b) temperature at Ma = 10
for return flow.
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FIG. 3. The distributions of viscosity µ and tangent viscosity µt for return
flow at n = 0.3, λ = 5.

Here, (2.16) is deduced from (2.3). The two parts in the
right side of (2.15) correspond to those in (2.13), respectively.
When n = 1 (Carreau fluid degenerates to Newtonian fluid),
the second part disappears [see (2.16)]. Then, (2.15) has the
same form as that for Newtonian fluid, where the perturbation
stress is proportional to the perturbation of strain-rate. When
n < 1, due to the second part, the viscosity corresponds to γ̇13

becomes

µt = µ +
dµ
dγ̇0

γ̇0. (2.17)

However, the viscosity for other components of γ̇ is µ. In Ref.
23, µt is termed as the tangent viscosity, as it is the slope of
tangent line for the curve of shear stress versus shear rate. It
can be seen from (2.16) that µt ≤ µ for a shear thinning fluid
(n < 1).

The distributions of viscosity µ and tangent viscosity µt

for the return flow are displayed in Fig. 3. Here, the distribu-
tions of viscosity µ and tangent viscosity µt are independent
of Ma and Pr, as both of them can be derived from the distri-
bution of basic velocity U0 [see (2.3) and (2.17)]. The latter
is independent of Ma and Pr. It can be seen that both µ and
µt reach their minimum on the surface while the maximum
appears when γ̇0 = 0. The maximum of µ is about 20 times
larger than its minimum, while the corresponding value for
µt is about 40. The gravity does not change the values of
µ and µt at z = 1, which can be seen from (2.8) and (2.9)
that (

µ∞ + (1 − µ∞)
[
1 + (λγ̇0)2

] (n−1)/2
)
γ̇0

����z=1
= 1. (2.18)

When n and λ are fixed, the value of γ̇0, µ, and µt can be
obtained from the above equation. In contrast, the gravity
decreases µ and µt at z = 0. In the presence of gravity, the
average of µ decreases from 0.378 (Bo = 0) to 0.270 (Bo
= 3) in Fig. 3, while the case for µt is similar. This indi-
cates that the extent of shear-thinning is enhanced by the
gravity.

The boundary conditions of perturbation flow are deter-
mined as follows:

_
u =

_
v =

_
w =

∂
_

T
∂z
= 0, z = 0, (2.19a)

_
τ13 + iα

_

T = 0, _
τ23 + iβ

_

T = 0, _
w= 0,

∂
_

T
∂z
= 0, z= 1. (2.19b)

Substituting (2.13) into governing Eqs. (2.3)–(2.6),
the linearized perturbation equations can be derived as
follows:

iα
_
u + iβ

_
v + D

_
w = 0, (2.20)

R
[
β

(
_
wDU0 + U0iα

_
u
)
− α

(
U0iα

_
v
)]
− β

(
iα

_
τ11 + iβ

_
τ12 + D

_
τ13

)
+ α

(
iα

_
τ12 + iβ

_
τ22 + D

_
τ23

)
= −σR

(
β

_
u − α

_
v
)

, (2.21)

Rα
(
D

_
w · DU0 + _

wD2U0 + DU0 · iα
_
u + U0iαD

_
u
)

+ Rβ
(
DU0 · iα

_
v + U0iαD

_
v
)
− Rik2

(
U0iα

_
w
)

−

(
iα2D

_
τ11 + 2iαβD

_
τ12 + αD2_

τ13 + iβ2D
_
τ22 + βD2_

τ23

)
+ ik2

(
iα

_
τ13 + iβ

_
τ23 + D

_
τ33 + Bo ·

_

T

)
= −σR

(
αD

_
u + βD

_
v − ik2_

w
)

, (2.22)

Ma

(
_
u
∂T0

∂x
+ _

w
∂T0

∂z
+ U0iα

_

T

)
+

(
α2 + β2

) _

T − D2_

T = −σMa
_

T , (2.23)

_
τ11 − µ2iα

_
u = 0, _

τ12 − µ
(
iα

_
v + iβ

_
u
)
= 0, _

τ13 − µt

(
D

_
u + iα

_
w
)
= 0, (2.24)

_
τ22 − µ

(
2iβ

_
v
)
= 0, _

τ23 − µ
(
iβ

_
w + D

_
v
)
= 0, _

τ33 − µ
(
2D

_
w
)
= 0. (2.25)
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TABLE I. The critical parameters for Newtonian fluid.

Pr = 0.1 Ma k ψ (deg) c

Linear flow 12.0 0.91 83.4 0.046
Return flow 22.4 0.65 71.2 0.070

Then, the Chebyshev collocation method is used to solve
the eigenvalue problem with the form of Wg = σZg, where
W and Z are two matrices and g is the eigenvector.31 The
eigenvalues are obtained by using the QZ algorithm. We use
more than 80 Chebyshev nodes to ensure the accuracy in the
following. In order to validate our code, we solve the same
problem of Newtonian fluid by setting n = 1 and compare the
results with those in the previous work. The critical parameters
of Newton fluid are listed in Table I, which agree with the
results in Ref. 26. Here, ψ = 180◦ − φ and c = |σi | /k is the
wave speed.

