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The evolution of the free surface of a three-
dimensional conducting fluid in the presence of
gravity, surface tension and vertical electric field
due to parallel electrodes, is considered. Based on
the analysis of the Dirichlet–Neumann operators,
a series of fully nonlinear models is derived
systematically from the Euler equations in the
Hamiltonian framework without assumptions on
competing length scales can therefore be applied to
systems of arbitrary fluid depth and to disturbances
with arbitrary wavelength. For special cases, well-
known weakly nonlinear models in shallow and deep
fluids can be generalized via introducing extra electric
terms. It is shown that the electric field has a great
impact on the physical system and can change the
qualitative nature of the free surface: (i) when the
separation distance between two electrodes is small
compared with typical wavelength, the Boussinesq,
Benney–Luke (BL) and Kadomtsev–Petviashvili (KP)
equations with modified coefficients are obtained, and
electric forces can turn KP-I to KP-II and vice versa;
(ii) as the parallel electrodes are of large separation
distance but the thickness of the liquid is much smaller
than typical wavelength, we generalize the BL and
KP equations by adding pseudo-differential operators
resulting from the electric field; (iii) for a quasi-
monochromatic plane wave in deep fluid, we derive
the cubic nonlinear Schrödinger (NLS) equation, but
its type (focusing or defocusing) is strongly influenced
by the value of the electric parameter. For sufficient
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surface tension, numerical studies reveal that lump-type solutions exist in the aforementioned
three regimes. Particularly, even when the associated NLS equation is defocusing for a wave
train, lumps can exist in fully nonlinear models.

1. Introduction
Electrohydrodynamics (EHD) deals with the interaction between electric field and fluid flow field
via the Maxwell stress tensor which plays a crucial role in the coupling. EHD enjoys a wide usage
in chemistry, biology and engineering. Recent applications of EHD include, but are not limited to,
the bilayer patterning process which is induced by EHD instability and the coupling of kinetics
and thermodynamics [1]; EHD conducting pumping, which is used to enhance the heat transfer
capability of cooling systems [2]; the industrial coating process that is employed to manufacture
a vast number of different products [3]; electrospray ionization, an essentially useful technique
in converting solution ions into highly charged gas-phase icons of macromolecules [4]. Owing
to the practical significance, in-depth knowledge of the characteristics of EHD, especially the
electrohydrodynamic interfacial waves, is therefore of great importance.

The research of electrohydrodynamic interfacial waves was initiated by Taylor & McEwan [5],
whose theoretical and experimental results showed that the net force induced by the normal
electric field can destabilize the interface between conducting and non-conducting fluids, and
Melcher & Schwarz [6], who conducted the linear stability analysis of interfacial waves under
a tangential electric field which produces a dispersive regularization for short waves. Recent
theoretical studies on electrohydrodynamic interfacial waves for inviscid liquid sheets and layers
were able to capture the nonlinear features either based on multi-scale models or via direct
numerical simulations for the primitive equations. Examples include the touch-down singularity
of liquid sheets under electric fields [7,8], the control and suppression of the Rayleigh–Taylor
instability using horizontal electric fields [9], nonlinear electrohydrodynamic Kelvin–Helmholtz
and Rayleigh–Taylor instabilities [10,11] and arbitrary amplitude electrocapillary travelling
waves in the full Euler equations [12]. All the above-mentioned works are confined to two-
dimensional problems, but three-dimensional electrohydrodynamic waves have barely begun
to be studied, since the primitive equations are not easily amenable to analysis, and the free
boundary nature adds complexity and precludes many of the tools used in other wave problems.

As a first step towards a comprehensive understanding of electrohydrodynamic waves in three
dimensions, we provide in the present paper a number of reduced models for a relatively simple
physical setting. The physical set-up is sketched in figure 1: two horizontal parallel electrodes
separated by a distance with a layer of conducting fluid (such as impure water or mercury)
attached to the lower electrode. We investigate the disturbances of the air–fluid interface, and
particular attention is paid to the incompressible, inviscid and irrotational flows. The competing
forces resulting from gravity, surface tension and normal electric field are all taken into account.
The fully nonlinear models derived in this study afford the remarkable simplification over the
primitive equations in computations, while the weakly nonlinear models are expected to be more
suitable for theoretical explorations.

Two-dimensional free-surface waves propagating on perfect conducting inviscid fluids under
normal electric fields have been studied by different authors, and the case that the thickness of
the conducting layer is much smaller than the typical wavelength is most commonly examined in
the literature. When the thickness of the gas layer is of the same order as that of the conducting
layer, Easwaran [13] and Perel’man et al. [14] derived the Korteweg–de Vries (KdV) equation and
modified KdV equation, respectively, with coefficients depending on the electric parameter. As
the top plane electrode is placed far from the free surface, the KdV–Benjamin–Ono equation was
derived by Gleeson et al. [15] which combines the KdV equation with an additional linear term
involving the Hilbert transform. These works were further extended to the full range of scalings
for the thickness of the gas layer by Hammerton and his collaborator [16,17].
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Figure 1. Schematic description of a perfect conducting liquid in the presence of a vertical electric fieldwhich is bounded above
by a horizontal electrode.

There has been considerable research devoted to the modelling of non-electrical gravity-
capillary waves propagating at the liquid–gas or liquid–liquid interface in three dimensions.
In the long-wave approximation and in the weakly nonlinear regime, of note is the work of
Kadomtsev & Petviashvili [18], who proposed the so-called KP equation to study the transverse
instability of solitons of the KdV equation, Berger & Milewski [19], who studied the generation
of fully localized three-dimensional waves by a pressure forcing in the modified Benney–Luke
(BL) equation, and Kim & Akylas [20], who investigated the existence, generation and properties
of interfacial lumps between two immiscible fluids based on the two-dimensional Benjamin
equation with weak transverse variations. In the short-wave limit, Ablowitz & Segur [21] derived
the Benney–Roskes–Davey–Stewartson system governing the envelope and induced mean flow,
and the system reduces to the cubic nonlinear Schrödinger (NLS) equation in deep water as
the mean flow vanishes in the limiting situation. In this paper, we generalize the existing
models to include an applied normal electric field, discuss their various limits, explore novel
physical differences arising from the electric field and investigate the existence of fully localized
electrohydrodynamic travelling waves for sufficiently strong surface tension.