III. NUMERICAL RESULTS

We compute the Marangoni number MaN of the neutral
modes (σr = 0). Then the critical Marangoni number Mac is
obtained as follows:

Mac = min
α,β

MaN (Pr, λ, n, Bo) . (3.1)

A. Linear flow

For linear flow, the viscosity µ and tangent viscosity µt are
homogeneous in z. It is more convenient to use the viscosity in
the flow instead of µ̂0 for the definition of the Marangoni num-
ber and Prandtl number. Thus we use the following numbers
for linear flow:

Maec = Mac/µ, Pre = Pr · µ. (3.2)

We plot the variation of Maec with Pre for linear flow at
various values of n, λ in Fig. 4. The preferred modes are oblique
wave (φ , 0◦, 90◦), streamwise wave (φ = 0◦), and spanwise
stationary mode (φ = 90◦, σi = 0) for small, moderate, and
large Pre, respectively. Comparing with Newtonian fluid (λ
= 0 or n = 1), the shear-thinning effect leads to a decreasing

FIG. 4. The variation of Maec with Pre for linear flow. The curves correspond
to (1) oblique wave: (a), (d), (g), and (j); (2) streamwise wave: (b), (e), (h),
and (k); (3) spanwise stationary mode: (c), (f), (i), and (l).

of Maec at small and moderate Pre while there is a little
increasing of Maec at large Pre. This leads to the variation of
bifurcation points: the preferred mode changes from oblique
wave to streamwise wave at almost the same Pre, while the
bifurcation points from streamwise wave to spanwise sta-
tionary mode is changed obviously by the effect of shear-
thinning.

When n = 0.3, we can find that Maec |λ=2<Maec |λ=5
<Maec |λ=0 at small and moderate Pre, which indicates that
the effect of λ for the flow stability is not monotonous.
Similar phenomenon can also be found for return flow in
Sec. III B and the case of channel flow.23 The reason is
that when λ is larger enough, the Carreau model reduces
to the power-law model: µ = (λγ̇)n−1. Then, the shearing
thinning effect only depends on n, while the value of λ can
be normalized in the nondimensionalization. Therefore, the
effect of shear-thinning on flow stability is more obvious at
moderate λ.

The wave number and propagation angle corresponding
to the modes in Fig. 4 are displayed in Fig. 5. The changes
of wave number caused by shear-thinning are similar to those
of Maec. The wave propagation angle at n = 0.7 is larger than

FIG. 5. The (a) wave number and (b)
wave propagation angle corresponding
to the modes in Fig. 4.
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that of Newtonian fluid. In contrast, φc decreases at n = 0.3 and
the preferred mode changes from upstream to downstream.
This difference is associated with the heat transfer. For the
oblique wave of Newtonian fluid, the wave is close to span-
wise. The key to the mechanism is the horizontal convection
u ∂T0
∂x , which promotes an upstream wave. As n < 1, it can be

seen from (2.16) and (2.17) that µt ≤ µ (the equality holds
where the shear rate of basic flow γ̇0 = 0). Then, the ampli-

tude of _
u increases, which leads to an increase in u ∂T0

∂x . This
is the reason why the propagation angle of the upstream wave
is closer to the streamwise direction for n = 0.7. However,
for n = 0.3, the importance of heat convection induced by
the basic flow U0

∂T
∂x rises as |φc − 90◦ | is no longer small.

This term promotes a downstream wave, which is opposite to
u ∂T0
∂x .

B. Return flow

For return flow, the shear rate is not homogeneous. So
there is a viscosity stratification for shear-thinning fluid. Com-
paring the perturbation of Carreau fluid with that of Newtonian
fluid, the amplitude of horizontal velocity is an order of mag-
nitude larger than that of vertical velocity for both of them.
However, the kinetic energy of perturbation for the former
is more concentrated near the surface, which can be seen in
Fig. 6. This concentration attributes to the effect of shear-
thinning. Suppose a perturbation mode in Newtonian fluid is
added in the Carreau fluid, then, as the shear-thinning effect
makes the viscosity near the surface much smaller, there is
less viscous dissipation for the perturbation near the surface.
Thus, the kinetic energy of perturbation increases obviously in
this region. The viscosity also decreases near the wall. There-
fore, the energy growth by the shear-thinning effect is obvious
near both the surface and the wall (see Fig. 6). However, the
solid boundary suppresses the growth of perturbation energy,
and the kinetic energy near the surface is much larger than that
near the wall. Finally, the perturbation energy for Carreau fluid
is more concentrated near the surface.

FIG. 6. The distributions of the kinetic energy of preferred mode for return
flow. NF and CF stand for Newtonian fluid (n = 1) and Carreau fluid at n
= 0.3, λ = 5, respectively. The kinetic energy is normalized by the value at z
= 0.5.

FIG. 7. The variations of critical Marangoni number with Prandtl number for
return flow. The curves correspond to (1) Mac vs Pr at n = 1 (Newtonian fluid):
(a) oblique wave; (2) Mac vs Pr at n = 0.3, λ = 5: (b) streamwise wave and
(c) oblique wave; (3) Mac vs Pr at n = 0.3, λ = 5: (d) streamwise wave and
(e) oblique wave; (4) Mawc vs Prw at n = 0.3, λ = 5: (f) streamwise wave and
(g) oblique wave; (5) Mawc vs Prw at n = 0.3, λ = 2: (h) streamwise wave and
(i) oblique wave; (6) Mawc vs Prw at n = 0.7, λ = 2: (j) streamwise wave and
(k) oblique wave.