The purpose of this paper is to develop fully nonlinear models and weakly nonlinear theory
for gravity-capillary waves propagating on a three-dimensional conducting fluid under a normal
electric field. Since the Dirichlet–Neumann operator (DNO) appearing in the Hamiltonian is
crucial to free-surface water-wave problems in modelling and computations [22–24], we prove
in §2 that the system with electric field is also a Hamiltonian but involves two distinct DNOs,
and fully nonlinear models can be obtained via expanding and truncating the DNOs either in
the Hamiltonian formulation or in the free-surface boundary conditions. In the weakly nonlinear
regime, we derive model equations to describe the evolution of long waves in §3 and the dynamics
of the envelope of short waves in §4, respectively. The set of equations derived here is based on
systematic asymptotic expansions of the DNOs for different wavelength and amplitude scalings.
When surface tension is large enough, locally confined travelling waves propagating on three-
dimensional fluids, which are known as lumps, are numerically computed with different models
using Fourier pseudo-spectral methods. The last section provides our conclusions.

2. Formulation

(a) Governing equations
Figure 1 shows the definition of the problem. We consider an incompressible, inviscid and perfect
conducting fluid, flowing irrotationally on a solid electrode. The Cartesian coordinate system
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(x, y, z) is introduced, such that x is the wave propagating direction, y is the transverse direction
and z-axis rises from the unperturbed fluid level z = 0 and is positive upwards, the bottom
being at z = −h−. A vertical electric field is imposed and bounded above by a second horizontal
electrode at z = h+ demanding V = V0. We remark that the upper layer can be extended to an
infinite height by replacing the Dirichlet boundary condition with V → E0z as z → ∞, where E0
is a constant. We assume that the fluid is a perfect conductor so that the electric strength vanishes
within the fluid. If we denote the displacement of the free surface of the fluid by z = η(x, y, t), then
the voltage potential above the fluid is governed by

�V + Vzz = 0 for z > η(x, y, t)

V = 0 at z = η(x, y, t)

and V = V0 at z = h+,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where � = ∂xx + ∂yy is the Laplace operator acting on the horizontal coordinates. The motion of
the liquid sheet is also governed by Laplace’s equation. If the velocity potential is denoted by
φ(x, y, z, t), then

�φ + φzz = 0, for −h− < z < η(x, y, t), (2.2)

with the following kinematic boundary conditions at the bottom and at the free surface,
respectively

φz = 0 at z = −h−

and ηt = φz − ∇η · ∇φ at z = η(x, y, t),

}
(2.3)

where ∇ = (∂x, ∂y)� is the gradient operator acting on horizontal variables. In this paper, the
restoring forces due to gravity, surface tension and electric field are taken into account; therefore,
equality of the normal stress on the free surface gives the dynamic equation (e.g. [25])

φt + 1
2

(|∇φ|2 + φ2
z ) − 1

ρ
n · Σ · n + gη − σ

ρ
∇ ·

[
∇η√

1 + |∇η|2

]
= 0, (2.4)

where ∇· is the horizontal divergent operator, ρ is the density of the fluid, g accounts for the
gravitational acceleration, and σ represents the surface tension coefficient of the liquid. Let
n = (−ηx, −ηy, 1)�/

√
1 + |∇η|2 be the unit normal vector to the free surface of the fluid and the

pressure jump n · Σ · n arises from the interfacial electric stress given by the Maxwell stress tensor
(Σij)i,j=1,2,3:

Σ11 = εp

2
(V2

x − V2
y − V2

z ), Σ12 = Σ21 = εpVxVy,

Σ22 = εp

2
(V2

y − V2
x − V2

z ), Σ23 = Σ32 = εpVyVz,

Σ33 = εp

2
(V2

z − V2
x − V2

y), Σ13 = Σ31 = εpVxVz,

where εp is called the dielectric constant. Noticing Vx + ηxVz = Vy + ηyVz = 0 at z = η(x, y, t), a
straightforward calculation shows that

n · Σ · n = εp

2
(V2

x + V2
y + V2

z ).

We introduce a modified voltage potential W by defining V = V0(W + z)/h+. Therefore,
W satisfies Laplace’s equation, together with the boundary condition W = 0 at z = h+. After
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redefining the velocity potential to absorb constant, the dynamic boundary condition reads

φt + 1
2

(
|∇φ|2 + φ2

z

)
− E

2

[
|∇W|2 + W2

z + 2Wz

]
+ gη − σ

ρ
∇ ·

[
∇η√

1 + |∇η|2

]
= 0, (2.5)

where E = εpV2
0/ρ(h+)2, and the new unknown W satisfies

�W + Wzz = 0 for η < z < h+,

W = 0 at z = h+

and W = −η at z = η.

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

It is noted that in the case when the top plane electrode is placed at infinity, the quantity V0/h+
should be replaced with E0.

(b) Dirichlet–Neumann operators
The DNO which maps the Dirichlet boundary condition to normal derivatives on the boundary
via solving Laplace’s equation is essential to address the present problem. Recalling that W = −η

at the free surface, the DNO for the electric potential, denoted by G+, can be defined by

G+(η, h+)(−η) = ηxWx + ηyWy − Wz = (Wx, Wy, Wz)� · (−n)
√

1 + |∇η|2, (2.7)

provided that W and η satisfy the periodic boundary conditions in horizontal variables, and
W solves the system (2.6). Similarly, if we define the surface velocity potential as ξ (x, y, t) �
φ(x, y, η(x, y, t), t), the DNO for the fluid potential, denoted by G−, can be expressed as

G−(η, h−)ξ = −ηxφx − ηyφy + φz = (φx, φy, φz)� · (n)
√

1 + |∇η|2. (2.8)

We suppress the dependency of DNOs on h± in subsequent analyses for simplicity of notations.
Following Craig & Sulem [23], by use of the DNOs G±(η), the kinematic and dynamic boundary
conditions can be recast in terms of ξ and η as follows:

ηt = G−(η)ξ (2.9)

and

ξt = −gη + 1
2(1 + |∇η|2)

[
(G−(η)ξ )2 + 2(G−(η)ξ )(∇η · ∇ξ )

−|∇ξ |2|∇η|2 − |∇ξ |2 + (∇η · ∇ξ )2
]

+ σ

ρ
∇ ·

[
∇η√

1 + |∇η|2

]

+ E
2

(G+(η)η)2 + 2G+(η)η − |∇η|2
1 + |∇η|2 , (2.10)

which is an evolution system for the surface elevation η(x, y, t) and the surface velocity potential
ξ (x, y, t). In this formulation of EHD surface-wave problems, the DNOs play a central role. It was
proved by Craig et al. [26] that G−(η) is an analytical operator if the C1-norm of the free-surface
displacement η is considerably small for three-dimensional water-wave problems; therefore, they
can be expanded as convergent Taylor series

G−(η) =
∞∑

j=0

G−
j (η), (2.11)
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where G−
j (η) is homogeneous of order j in η, and the first three terms of the series are given as

follows:

G−
0 = |D| tanh(h|D|), (2.12)

G−
1 (η) = −G−

0 ηG−
0 − ∇ · η∇ (2.13)

and G−
2 (η) = 1

2 G−
0 η2� + 1

2 �η2G−
0 + G−

0 ηG−
0 ηG−

0 , (2.14)

where D = −i∇, |D|2 = −� and h = h− for the current problem. As h → ∞, G0 reduces to |D|.
In order to determine the expression of G+(η), we assume that G+(η) has a Taylor series

representation G+(η) =∑∞
j=0 G+

j (η) with recursion formula G+
j (η) (j = 0, 1, 2, . . .), and apply

the operator expansion method. To proceed, we denote x = (x, y) and k = (k, l), which are the
wavenumber with its components along the propagation direction (e.g. x) and in the transverse
direction (e.g. y), respectively. Upon noting that the function sinh(|k|(h − z)) eik·x satisfies the
first two equations of (2.6) and the periodic boundary condition (we take h = h+ for the present
problem), one obtains the following formula by using the definition of G+(η):[ ∞∑

n=0

G+
n (η)

]
[sinh(|k|(h − η)) eik·x]

= (∇η · ∇ − ∂z)[sinh(|k|(h − z)) eik·x]z=η

= [∇η · ik sinh(|k|(h − η)) + |k| cosh(|k|(h − η))] eik·x. (2.15)

Expanding sinh(|k|(h − η)) and cosh(|k|(h − η)) about η = 0 yields

[ ∞∑
n=0

G+
n (η)

]⎡⎣∑
j even

1
j!

(|k|η)j sinh(|k|h) −
∑
j odd

1
j!

(|k|η)j cosh(|k|h)

⎤
⎦ eik·x

=
⎧⎨
⎩
∑

j even

1
j!

(|k|η)j[∇η · ik sinh(|k|h) + |k| cosh(|k|h)]

−
∑

j odd

1
j!

(|k|η)j[∇η · ik cosh(|k|h) + |k| sinh(|k|h)]

⎫⎬
⎭ eik·x. (2.16)

Equating (2.16) like powers of η, we can write down the explicit expressions of G+
n (η) (n =

0, 1, 2, . . .) which are recursive. However, upon noting that the DNO is self-adjoint, Nicholls &
Reitich [24] suggested to use the adjoint formulae in computations since the numerics is
substantially faster and memory efficient than the original formulae given by Craig & Sulem [23].
Following Nicholls & Reitich’s work, we obtain, for n > 0 even,

G+
n (η) = 1

n!
G+

0 |D|n−2(D · ηnD) −
∑

0<j�n
j even

1
j!

|D|jηjG+
n−j(η) +

∑
j<n

j odd

1
j!

G+
0 |D|j−1ηjG+

n−j(η), (2.17)

and for n odd,

G+
n (η) = − 1

n!
|D|n−1(D · ηnD) −

∑
0<j<n
j even

1
j!

|D|jηjG+
n−j(η) +

∑
j�n

j odd

1
j!

G+
0 |D|j−1ηjG+

n−j(η), (2.18)

with

G+
0 = |D| coth(h|D|). (2.19)

It will be useful for subsequent analyses to give the second and third terms of the expansion:

G+
1 (η) = G+

0 ηG+
0 + ∇ · η∇ (2.20)
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and
G+

2 (η) = 1
2 G+

0 η2� + 1
2 �η2G+

0 + G+
0 ηG+

0 ηG+
0 . (2.21)

As h+ → ∞, G+
0 simplifies to |D|. It is obvious that if h− → ∞ and h+ → ∞ hold at the same time,

G+
0 = G−

0 , G+
1 (η) = G−

1 (−η) and G+
2 (η) = G−

2 (η). In fact, it is not difficult to obtain that under this
assumption G+

j (η) = G−
j (−η) for arbitrary j.

Substituting the expansions of G± into the kinematic and dynamic boundary conditions
(2.9)–(2.10) and truncating at certain order gives two evolution equations for two unknowns η

and ξ . This approximation has reduced the three-dimensional problem to a two-dimensional
one involving only the variables on the surface, which is computationally reasonably simple.
In a doubly periodic setting, each term can be efficiently computed using a pseudo-spectral
method and the fast Fourier transform (FFT). We consider this approximation as a computational
model since it provides an efficient way to compute EHD surface waves propagating on three-
dimensional fluids. When the electric field is absent, similar computational methods have been
used in a variety of water wave problems (e.g. [23,24]).

(c) Hamiltonian formulation and fully nonlinear models
In the absence of the electric field (i.e. E = 0), many attempts were made to prove that water
wave problem (2.9)–(2.10) is a Hamiltonian system, but it was Zakharov who finally published
the Hamiltonian structure in [27]. Here we show that as E �= 0, (2.9)–(2.10) is also a Hamiltonian
system, and the Hamiltonian functional is the total energy defined by

H [η, ξ ] = 1
2

∫
R2

∫ η

−h−
(|∇φ|2 + φ2

z ) dz dx dy + σ

ρ

∫
R2

(
√

1 + |∇η|2 − 1) dx dy

+ g
2

∫
R2

η2 dx dy − E
2

∫
R2

∫ h+

η

(|∇W|2 + W2
z ) dz dx dy

= 1
2

∫
R2

ξG−(η)ξ dx dy + σ

ρ

∫
R2

(
√

1 + |∇η|2 − 1) dx dy

+ g
2

∫
R2

η2 dx dy − E
2

∫
R2

ηG+(η)η dx dy. (2.22)

To prove this assertion, it suffices to show the variation of the term associated with the electric
field. First recall that W = −η at z = η, which implies the following relation at the free surface

− δη = δW + ∂zWδη �⇒ δW = −(1 + Wz)δη. (2.23)

We then calculate the variation

δ
1
2

∫
R2

∫ h+

η

(|∇W|2 + W2
z ) dx dy

=
∫
R2

[
−1

2
δη(|∇W|2 + W2

z ) − δW
∂W
∂n

√
1 + |∇η|2

]
z=η

dx dy

=
∫
R2

δη

[
−1

2
(|∇W|2 + W2

z ) + (1 + Wz)G+(η)η
]

z=η

dx dy

=
∫
R2

δη

[
(G+(η)η)2 + 2G+(η)η − |∇η|2

2(1 + |∇η|2)

]
dx dy.

Therefore, using the variational principle, the system (2.9)–(2.10) can be rewritten by the canonical
surface variables η and ξ as

ηt = δH

δξ
and ξt = − δH

δη
. (2.24)

Based on the Hamiltonian formulation, we can construct fully nonlinear models by expanding
the DNOs in the Hamiltonian and truncating at certain order. For example, we expand the energy
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in power of η and ξ in the Hamiltonian as

H [η, ξ ] = 1
2

∫
R2

[
ξ (G−

0 + G−
1 (η))ξ + gη2 + 2σ

ρ

(√
1 + |∇η|2 − 1

)

− Eη(G+
0 + G+

1 (η))η
]

dx dy + O(η4, η2ξ2). (2.25)

Then by ignoring the high-order terms and taking the variational derivatives as stated in (2.24),
we get

ηt = G−
0 ξ + G−

1 (η)ξ (2.26)

and

ξt = 1
2

[(G−
0 ξ )2 − |∇ξ |2] + σ

ρ
∇ ·

[
∇η√

1 + |∇η|2

]
− gη + E

2

[
(G+

0 η)2 + 2G+
0 η + 2G+

1 (η)η − |∇η|2
]

.