The variations of critical Marangoni number with Prandtl
number for return flow are plotted in Fig. 7. Here, Mac, Mac,
and Mawc correspond to the critical Marangoni number based
on the viscosity µ̂0, the average viscosity across the layer, and
the viscosity on the surface, respectively. The definitions of Pr,
Pr, and Prw are similar. It can be seen that Mac and Mac of
Carreau fluid [curve (b)–(e) in Fig. 7] are smaller than Mac of
Newtonian fluid [curve (a) in Fig. 7]. It seems that the shear-
thinning effect makes the flow more unstable. However, the
kinetic energy of perturbation concentrates near the surface
for return flow. If we use the viscosity on the surface for the
definition of Marangoni number and Prandtl number, it can be
found that Mawc of Carreau fluid [curve (f)–(k) in Fig. 7] are
larger than Mac of Newtonian fluid [curve (a) in Fig. 7]. Thus,
the shear-thinning effect stabilizes the flow when the viscosity
on the surface is applied. This agrees with the result of Ref. 23
for channel flow. However, as Prw depends on the shear-rate,
we will still use Pr in the following, which only depends on
the property of the fluid.

In Fig. 8, we plot the wave number and the wave propa-
gation angle corresponding to the preferred mode of Carreau
fluid in Fig. 7. The wave number for oblique wave decreases
with the extent of shear-thinning, while for streamwise wave,
the variation is not monotonous. There are two main changes
of the propagation angle in Carreau fluid: for large Pr, the pre-
ferred mode becomes the upstream streamwise wave, which
has not been found in Newtonian fluid (Fig. 7); while for small
Pr, the propagation angle increases [see Fig. 8(b)]. For curve
(c) in Fig. 8(b), the propagation angle of the oblique wave can
reach 180◦ for a critical value of Pr. When Pr exceeds this
value, the preferred mode changes from the oblique wave to
the upstream streamwise wave [curve (b) in Fig. 7], whose
propagation angle is φc = 180◦. The cases for curve (i) and (k)
in Fig. 8(b) are similar.
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FIG. 8. The (a) wave number and (b)
wave propagation angle corresponding
to the mode in Fig. 7.

Then we pay attention to the perturbation flow field of
return flow. The streamlines and isothermals of preferred mode
at Pr = 100, Pr = 0.1, and Pr = 10 are plotted in Figs. 9–11,
respectively. Although the shear-thinning effect changes the
critical parameters for small and large Prandtl numbers obvi-
ously, the perturbation flow fields of Carreau fluid at Pr = 100
and Pr = 0.1 are similar to those of Newtonian fluid.32 The
former (Fig. 9) has interior hot spots, which absorbs energy
from the vertical convection and heats the interface by con-
duction. Then the temperature of the surface upon the hot spot
increases and the wave propagates upstream. In contrast, the
latter (Fig. 10) has vertical isothermals and the distribution of
surface temperature is the same as that in the layer. The key to
the instability mechanism is the inertially driven streamwise
flow.32

A new instability mechanism that differs from Newto-
nian fluid has been found for Pr = 10, where the amplitude
of temperature is at the bottom (see Fig. 11). The hot spot
at the bottom is heated by the horizontal convection, which
includes U0

∂T
∂x and u ∂T0

∂x . These two terms have the same

FIG. 9. The perturbation flow field of the streamwise wave for Carreau fluid
at Pr = 100, Ma = 31.47, n = 0.3, λ = 5, Bo = 0: (a) the distribution of surface
temperature; (b) the streamlines and isothermals.

order and sign. They are related to the velocity and tem-
perature gradient of the basic flow, respectively. In contrast,
the hot spot on the surface is induced by the heat conduc-
tion from the interior. Thus, the key to the instability mech-
anism is the hot spot at the bottom, which absorbs energy
from the horizontal convection in the lower region of layer
and drives the perturbation wave by conductively heating the
interface.

The temperature distribution in Fig. 11 is caused by the
combination of the convection in the lower region and the
conduction near the surface. The hot spot at the bottom is
heated by the horizontal convection in the lower region. This
indicates that the convection is dominant there. In contrast,
the surface above the hot spot is cooled by the convection
as the signs of U0

∂T
∂x and u ∂T0

∂x are both opposite to those
near the wall. If the convection is still dominant near the sur-
face, this leads to a cold spot on the surface, which is just
opposite to the case in Fig. 11. Thus, the hot spot on the
surface can only absorbs energy by the heat conduction from
the interior.

FIG. 10. The perturbation flow field of the oblique wave for Carreau fluid at
Pr = 0.1, Ma = 0.499, n = 0.3, λ = 5, Bo = 0: (a) the distribution of surface
temperature; (b) the streamlines and isothermals.
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FIG. 11. The perturbation flow field of the oblique wave for Carreau fluid at
Pr = 10, Ma = 11.55, n = 0.3, λ = 5, Bo = 0: (a) the distribution of surface
temperature; (b) the streamlines and isothermals.