(2.27)

It is noted that the approximation is made in terms involving the DNOs, but the effects due to
surface tension are not approximated. We emphasize that the model (2.26)–(2.27) is somewhat
different from the numerical method discussed in the last paragraph of §2b, since it has a clear
Hamiltonian expression. Numerical comparisons between these two kinds of truncation methods
can be found in Milewski & Wang [28] when the electric field is absent. Finally, the Hamiltonian
expansion can be proceeded to higher orders, and the corresponding Euler–Lagrange equations
are therefore derived through the same fashion.

Linearizing the system (2.26)–(2.27) and seeking solutions in the form ei(kx+ly−ωt) leads to the
dispersion relation

c2
p = ω2

|k|2 = tanh(h−|k|)
|k|

[
g − E|k| coth(h+|k|) + σ

ρ
|k|2

]
, (2.28)

where ω is the wave frequency and cp is called the phase speed. The flow is linearly stable if c2
p is

non-negative, so it is obvious that short waves are always stable, whereas long waves are stable
only when g − E/h+ � 0.

3. Long-wave approximation

(a) Shallow (fluid layer)–deep (gas layer) limit
(i) Boussinesq scaling

In this section, we consider the case that the typical wavelength is large in comparison with
the mean depth of the fluid h−, but small in comparison with the thickness of the gas layer

h+. First of all, we choose h−,
√

h−/g and
√

g(h−)3 as the length, time and velocity potential

scales, respectively, to normalize the system, and define R � h+/h−. Furthermore, we assume λ

is the typical length scale in the wave propagation direction; therefore, under the shallow-layer
assumption 1/λ is a small parameter, and its value can be denoted by ε. If we further assume that
waves are isotropic in x- and y-directions, then |D| = (−�)1/2 = O(ε) and

tanh(|D|) = |D| − 1
3 |D|3 + 2

15 |D|5 + O(ε7). (3.1)

We choose the following Boussinesq scaling

η = O(ε2), ξ = O(ε), ∂x = O(ε), ∂y = O(ε), ∂t = O(ε),

and R � O
(

1
ε

)
, B = O(1), E = O(ε),

⎫⎪⎬
⎪⎭ (3.2)

where B = σ/ρg(h−)2 is the Bond number. With the aid of (3.1), a simple calculation yields

G−
0 = (−�) − 1

3 (−�)2 + 2
15 (−�)3 + O(ε8) (3.3)
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and

G−(η) = −� − 1
3 �2 − ∇ · η∇ − 2

15 �3 − �η� + O(ε8). (3.4)

Owing to the shallow-deep assumption, it is easy to obtain

G+
0 = (−�)1/2 coth(R(−�)1/2) = O(ε).

Based on these formulae, we proceed by expanding the Hamiltonian (2.22) in terms of the small
parameter ε:

H = 1
2

∫ [
−ξ�ξ − 1

3
ξ�2ξ − ξ∇ · η∇ξ − EηG+

0 η + η2 + B|∇η|2
]

dx dy + O(ε8). (3.5)

To derive a nonlinear evolution system, we truncate H by dropping O(ε8) and apply the formula
(2.24). After some algebra, one obtains

ηt = −�ξ − 1
3 �2ξ − ∇ · η∇ξ (3.6)

and

ξt = − 1
2 |∇ξ |2 + EG+

0 η − η + B�η, (3.7)

a Boussinesq-type system with electric field. Since the strength of the electric field is assumed to
be relatively weak, it only modifies the linear dispersion relation of the classic Boussinesq system.

The BL-type equation, which is a single equation describing bidirectional waves, can be
derived from (3.6)–(3.7). First of all, equation (3.7) implies that η = −ξt + O(ε4). Let us differentiate
equation (3.7) with respect to time,

ξtt = − 1
2 (|∇ξ |2)t + EG+

0 ηt − ηt + B�ηt. (3.8)

Substituting (3.6) into (3.8) and retaining terms valid to O(ε5) yields

ξtt = − 1
2 (|∇ξ |2)t − EG+

0 �ξ + �ξ + ( 1
3 − B)�2ξ + ∇ · η∇ξ . (3.9)

By replacing η with −ξt, we arrive at

ξtt − �ξ + EG+
0 �ξ + (B − 1

3 )�2ξ + (|∇ξ |2)t + ξt�ξ = 0. (3.10)

Equation (3.10) modifies the classic BL equation by adding a linear non-local term resulting from
the electric field. We can further prove that equation (3.10) has a Hamiltonian structure with the
Hamiltonian functional

H = 1
2

∫ [(
θ − 1

2
|∇ξ |2

)2
+ |∇ξ |2 +

(
B − 1

3

)
(�ξ )2 + E(G+

0 ξ )(�ξ )

]
dx dy (3.11)

and the canonical variables are θ and ξ , where θ is defined by

θ � ξt + 1
2 |∇ξ |2. (3.12)

Proof. Calculating the variational derivatives with respect to the canonical variables gives

δH

δθ
= θ − 1

2
|∇ξ |2 = ξt (3.13)

and

δH

δξ
= ∇ ·

[(
θ − 1

2
|∇ξ |2

)
∇ξ

]
− �ξ +

(
B − 1

3

)
�2ξ + EG+

0 �ξ

= 1
2

(|∇ξ |2)t + ξt�ξ − �ξ +
(
B − 1

3

)
�2ξ + EG+

0 �ξ

= −ξtt − 1
2

(|∇ξ |2)t = −θt. (3.14)

�
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(ii) KP-type models

For the inhomogeneous case, where the variation in the y-direction is much slower than that in
the x-direction, we assume ∂y = O(ε2) while all other variables are of the same scales as listed in
(3.2). It follows that

G+
0 = (−∂xx)1/2 coth(R(−∂xx)1/2) + O(ε2).

Therefore, the total energy can be approximated via truncating the Hamiltonian valid to O(ε6):

H̃ = 1
2

∫ [
|∇ξ |2 − 1

3
ξ2

xx + ηξ2
x − EηQη + η2 + Bη2

x

]
dx dy, (3.15)

where Q is a pseudo-differential operator defined as Q � (−∂xx)1/2 coth(R(−∂xx)1/2). By taking the
variational derivatives, one obtains

ηt = δH̃

δξ
= −�ξ − 1

3
ξxxxx − (ηξx)x (3.16)

and

ξt = − δH̃

δη
= −1

2
ξ2

x + EQη − η + Bηxx. (3.17)

Following the same argument stated in the last subsection, we transform the system (3.16)–(3.17)
to be a single second-order equation via eliminating η:

ξtt − ξxx + EQξxx + (B − 1
3 )ξxxxx − ξyy + (ξ2

x )t + ξtξxx = 0. (3.18)

We change variables as

X = εx − εt, T = ε3t and Y = ε2y,

so that

∂t = −ε∂X + ε3∂T, ∂x = ε∂X and ∂y = ε2∂Y.

Recalling the scales given in (3.2), one can introduce the following notations

ξ̃ � ξ

ε
, Ẽ � E

ε
, Q̃ � (−∂XX)1/2 coth(Rε(−∂XX)1/2).

Therefore, we can recast (3.18) as

ε5[−2ξ̃XT + ẼQ̃ξ̃XX + (B − 1
3 )ξ̃XXXX − ξ̃YY − 3ξ̃X ξ̃XX]

+ ε7[ξ̃TT + (ξ̃2
X)T + ξ̃T ξ̃XX] = 0. (3.19)

Dropping the terms of order O(ε7) and returning back to the original variables, one can then
neglect the small parameter ε,

2(∂t + ∂x)ξx − EQξxx + ( 1
3 − B)ξxxxx + ξyy + 3ξxξxx = 0. (3.20)

Taking derivative with respect to x and letting p = ξx, one obtains a KP-like equation

[2(pt + px) − EQpx + ( 1
3 − B)pxxx + 3ppx]x + pyy = 0. (3.21)

It is clear that the pxxx term in equation (3.21) vanishes at B = 1
3 , hence as B is close to 1

3
the dispersive term EQpx can be used to balance the nonlinear effects. However, if E is much
smaller (say, of order ε3), we need to proceed to the next step to derive a higher order equation.
To obtain a balance between dispersion and nonlinearity near B = 1

3 and E = 0, we choose the
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following scales

η = O(ε4), ξ = O(ε3), ∂x = O(ε), ∂y = O(ε2), ∂t = O(ε)

and R � O
(

1
ε

)
, E = O(ε3), B − 1

3
= O(ε2).

⎫⎪⎬
⎪⎭ (3.22)

It is not difficult to obtain the fifth-order KP-like equation

[2(∂t + ∂x)p + ( 1
3 − B)pxxx − EQpx + 1

45 ∂
(5)
x p + 3ppx]x + pyy = 0. (3.23)

The derivation is very similar to that of the KP-like equation; therefore, we omit the details here.

Remark 3.1. For two-dimensional fluids (namely, the governing equations are y-independent),
the model equations (3.21) and (3.23) were derived by Hammerton & Bassom [17].

Remark 3.2. For the limiting case R → ∞, the equations (3.21) and (3.23) reduce to

[2(∂t + ∂x)p + ( 1
3 − B)pxxx + EHpxx + 3ppx]x + pyy = 0 (3.24)

and

[2(∂t + ∂x)p + ( 1
3 − B)pxxx + EHpxx + 1

45 ∂
(5)
x p + 3ppx]x + pyy = 0, (3.25)

respectively, where H is called the Hilbert transform defined by

H[f ](x) = 1
π

P.V.
∫
R

f (x′)
x′ − x

dx′,

where ‘P.V.’ means that the integral is in the Cauchy principle sense. The Fourier symbol of the
Hilbert transform is i sgn(k), hence H∂x = −(−∂xx)1/2. Equations (3.24) and (3.25) were derived
by Hunt et al. [25] using standard asymptotic techniques. Equation (3.24) is also called the two-
dimensional Benjamin equation.

Remark 3.3. If we confine ourselves to one-dimensional surface waves, equation (3.24) is the
celebrated Benjamin equation, a reduced model written for long interfacial waves between two
immiscible fluids when the upper layer is bounded above and the lower layer is of infinite depth,
with additional conditions that the densities of two fluids are nearly equal and the interfacial
tension is large (see Benjamin [29]). And it was first derived by Gleeson et al. [15] in the context of
EHD surface waves.

(iii) Lumps

In the absence of electric fields, it is well known that fully localized travelling-wave solutions
exist in free-surface/iterfacial water waves when the surface tension is strong. This fact has
been confirmed in the long-wave limit by the exact lump solutions of the KP-I equation, and
the numerical solutions of the BL equation [19] and two-dimensional Benjamin equation [20].
In this section, based on the model equation (3.10), we investigate the existence and generation
mechanism of lumps when the vertical electric field is also taken into account. The numerical
scheme for constructing fully localized travelling-wave solutions is an extension of Petviashvili’s
method [30]. The basic idea is to perform the iteration in the Fourier space supplemented by a
normalization factor upon the degree of nonlinearity. Assuming a lump propagates with speed c
in the x-direction, and applying the Fourier transform to equation (3.10) leads to

ξ̂ =
c
(

ik ̂|∇ξ |2 + ̂ξx�ξ
)

−c2k2 + |k|2 − E|k|3 + (B − 1/3)|k|4 � P[ξ̂ ], (3.26)

where k = (k, l) is the vector of wavenumber, and R is taken to be infinity throughout the
computation for simplicity. In order to prevent the unlimited growth or reduction, a multiplier
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Figure 2. (a) Bifurcation diagram of lumps (solid line) and plane solitary waves (dashed line) of equation (3.10) with E =
1/2 and B = 7/12, both of which bifurcate from free stream at c = √

3/2≈ 0.866. (b) Representative plane solitary wave
with c = 0.7 and η(0)= −0.2877 (corresponding to ‘a’ on the bifurcation curve). (c,d) Typical lump profile with c = 0.7 and
η(0, 0)= −0.5266 (corresponding to ‘b’ in the bifurcation diagram); (c) the x-cross-section (solid curve) and y-cross-section
(dashed curve) of the lump.

needs to be introduced in every iteration step. Following [31], we propose the numerical
scheme as

ξ̂n+1 = αn P[ξ̂n], (3.27)

where αn is given by

αn =
∫∫ |ξ̂n|2 dk dl∫∫
ξ̂∗

n P[ξ̂n] dk dl
. (3.28)

In figure 2, we present the bifurcation curves and typical profiles of solitary waves in equation
(3.26) for E = 1/2 and B = 7/12. The bifurcation diagram (a) shows the relation between c and
cξx which indicates that both plane solitary waves (dashed curve) and lumps (solid curve)
bifurcate from free stream at c ≈ 0.866. For positive c, only depression solitary waves which
feature a negative displacement at their centre were found. Typical examples of two- and
three-dimensional solitary-wave solutions are shown in (b) and (d), respectively, while x- and
y-cross-sections of the lump (d) are plotted in (c). It is beyond the scope of this paper to study the
full bifurcation of solitary waves in equation (3.26).