The combination of convection and conduction is asso-
ciated with the stratification of the Prandtl number Pre(z)
= Pr·µ, which is defined in (3.1) and stands for the distri-
bution of local Prandtl number in the flow. In Fig. 11, Pre

≈ 0.48 on the surface, so the conduction is more impor-
tant for the heat transfer. However, Pre ≈ 9 in the region z
= 0.3, where the heat convection is dominant. The mecha-
nism in Fig. 11 is obvious when Pr ∈ (1,20) at n = 0.3, λ
= 5. When Pr is outside this range, it has max

z
Pre(z) < 1 or

min
z

Pre(z) > 1 in the flow, then the combination of the con-

vection in the lower region and the conduction near the surface
will degenerate.

The stratification of local Prandtl number is made by the
viscosity stratification in shear-thinning fluid. As the shear-
thinning effect makes viscosity stratification in return flow, Pre

is also stratified, which has a great impact on the heat transfer.
Finally, we can observe that the stratification of Pre in shear-
thinning fluid is crucial for the temperature distribution in
Fig. 11. This is the reason why it does not appear in previous
studies for other fluids.

FIG. 12. The variation of Mac with Pr for return flow at n = 0.3, λ = 5 in
the presence of gravity. The curves corresponds to (1) Bo = 0: (a) streamwise
wave and (b) oblique wave; (2) Bo = 3: (c) streamwise wave with kc > 2.9,
(d) streamwise wave with kc < 1.1, (e) oblique wave with φc < 60◦, and (f)
oblique wave with φc > 100◦; (3) Bo = 6: (g) streamwise wave with kc > 2,
(h) streamwise wave with kc < 1.1, (i) oblique wave with φc < 102◦, and (j)
oblique wave with φc > 117◦.

C. Effect of gravity

We will study the effect of gravity in this section. The
variation of Mac with Pr for return flow is displayed in Fig. 12
at different gravity levels. Mac increases with Bo at large Pr,
while the situation is opposite at small Pr. The wave number
and the wave propagation angle corresponding to the mode in
Fig. 12 are displayed in Fig. 13.

It is observed that more kinds of preferred modes are
excited by gravity. There are two kinds of streamwise wave
and oblique wave for both Bo = 3 and Bo = 6. For oblique
waves in Fig. 13(b), the first kind is downstream when Pr
> 30, whose propagation angle decreases with Pr. The second
is upstream. The variation of its propagation angle with Pr is
not monotonous. The wave number and propagation angle of
oblique wave are not sensitive to the change of Bo when Pr
< 1, although the distributions of basic flow and viscosity have
changed obviously.

FIG. 13. The (a) wave number and (b)
wave propagation angle corresponding
to the mode in Fig. 12.
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FIG. 14. The perturbation flow field of the streamwise wave for Carreau fluid
at Pr = 900, Ma = 101.9, n = 0.3, λ = 5, Bo = 3: (a) the distribution of surface
temperature; (b) the streamlines and isothermals.

The variations of wave number with Pr are opposite for
two kinds of streamwise waves [see Fig. 13(a)]. However,
both of them propagate downstream, which differs from the
case without gravity. The perturbation flow field is plotted in
Fig. 14 for return flow at Bo = 3. It shows that the stream-
lines near the hot spot are clockwise and almost coincide with
the isothermals. In contrast, the corresponding streamlines are
counterclockwise and staggered with the isothermals in the
case without gravity (see Fig. 9).

The reason for the change of propagation direction can
be explained as follows. In Fig. 14, the surface upon the hot
spot is heated by horizontal convection U0

∂T
∂x , u ∂T0

∂x , and the

vertical conduction 1
Ma

∂2T
∂z2 . When Bo increases, the heat con-

vection induced by basic flow U0
∂T
∂x on the surface becomes

more important as the gravity increases U0 on the surface sig-
nificantly [see Fig. 2(a)]. This term heats the downstream point
of hot spot on the surface and promotes a downstream wave.

D. Energy analysis

Then we study the energy mechanism in this section. The
rate of change for perturbation energy can be written as17,33

∂Ekin

∂t
= −

1
2R

∫
(τ : γ̇)d3r +

1
R

∫
u · τ · n d2r

−

∫
u · ((u · ∇)u0)d3r +

∫ (
Bo
R

Te3 · u
)
d3r

= −N + M + I + G, (3.3)

where N is the work done by the perturbation stress, M is
the work done by Marangoni forces on the surface, I is the
interaction between the perturbation flow and the basic flow,
G is the work done by gravity.

It can be indicated from (2.15) that N > 0 for Carreau
fluid. Thus, this term stands for the viscous dissipation. The
perturbation energy can come only from the last three terms in
(3.3). It should be noted that there is a big difference between
the energy mechanism of thermocapillary liquid layer and that

of channel flow. For the former, M is a important energy source
for perturbation,34 while for the latter (solid boundaries), the
perturbation energy can come only from I in the absence of
gravity.