Kim & Akylas [20] showed that plane solitary waves in the two-dimensional Benjamin
equation (3.24) are unstable subject to transverse perturbations of sufficiently long wavelength,
and the long-time dynamics of this instability results in the formation of lumps. The new model
(3.10), which can be viewed as the bidirectional and isotropic counterpart of (3.24), is expected to
have the similar property. We first sketch the numerical scheme for time-dependent simulations.
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Taking the Fourier transform of the system (3.13)–(3.14) in x- and y-yields

ξ̂t − θ̂ = N̂1 (3.29)

and

θ̂t + [|k|2 − E|k|3 + (B − 1
3 )|k|4]ξ̂ = N̂2, (3.30)

where the nonlinear terms N1 and N2 take the form

N1 = − 1
2 [|∇ξ |2] and N2 = −∇ · [(θ − 1

2 |∇ξ |2)∇ξ ].

Following [32], we recast the system (3.29)–(3.30) into a single evolution equation by introducing

p̂ = θ̂ + iΩξ̂ and q̂ = θ̂ − iΩξ̂ , (3.31)

where Ω is defined by

Ω =
√

(B − 1
3 )|k|4 − E|k|3 + |k|2. (3.32)

Therefore, the system (3.29)–(3.30) can be rewritten as

p̂t − iΩ p̂ = N̂2 + iΩN̂1 and q̂t + iΩ q̂ = N̂2 − iΩN̂1. (3.33)

It turns out that two equations given in (3.33) are essentially the same in view of the fact that θ

and ξ are real. Thus, the problem is reduced to solving

q̂t + iΩ q̂ = N̂2 − iΩN̂1, (3.34)

while θ and ξ can be recovered by

θ̂ (k) = 1
2

[q̂(k) + q̂(−k)∗] and ξ̂ (k) = i
2Ω

[q̂(k) − q̂(−k)∗], (3.35)

where the asterisk indicates complex conjugation. The time integration of the complex equation
(3.34) is implemented using integrating factors and the fourth-order Runge–Kutta method
(e.g. [32]). To study the transverse instability, 1024 × 256 modes were used along the propagating
and transverse directions, respectively, and the computations were de-aliased with a doubling of
Fourier modes. We take the plane solitary wave Ξ (x) which is shown in figure 2b and perturb it
in the transverse direction using a long cosine function, namely

ξ (x, y, t = 0) = Ξ (x)
[
1 + 0.01 cos

(πy
30

)]
. (3.36)

The subsequent evolution of this initial data shows a focusing behaviour which is arrested by
the formation of a lump propagating behind the rest of the disturbance with speed c ≈ 0.593
(figure 3a). Figure 3c,d demonstrates the comparisons of x- and y- cross-sections between the
resultant lump (solid lines) and the exact solution (dashed line), which show a remarkable
agreement. This also provides us with the validation of our numerical codes. Finally, we remark
that in some sense the isotropic equation (3.10) is better than the two-dimensional Benjamin
equation (3.24), since the choice of the initial condition for the latter equation requires a careful
check. If we assume the wave is locally confined in the x-direction, the quantity

∫∞
−∞ p(x, y, t) dx

has to be a linear function of y, and the numerical scheme adopted should persevere this property.

(b) Shallow–shallow limit
Throughout this subsection, we make the assumption that both h− and h+ are small compared
with the typical wavelength λ. The non-dimensionalization is done in the same way as in
the shallow-deep case, where h− is taken as the length scale. The isotropic Boussinesq regime
includes the additional expectation of small-amplitude motions. One chooses the following scaled
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Figure 3. (a) Time evolution of a plane solitary wave (shown in figure 2b) in the presence of transverse perturbation for (i)
t = 0, (ii) t = 160 and (iii) t = 270 (from top to bottom). A lumpwith speed c ≈ 0.593 emerges. (b,c) Comparison of the lump
emerged from the transverse instability (solid curve) to the exact steady solution (dashed curve): (b) for x-cross-section and
(c) for y-cross-section.

variables

∂x = O(ε), ∂y = O(ε), ∂t = O(ε), |D| = O(ε),

η = O(ε2), ξ = O(ε), R = O(1), B = O(1) and E = O(1).

The expansions (3.3) and (3.4) still hold, and, in addition,

G+
0 = 1

R
+ R

3
(−�) − R3

45
(−�)2 + O(ε6) (3.37)

and

G+(η) = 1
R

− R
3

� + 1
R2 η − R3

45
�2 + ∇ · η∇ − 1

3
�η − 1

3
η� + 1

R3 η2 + O(ε6). (3.38)
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Hence we can expand the Hamiltonian (2.22) in terms of the small parameter ε as H = H4 +
H6 + O(ε8) with

H4 = 1
2

∫ [
|∇ξ |2 +

(
1 − E

R

)
η2
]

dx dy (3.39)

and

H6 = 1
2

∫ [
η|∇ξ |2 − 1

3
(�ξ )2 +

(
B − ER

3

)
|∇η|2 − E

R2 η3
]

dx dy. (3.40)

We proceed by dropping the high-order terms, and taking the variational derivatives as (2.24):

ηt = −�ξ − ∇ · (η∇ξ ) − 1
3 �2ξ (3.41)

and

ξt = −
(

1 − E
R

)
η − 1

2
|∇ξ |2 +

(
B − ER

3

)
�η + 3E

2R2 η2, (3.42)

where the electric field modifies not only the linear dispersion relation, but also the nonlinearity. It
is noted that higher order Boussinesq-type equations can be obtained in the same vein. Carrying
out the same procedure presented in §3a, we get the BL and KP-like equations as follows:

ξtt − c2�ξ +
(
B − ER

3
− c2

3

)
�2ξ + (|∇ξ |2)t +

(
1 − 3E

R2c2

)
ξt�ξ = 0 (3.43)

and [
pt + cpx − 1

2c

(
B − ER

3
− c2

3

)
pxxx + 3

2

(
1 − E

R2c2

)
ppx

]
x

+ c
2

pyy = 0, (3.44)

where c �
√

1 − E/R and p � ξx. The existence, stability and asymptotic behaviours of locally
confined travelling-wave solutions in these two equations have been extensively studied in the
literature; therefore, we omit the details here. We should emphasize that the electric field has a
great impact on wave patterns and dynamics of the free surface. Noting that in equation (3.44),

B − ER
3

− c2

3
= B − 1

3
+ E

3

(
1
R

− R
)

, (3.45)

it is readily apparent that the electric term can change KP-I to KP-II and vice versa, if we choose
suitable E and R. Finally, we remark that the KdV equation, which is a celebrated reduced model
in classical water-wave problems, was derived by Easwaran [13] and Hammerton [16] in the
context of EHD surface waves using conventional perturbation method. Here the KdV equation
can be derived by dropping the y-dependence in equation (3.44).

4. Short-wave approximation
The cubic NLS equation provides a canonical description for the envelope dynamics of a quasi-
monochromatic plane short wave propagating in a weakly nonlinear dispersive medium. Let us
now consider the derivation of the NLS equation from the primitive system when the electric
field and conducting fluid are both of infinite depth. Here we are following a packet of nearly
one-dimensional waves, travelling in the x-direction, with an identifiable wavenumber k � (k, l) =
(k, 0). We no longer use the mean depth of the lower layer as length scale; instead, we choose√

σ/ρg as the typical length and, therefore, the Bond number becomes 1 and E = εpE2
0
√

ρg/σ 3/2

in the dynamic boundary condition (2.5). As remarked in §2b, under the assumption that both
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layers are of infinite depth,

G+
n (η) = G−

n (−η) = (−1)nG−
n (η), n = 0, 1, 2, . . . ,

where G−
j (η) takes the form

G−
n (η) = −|D|n−1∇ · ηn

n!
∇ −

n∑
j=1

|D|j η
j

j!
G−

n−j(η), for n � 1 (4.1)

and G−
0 = |D|. We truncate the DNO expansions in the Hamiltonian (2.22), and take the variational

derivatives to obtain the Euler–Lagrange equations. We omit the tedious calculations, but list
below are the quadratic, cubic, quartic and quintic models (2 � m � 5):

ηt − G−
0 ξ =

m−1∑
n=1

G−
n (η)ξ (4.2)

and

ξt + (1 − EG−
0 − �)η =

m∑
n=2

Nn + ∇ ·
[

∇η√
1 + |∇η|2

− ∇η

]
, (4.3)

where

N2 = 1
2

[(G−
0 ξ )2 − |∇ξ |2] + E

2
[(G−

0 η)2 − |∇η|2 − 2G−
1 η], (4.4)

N3 = (G−
0 ξ )(G−

1 ξ + ∇η · ∇ξ ) − E[(G−
0 η)(G−

1 η + |∇η|2) − G−
2 η], (4.5)

N4 = 1
2

[(G−
1 ξ + ∇η · ∇ξ )2 + 2(G−

0 ξ )(G−
2 ξ ) − |∇η|2(G−

0 ξ )2]

+ E
2

[(G−
1 η + |∇η|2)2 + 2(G−

0 η)(G−
2 η) − |∇η|2(G−

0 η)2 − 2G−
3 η] (4.6)

and N5 = (G−
0 ξ )(G−

3 ξ ) + (G−
2 ξ − |∇η|2G−

0 ξ )(G−
1 ξ + ∇η · ∇ξ )

− E[(G−
0 η)(G−

3 η) + (G−
2 η − |∇η|2G−

0 η)(G−
1 η + |∇η|2) − G−

4 η]. (4.7)

(a) Normal form analysis
The NLS equation is a conventional tool to investigate wavepacket solitary waves. In order to
derive the cubic NLS equation, we expand the kinematic and dynamic boundary conditions about
z = 0 and retain quantities valid up to the third order terms in ξ and η which are assumed to be
proportional to a small parameter ε:

ηt − G−
0 ξ = G−

1 (η)ξ + G−
2 (η)ξ (4.8)

and

ξt + (1 − EG−
0 − �)η =N2 + N3 − ∇ · ( 1

2 |∇η|2∇η). (4.9)

Consider now the propagation of a quasi-monochromatic wave whose slow dependence is
comparable in both x- and y-directions, but whose fast oscillation is only in the propagation
direction x. To derive the governing equation for the wave envelope, we introduce variables of
multiple scales X = εx, Y = εy, T = εt and τ = ε2t, and choose ei(kx−ωt) as the carrier wave. One
then seeks a solution of the form(

η

ξ

)
= ε

(
A(X, Y, T, τ )
B(X, Y, T, τ )

)
eiΘ + ε2

(
A1
B1

)
+ ε3

(
A2
B2

)
+ · · · , (4.10)

where Θ = kx − ωt. It is noted that Aj and Bj include all the harmonic modes up to j, namely Aj =
(·)e0 + (·) eiΘ + · · · + (·) ejiΘ . The wave envelope A can then be found to satisfy the NLS equation.
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We omit the details of the derivation, and just state the results (the interested reader is referred to
Wang & Milewski [32])

iAτ +
3|k| − E − c2

g

2ω
AXX + cg

2k
AYY + α|A|2A = 0, (4.11)

where

α = |k|
2ω

[
2(Ek2 − ω2)2

2k2 − 1
− 2k2 − 1

2
k4

]
. (4.12)

It is of particular interest to study the NLS coefficients at the minimum of the phase speed, since at
this point the group velocity cg is equal to the phase velocity cp. Then wavepacket solitary waves
may bifurcate from infinitesimal periodic waves at this minimum as long as the associated NLS
equation is focusing. When k = 1, cp attains its minimum

√
2 − E, and accordingly equation (4.11)

becomes

iAτ + λ1AXX + λ2AYY + γ |A|2A = 0, (4.13)

with

λ1 = 1

2
√

2 − E
, λ2 =

√
2 − E
2

and γ = 1√
2 − E

[
4(E − 1)2 − 5

4

]
. (4.14)

λ1 and λ2 are positive when E < 2, while γ is also positive as E ∈ [0, 1 − √
5/4) ∪ (1 + √

5/4, 2).
Under this situation, the NLS equation is of focusing type which admits fully localized stationary
solutions, therefore the ansatz (4.10) provides a good approximation for lumps in the primitive
equations (see [32] for a detailed discussion).

(b) Lumps
However, it is more interesting to search for lump solutions in the primitive equations or in the
fully nonlinear models when the associated NLS equation is defocusing. That is because the
weakly nonlinear theory only works for small-amplitude waves, but does not rule out lump
solutions of finite amplitudes. Hence, we focus our attention on the case E ∈ (1 − √

5/4, 1 +√
5/4) and choose E = 0.5 in the subsequent computations. The fully nonlinear model (4.2)–(4.3)

with m = 5 is numerically solved to seek for travelling lumps with symmetry in both x- and
y-directions, based on an accurate pseudo-spectral method. We write the travelling solution as

η(ζ , y) =
M∑

m=−M+1

N∑
n=−N+1

am,n ei(nkζ+mly) (4.15)

and

ξ (ζ , y) =
M∑

m=−M+1

N∑
n=−N+1

bm,n ei(nkζ+mly), (4.16)

with am,n = a−m,n = am,−n and bm,n = b−m,n = −bm,−n, where ζ = x − ct with the translating speed
c. η and ξ are periodic functions on the rectangle of size 2π/k and 2π/l. am,n and bm,n are unknown
Fourier coefficients which need to be solved using Newton’s method.