We define S as the work done by the perturbation stress
τ13,

S =
1

2R

∫
(τ13 · γ̇13)d3r. (3.4)

The effect of shear-thinning and gravity for energy mechanism
can be seen from Ri, Rs, Rg, which are the relative sizes of I,
S, G to N,

Ri = I/N , Rs = S/N , Rg = G/N . (3.5)

In Table II, the terms in (3.5) of preferred modes are listed
for return flow without gravity. It can be found that the shear-
thinning makes Rs increasing obviously for most of Pr. The
change of Rs can be explained as follows. As µt is smaller
than µ, the amplitude of γ̇13 increases in Carreau fluid under
the same shear force, which leads to the growth of viscous
dissipation made by γ̇13.

The effect of shear-thinning also leads to the growth of
Ri at large Pr. However, the change of Ri at small Pr is not
apparent. It is known from previous studies that Ri becomes
important at small Pr, while it is negligible at large Pr.34 In
shear-thinning fluid, as the viscosity is smaller than µ̂0 in most
of the flow region, the effect value of Pr decreases, which leads
to a rising of Ri. However, the increase of Ri stops when Pr is
small.

The terms in (3.5) of preferred modes are plotted in Fig. 15
for return flow at Bo = 3. Rg is negligible at large Pr. There-
fore, the effect of gravity is only changing the basic flow in
this region. However, Rg can reach 12.5% at small Pr, which
is important for the energy mechanism. When Pr > 50, Ri
increases with Pr and finally changes from negative to positive,
while it keeps positive when Pr < 30.

In Fig. 15, the variations at large and small Pr are gentle. In
contrast, there are severe changes when 50 ≥ Pr ≥ 10, and the
preferred mode also changes two times in this region. This may
due to the mechanism of heat transfer. The heat convection is
more significant than the heat conduction for the temperature
field at large Pr while the opposite appears at small Pr. The
importance of convection and conduction are comparable at
moderate Pr, which makes the instability mechanism more
complicated and sensitive to Pr.

TABLE II. The terms in (3.5) of preferred modes for return flow without grav-
ity. Comparisons are made with Carreau fluid at n = 0.3, λ = 5 and Newtonian
fluid (n = 1).

n = 0.3, λ = 5 n = 1

Pr Ri Rs Ri Rs

300 0.0055 0.6966 0.0000 0.5769
100 0.0252 0.7302 0.0004 0.5757
30 0.0948 0.7396 0.0035 0.5683
3 0.1563 0.4217 0.1024 0.4006
0.3 0.1600 0.3974 0.1626 0.2500
0.03 0.1619 0.4035 0.1514 0.1862
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FIG. 15. The terms in (3.5) of preferred modes for return flow at n = 0.3, λ
= 5, Bo = 3. The curves correspond to (1) Ri: (a)–(d); (2) Rg: (e)–(h); (3) Rs:
(i)–(l).

IV. DISCUSSION

We will discuss the influence of shear-thinning effect on
the instability mechanism and make comparison with channel
flows in this section.

A. Linear flow

In the absence of viscosity stratification, the linear flow
only yields an anisotropic disturbance stress tensor, which
is the same as the property of plane Couette flow. However,
the former is driven by the thermocapillary force on the sur-
face while the latter is a shear flow between two plates. Thus,
their stabilities are also different. Liu and Liu24 have shown
that the effect of shear-thinning is destabilizing for the plane
Couette flow. In contrast, the situation for thermocapillary
flow depends on the Prandtl number: the flow is destabilized
by shear-thinning at small and moderate Pre while the flow
stability is increased slightly at large Pre.

These can be explained by the property of preferred mode.
Previous studies26,32 have shown that the horizontal and ver-
tical convections are crucial for the instability mechanism of
streamwise (moderate Pre) and oblique waves (small Pre),
respectively. Both of these two convections are enhanced by
the shear-thinning effect, as the amplitude of perturbation
velocities in x and z directions are increased [see (2.15), the vis-
cosity corresponding to γ̇13 becomes smaller in shear-thinning
fluid]. Thus, the flow becomes more unstable. Meanwhile,
the decreasing of the Marangoni number will increase the
importance of heat conduction [see (2.6)], which dissipates the
temperature perturbation. It can be balanced by the decreasing
of wave number. So the wave number of the preferred mode
decreases in Fig. 5(a). This explanation also holds in Figs. 8(a)
and 13(a), where the wave number of the oblique wave is also
decreased with the decreasing of critical Marangoni number
by the shear-thinning effect.

For spanwise stationary mode (large Pre), µt only affects
_
u. Comparing with Newtonian fluid, the viscous resistance in

streamwise direction is reduced at the same Marangoni num-
ber. As a result, the amplitude of _

u increases. The computation
shows that the streamwise velocity u < 0 when underneath the
hot spot on the surface, which produces a convective cool-
ing. So the effect of µt makes the flow more stable. However,
the increasing of critical Marangoni number is very slight.
The reason is that the vertical convection is dominant for the
temperature field, and the change in horizontal convection
does not have a serious impact. The increasing of convec-
tive cooling by the shear-thinning effect can be balanced by
the increase in vertical convection. The latter can be achieved
for a higher wave number, which leads to an increase in
the vertical velocity [see (2.20)]. So we can find that the
wave number of spanwise stationary mode is increased in
Fig. 5(a).