It is presented in figure 4 the bifurcation diagram and typical profiles of electrohydrodynamic
lumps which feature oscillatory decaying tails in the propagation direction but monotonic
decaying tails in the transverse direction akin to non-electric gravity-capillary lumps. As implied
by the defocusing NLS, no small-amplitude lumps can be found below the minimum of
the phase speed cmin = 1.224. The key observation is both elevation and depression branches
of electrohydrodynamic lumps were found to exist at finite amplitudes. The solutions were
computed by considering the non-electric gravity-capillary lumps obtained in [32] as the starting
point, and then increasing the value of E as the bifurcation parameter. Typical computations
shown in figure 4 use M = 64 an N = 128.
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Figure 4. (a) Values of γ for different electric strengths. We seek lumps for E = 0.5 and γ = −0.2041. (b) Speed-
amplitude bifurcation curves for lumps, and both depression (downward-pointing triangle) and elevation (upward-pointing
triangle) lumps were found to bifurcate from the phase speed minimum cmin = 1.2247 and exist at finite amplitudes.
(c) Typical depression lump with c = 1.212 and η(0, 0)= −0.7437. (d) Typical elevation lump with c = 1.212 and
η(0, 0)= 0.3680.

5. Conclusion
In this paper, we have presented the modelling of nonlinear electrohydrodynamic surface waves
propagating on three-dimensional perfect conducting fluids under vertical electric fields. The
problem was proved to be a Hamiltonian system involving two distinct DNOs. Fully nonlinear
models were derived via formally expanding the DNOs as series of pseudo-differential operators,
either in the free boundary conditions or in the Hamiltonian functional.

When the Bond number is of order one, both shallow- and deep-fluid configurations were
considered, and different weakly nonlinear models were proposed for long- and short-wave
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approximations based on the systematic expansions of the DNOs in the Hamiltonian. It turns out
that the electric field has a great effect on the physical system: (i) when the separation distance
between two electrodes is small compared with typical wavelength, the Boussinesq, BL and KP
equations with modified coefficients are obtained, and electric forces can turn KP-I to KP-II and
vice versa; (ii) as the parallel electrodes are of large separation distance but the thickness of the
liquid is much smaller than typical wavelength, we generalize the BL, KP and fifth-order KP
equations by introducing linear pseudo-differential operators arising from the electric field; (iii)
for a quasi-monochromatic plane wave in deep fluid, we derive the cubic NLS equation whose
type (focusing or defocusing) is strongly affected by the value of the electric parameter.

As surface tension is strong enough, locally confined travelling waves in three dimensions
were numerically computed in equation (3.10), and the transverse instability of plane solitary
waves was further examined, and found to be a mechanism of generation of lumps. Lump
solutions also exist in the fully nonlinear model in deep fluids, even though the associated NLS
equation is of defocusing type. The stability and dynamics of electrohydrodynamic lumps, which
are beyond the scope of this paper, are of great interest, and we leave for future studies. Finally,
it must be pointed out that when gravity and surface tension are equally important, the viscous
effect, which we have neglected in the modelling, plays an important role due to small typical
wavelength. Therefore, in practice, we can derive models from the Navier–Stokes equations when
the viscous effect is strong (e.g. [17,33]), or use the visco-potential theory for weakly viscous
fluids [34].
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Kadomtsev-Petviashvili’s models in interfacial electro-hydrodynamics. Eur. J. Mech. B Fluids.
(doi:10.1016/j.euromechflu.2017.01.015)

26. Craig W, Schanz U, Sulem C. 1997 The modulational regime of three-dimensional water
waves and the Devey-Stewartson system. Ann. Inst. Henri Poincaré 14, 615–667. (doi:10.1016/
S0294-1449(97)80128-X)

27. Zakharov VE. 1968 Stability of periodic waves of finite amplitude on the surface of a deep
fluid. J. Appl. Mech. Tech. Phys. 2, 190–194.

28. Milewski PA, Wang Z. 2014 Transversally periodic solitary gravity-capillary waves. Proc. R.
Soc. A 470, 20130537. (doi:10.1098/rspa.2013.0537)

29. Benjamin TB. 1992 A new kind of solitary wave. J. Fluid Mech. 245, 401–411. (doi:10.1017/
S002211209200051X)

30. Petviashvili VI. 1976 Equation of an extraordinary soliton. Sov. J. Plasma Phys. 2, 257–258.
31. Ablowitz MJ, Fokas AS, Musslimani ZH. 2006 On a new non-local formulation of water

waves. J. Fluid Mech. 562, 313–343. (doi:10.1017/S0022112006001091)
32. Wang Z, Milewski PA. 2012 Dynamics of gravity-capillary solitary waves in deep water.

J. Fluid Mech. 708, 480–501. (doi:10.1017/jfm.2012.320)
33. Gonazález A, Castellanos A. 1994 Korteweg-de Vries-Burgers equation for surface waves in

nonideal conducting liquids. Phys. Rev. E 49, 2935–2940. (doi:10.1103/PhysRevE.49.2935)
34. Hunt M, Dutykh D. 2014 Visco-potential flows in electrohydrodynamics. Phys. Lett. A 278,

1721–1726. (doi:10.1016/j.physleta.2014.04.025)

 on December 1, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1063/1.2716763
http://dx.doi.org/doi:10.1016/j.wavemoti.2013.01.003
http://dx.doi.org/doi:10.1063/1.4862975
http://dx.doi.org/doi:10.1137/S0036139999356971
http://dx.doi.org/doi:10.1137/S0036139999356971
http://dx.doi.org/doi:10.1017/S0022112006009773
http://dx.doi.org/doi:10.1017/S0022112079000835
http://dx.doi.org/doi:10.1016/0165-2125(94)90003-5
http://dx.doi.org/doi:10.1006/jcph.1993.1164
http://dx.doi.org/doi:10.1006/jcph.2001.6737
http://dx.doi.org/doi:10.1016/j.euromechflu.2017.01.015
http://dx.doi.org/doi:10.1016/S0294-1449(97)80128-X
http://dx.doi.org/doi:10.1016/S0294-1449(97)80128-X
http://dx.doi.org/doi:10.1098/rspa.2013.0537
http://dx.doi.org/doi:10.1017/S002211209200051X
http://dx.doi.org/doi:10.1017/S002211209200051X
http://dx.doi.org/doi:10.1017/S0022112006001091
http://dx.doi.org/doi:10.1017/jfm.2012.320
http://dx.doi.org/doi:10.1103/PhysRevE.49.2935
http://dx.doi.org/doi:10.1016/j.physleta.2014.04.025
http://rspa.royalsocietypublishing.org/

	Introduction
	Formulation
	Governing equations
	Dirichlet--Neumann operators
	Hamiltonian formulation and fully nonlinear models

	Long-wave approximation
	Shallow (fluid layer)--deep (gas layer) limit
	Shallow--shallow limit

	Short-wave approximation
	Normal form analysis
	Lumps

	Conclusion
	References