B. Return flow

The shear-thinning effect makes the viscosity stratified in
return flow, which is similar to the case of plane Poiseuille flow.
However, the former has a free boundary on the surface while
the latter has two solid boundaries. The perturbation energy of
them mainly comes from the thermocapillary force and basic
flow, respectively. Therefore, the instability of the return flow
is closely related to the surface and temperature field, which
differs from the channel flow.

Nouar et al.23 have stated that the shear-thinning effect
stabilizes the plane Poiseuille flow when an appropriate vis-
cosity (the wall tangent viscosity and the effective viscosity
at the wall) is used in the definition of the Reynolds num-
ber. In the present work, it is found that the flow becomes
more stable in shear-thinning fluid when the viscosity on
the surface is used, which agrees with the result of Nouar
et al.23 It can be explained from the energy mechanism. For
the liquid layer, I is not the main energy source, and there
is an approximate balance between N and M for the neutral
mode,

1
2R

∫
(τ : γ̇) d3r ≈

1
R

∫
u · τ · n d2r. (4.1)

Due to the viscosity stratification, the viscosity in the interior
is larger than that on the surface. Thus, the left side of (4.1)
increases in shear-thinning fluid, and the flow becomes more
stable.

For Newtonian fluid, the preferred mode is oblique wave
at all Prandtl numbers.26 However, for Carreau fluid, the pre-
ferred mode becomes the upstream streamwise wave at large
Prandtl number, and the propagation angle increases at small
Prandtl number. The shear-thinning effect increases the hor-
izontal convection u ∂T0

∂x , which promotes an upstream wave.
As a result, the propagation direction becomes closer to the
negative x-axis.

The viscosity stratification also excites a new instability
mechanism of return flow. Due to the viscosity stratification,
the relative size of viscosity to thermal diffusivity varies sig-
nificantly in the vertical direction at moderate Prandtl number,
which is crucial for the heat transfer. Thus, one would expect
that the temperature field of Newtonian fluid and Carreau fluid
may be very different in this region. This is confirmed in
Fig. 11 where the hot spots appear at the bottom for Carreau
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fluid. The mechanism is a combination of horizontal convec-
tion in the lower region of the layer and heat conduction
near the surface. In contrast, the hot spots are in the mid-
dle of the layer at moderate Prandtl number for Newtonian
fluid.

C. Effect of gravity

The flow stability can be affected by gravity in two ways.
The first is the change in basic flow. We can observe in Fig. 2
that the extent of shear thinning is enhanced by gravity. How-
ever, the values of µ and µt at z = 1 keep the same at different
gravity level (see Fig. 3). The second is the work done by
gravity for the perturbation energy.

More kinds of preferred modes are excited by gravity.
When Pr is very large, Mac increases with Bo significantly,
which leads to the remarkable growth for the gravity and ther-
mocapillary forces together. These two forces are coupled and
excite new modes. For moderate Prandtl number, the change
for the relative size of viscosity to thermal diffusivity in the
vertical direction is enhanced by gravity, which has a great
impact on the heat transfer. So the opportunity for the change
of preferred mode also increases.

For large Pr, the work done by gravity is negligible while
the perturbation flow field changes significantly. In the pres-
ence of gravity, the preferred mode changes from upstream to
downstream while the streamlines near the hot spot changes
from counterclockwise to clockwise, which are both related to
the increasing of U0 on the surface. In contrast, for small Pr,
the gravity becomes an important perturbation energy source
while the change in the perturbation field is not apparent.
The reason can be explained as follows. The expression of
G in (3.3) indicates that the work done by gravity is associ-
ated with perturbation velocity in the vertical direction. For
large Pr, most of the perturbation energy is concentrated in
a thin layer near the surface, where the vertical velocity of
perturbation is very small. So G is negligible. Instead, the
concentration at small Pr is less than the former, and G is
important for the perturbation. The shape of perturbation field
highly depends on the heat transfer. It can be seen from (2.23)
that the change of U0 by gravity can lead to a increasing
of horizontal convection U0

∂T
∂x . The perturbation flow field

changes significantly at large Pr as the convection is cru-
cial for the heat transfer. However, it has little effect at small
Pr and the change of perturbation field by gravity is not
obvious.

V. CONCLUSION

The linear stability analysis is carried out for the ther-
mocapillary liquid layers of Carreau fluid. The parameters of
preferred mode are obtained for linear flow and return flow.
The effect of gravity is studied. The results show that the
shear-thinning effect significantly influences the flow stabil-
ity, such as the critical parameters, perturbation mode, and the
instability mechanism.

For linear flow, which has no viscosity stratification, the
flow only yields an anisotropic disturbance stress tensor. The
shear-thinning effect leads to a destabilization at small and
moderate Pre while the stability is increased slightly at large

Pre. Comparing with Newtonian fluid, the propagation angle
of oblique wave increases for n = 0.7. However, the case for
n = 0.3 is opposite, and the preferred modes changes from
upstream to downstream.

For return flow, the viscosity stratification makes per-
turbation kinetic energy concentrate near the surface. The
flow is stabilized when the surface viscosity is used for the
definition of Marangoni number and Prandtl number. The pre-
ferred mode becomes the streamwise wave at large Pr, while
the propagation angle of oblique wave increases at small Pr.
The temperature perturbation at moderate Pr has hot spots
at the bottom, which absorb energy from the horizontal con-
vection and heat the interface by conduction. Energy analy-
sis shows that the work done by the perturbation stress τ13

is increased significantly by shear-thinning effect for most
of Pr.

In the presence of gravity, the vertical gradients of veloc-
ity and temperature in basic flow increase and more kinds
of preferred modes are excited. For large Pr, the work done
by gravity is negligible for the perturbation energy. The pre-
ferred mode changes from upstream to downstream, while the
streamlines near the hot spot changes from counterclockwise
to clockwise. However, for small Pr, the gravity becomes an
important perturbation energy source.
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APPENDIX: THE DERIVATION OF BASIC FLOWS

The form of basic flow (2.9) is substituted into the
momentum equation (2.5). Then the following equations are
derived:

−
∂p
∂x

+
∂τ13

∂z
= 0, (A1)

−
∂p
∂z

+
∂τ13

∂x
+ Bo·T = 0. (A2)

As the velocity is assumed to be a function of z,

τ = τ(z),
∂τ13

∂x
= 0,

∂2p
∂x∂z

= −Bo =
∂2τ13

∂z2
. (A3)

Therefore,

τ13 = −
Bo
2

z2 + C1z + C2. (A4)

For linear flow, u = (z, 0, 0), thus τ13 is homogeneous in z,
which can only be satisfied when Bo = 0.

For return flow, the two constants C1, C2 can be derived
numerically with two conditions: the shear stress τ13 |z=1 = 1
and the return flow condition (2.11). Then, the strain-rate and
velocity of basic flow can be obtained numerically. Substi-
tuting (2.9) into (2.6), the temperature of basic flow must
satisfy

− U0 (z) =
1

Ma
D2Tb (z) . (A5)

This equation can be solved with the boundary conditions of
temperature.



073101-12 Hu et al. Phys. Fluids 29, 073101 (2017)

1Crystal Growth Processes Based on Capillarity: Czochralski, Floating
Zone, Shaping and Crucible Techniques, edited by T. Dufar (John Wiley
& Sons, 2010).

2T. DebRoy and S. A. David, “Physical processes in fusion welding,” Rev.
Mod. Phys. 67(1), 85–112 (1995).

3S. H. Davis, “Thermocapillary instabilities,” Annu. Rev. Fluid Mech. 19(1),
403–435 (1987).

4M. F. Schatz and G. P. Neitzel, “Experiments on thermocapillary instabili-
ties,” Annu. Rev. Fluid Mech. 33(1), 93–127 (2001).

5E. B. Guto, E. D. Cohen, and G. I. Kheboian, Coating and Drying Defects
(Wiley, New York, 1995).

6W. R. Hu and N. Imaishi, “Thermocapillary flow in an annular liquid layer
painted on a moving fiber,” Int. J. Heat Mass Transfer 43(24), 4457–4466
(2000).

7J. J. Chen and J. D. Lin, “Thermocapillary effect on drying of a polymer
solution under non-uniform radiant heating,” Int. J. Heat Mass Transfer
43(12), 2155–2175 (2000).

8L. Weh, “Surface structures in thin polymer layers caused by coupling of
diffusion-controlled Marangoni instability and local horizontal temperature
gradient,” Macromol. Mater. Eng. 290(10), 976–986 (2005).

9G. Toussaint, H. Bodiguel, F. Doumenc, B. Guerrier, and C. Allain, “Experi-
mental characterization of buoyancy- and surface tension-driven convection
during the drying of a polymer solution,” Int. J. Heat Mass Transfer 51(17),
4228–4237 (2008).

10J. P. Singer, “Thermocapillary approaches to the deliberate patterning of
polymers,” J. Polym. Sci., Part B: Polym. Phys. (published online).

11A. A. Darhuber, J. M. Davis, S. M. Troian, and W. W. Reisner, “Thermo-
capillary actuation of liquid flow on chemically patterned surfaces,” Phys.
Fluids 15(5), 1295–1304 (2003).

12J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, “Nanometer-scale
flow of molten polyethylene from a heated atomic force microscope tip,”
Nanotechnology 23(21), 215301 (2012).

13O. A. Basaran, H. Gao, and P. P. Bhat, “Nonstandard inkjets,” Annu. Rev.
Fluid Mech. 45, 85–113 (2013).

14J. P. Downey and J. A. Pojman, Polymer Research in Microgravity: Poly-
merization and Processing (American Chemical Society, Washington, DC,
2001).

15L. A. Davalos-Orozco and A. E. Chavez, “Thermocapillary convection in
a viscoelastic fluid layer under a horizontal temperature gradient,” J. Appl.
Polym. Sci. 49(0), 141–153 (1991).

16P. N. Kaloni and J. X. Lou, “On the convective stability of Oldroyd B fluid
subject to a horizontal temperature gradient,” in ASME/JSME 2003 4th Joint
Fluids Summer Engineering Conference, Honolulu, Hawaii, USA, 6-10 July
2003 (American Society of Mechanical Engineers, 2003), pp. 1601–1606.

17K. X. Hu, M. He, and Q. S. Chen, “Instability of thermocapillary liquid
layers for Oldroyd-B fluid,” Phys. Fluids 28(3), 033105 (2016).

18M. Naimi, M. Hasnaoui, and J. K. Platten, “Marangoni convection of non-
Newtonian power law fluids in a shallow rectangular cavity,” Eng. Comput.
17(6), 638–668 (2000).

19Z. Alloui and P. Vasseur, “Onset of Marangoni convection and multiple
solutions in a power-law fluid layer under a zero gravity environment,” Int.
J. Heat Mass Transfer 58(1), 43–52 (2013).

20C. H. Chen, “Marangoni effects on forced convection of power-law liquids
in a thin film over a stretching surface,” Phys. Lett. A 370(1), 51–57 (2007).

21Y. Renardy, “Viscosity and density stratification in vertical Poiseuille flow,”
Phys. Fluids 30(6), 1638–1648 (1987).

22R. Govindarajan and K. C. Sahu, “Instabilities in viscosity-stratified flow,”
Annu. Rev. Fluid Mech. 46, 331–353 (2014).

23C. Nouar, A. Bottaro, and J. P. Brancher, “Delaying transition to turbulence
in channel flow: Revisiting the stability of shear-thinning fluids,” J. Fluid
Mech. 592, 177–194 (2007).

24R. Liu and Q. S. Liu, “Non-modal instability in plane Couette flow of a
power-law fluid,” J. Fluid Mech. 676, 145–171 (2011).

25C. Nouar and I. Frigaard, “Stability of plane Couette–Poiseuille flow of
shear-thinning fluid,” Phys. Fluids 21(6), 064104 (2009).

26M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary
liquid layers. Part 1. Convective instabilities,” J. Fluid Mech. 132, 119–144
(1983).

27R. J. Riley and G. P. Neitzel, “Instability of thermocapillary–buoyancy con-
vection in shallow layers. Part 1. Characterization of steady and oscillatory
instabilities,” J. Fluid Mech. 359, 143 (1998).

28Y. R. Li, N. Imaishi, T. Azami, and T. Hibiya, “Three-dimensional oscilla-
tory flow in a thin annular pool of silicon melt,” J. Cryst. Growth 260, 28
(2004).

29P. J. Carreau, “Rheological equations from molecular network theories,”
Trans. Soc. Rheol. 16(1), 99–127 (1972).

30R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymer Liquids.
Fluid Dynamics (Wiley/Interscience, New York, 1987), Vol. 1.

31P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows
(Springer, 2001).

32M. K. Smith, “Instability mechanisms in dynamic thermocapillary liquid
layers,” Phys. Fluids 29(10), 3182–3186 (1986).

33K. X. Hu, J. Peng, and K. Q. Zhu, “The linear stability of plane Poiseuille
flow of Burgers fluid at very low Reynolds numbers,” J. Non-Newtonian
Fluid Mech. 167–168, 87–94 (2012).

34M. Wanschura, V. M. Shevtsova, H. C. Kuhlmann, and H. J. Rath, “Convec-
tive instability mechanisms in thermocapillary liquid bridges,” Phys. Fluids
7(5), 912–925 (1995).

http://dx.doi.org/10.1103/revmodphys.67.85
http://dx.doi.org/10.1103/revmodphys.67.85
http://dx.doi.org/10.1146/annurev.fl.19.010187.002155
http://dx.doi.org/10.1146/annurev.fluid.33.1.93
http://dx.doi.org/10.1016/s0017-9310(00)00026-0
http://dx.doi.org/10.1016/s0017-9310(99)00277-x
http://dx.doi.org/10.1002/mame.200500165
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.006
http://dx.doi.org/10.1002/polb.24298
http://dx.doi.org/10.1063/1.1562628
http://dx.doi.org/10.1063/1.1562628
http://dx.doi.org/10.1088/0957-4484/23/21/215301
http://dx.doi.org/10.1146/annurev-fluid-120710-101148
http://dx.doi.org/10.1146/annurev-fluid-120710-101148
http://dx.doi.org/10.1002/app.1991.070490014
http://dx.doi.org/10.1002/app.1991.070490014
http://dx.doi.org/10.1063/1.4943971
http://dx.doi.org/10.1108/02644400010340570
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.052
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.052
http://dx.doi.org/10.1016/j.physleta.2007.05.024
http://dx.doi.org/10.1063/1.866228
http://dx.doi.org/10.1146/annurev-fluid-010313-141351
http://dx.doi.org/10.1017/s0022112007008439
http://dx.doi.org/10.1017/s0022112007008439
http://dx.doi.org/10.1017/jfm.2011.36
http://dx.doi.org/10.1063/1.3152632
http://dx.doi.org/10.1017/s0022112083001512
http://dx.doi.org/10.1017/s0022112097008343
http://dx.doi.org/10.1016/j.jcrysgro.2003.08.017
http://dx.doi.org/10.1122/1.549276
http://dx.doi.org/10.1063/1.865836
http://dx.doi.org/10.1016/j.jnnfm.2011.11.001
http://dx.doi.org/10.1016/j.jnnfm.2011.11.001
http://dx.doi.org/10.1063/1.868567

