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Characteristics of space-time energy spectra in turbulent channel flows
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An energy spectrum is preliminarily characterized by its mean and standard deviation. In
this study, we derive exact expressions for the means and bandwidths of space-time energy
spectra at fixed frequencies. The mean wave numbers are used to determine the phase
velocities that bridge from temporal spectra to space-time spectra. The bandwidths are
used to measure the well-known spectral broadening. We show that phase velocities alone
are insufficient to determine the bandwidths of energy spectra. As a result, the cross-spectral
method predicts narrower bandwidths of energy spectra. Therefore, in addition to phase
velocities, amplitudes are used to rescale the space-time energy spectra, leading to the
correct bandwidths. Existing data from direct numerical simulations of turbulent channel
flows validate the rescaling approach.
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I. INTRODUCTION

Space-time energy spectra of velocity fluctuations describe the energy distribution in turbulent
flows over length and time scales. These spectra are particularly useful in studies of multi-scale
coupling in space and time [1,2]. However, obtaining full space-time energy spectra from
experimental measurements remains challenging [3] because only a subset of the spatial and temporal
signals of the velocity fluctuations is experimentally available.

Taylor’s frozen-flow hypothesis [4] was proposed to determine spatial energy spectra from
temporal signals in hot-wire experiments. According to Taylor’s hypothesis, turbulent velocity
fluctuations propagate downstream at the convection velocity and remain unchanged during the
propagation process. The convection velocity is usually defined by space-time correlations or
space-time energy spectra [5–7], in which the dependences of the convection velocity on the wave
number and frequency have been thoroughly investigated [8,9]. In Taylor’s frozen-flow hypothesis,
the widths of the energy spectra vanish, which implies that the eddies of individual frequencies have
a single wave number and vice versa. However, the widths of space-time energy spectra in turbulent
flows do not vanish due to random sweeping [10,11] and shear distortion [12,13], which lead to
spectral broadening [14]. The issue of spectral spreading is important for reconstructing space-time
energy spectra.

Wilczek and Narita [15] derive an advection model based on the Kraichnan-Tennekes random
sweeping hypothesis [10,11] with additional mean flows, which predicts the space-time spectra from
the energy spectra in the wave-vector domain. This model clarifies that the mean velocity leads to
a Doppler shift of the frequencies, whereas the sweeping velocity causes a Doppler broadening.
Wilczek et al. [16,17] show the applicability of the random sweeping model with a mean flow in the
logarithmic layer of turbulent channel flow.

The cross-spectral approach [18,19] was developed experimentally to investigate frequency-
dependent convection velocities from two-point cross correlations, such as those obtained from
laser Doppler anemometry (LDA) and particle image velocimetry (PIV) measurements; however,
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these studies neglect the variation in the phase velocities. Buxton et al. [20] show that the phase
velocities obtained from the cross-spectral approach are spread over a certain range. Following up
on this work, de Kat and Ganapathisubramani [21] apply the cross-spectral approach to generate a
transfer function that can map the temporal energy spectra to space-time spectra. This method uses
the phases of the velocity modes to construct the maps from temporal spectra to space-time spectra
and yields the correct shapes of the space-time spectra. However, whether the phase velocities (or
phase differences) alone can be used to correctly determine the characteristics of the space-time
energy spectra remains unknown.

A space-time energy spectrum can be preliminarily characterized by its first-order and second-
order moments. For example, given a frequency, the first-order moment of an energy spectrum
indicates the energy-weighted average of the wave numbers. The mean wave number can be used
to calculate the phase velocity and thus determines the convection velocity in Taylor’s frozen-flow
hypothesis. The second-order moments of space-time energy spectra give the spectral bandwidths
and can be used to validate Taylor’s frozen-flow hypothesis. It is noted that Taylor’s hypothesis with
a constant convection velocity leads to a vanishing bandwidth [22]. Del Álamo and Jiménez [8]
propose that the convection velocities are dependent on both steamwise and spanwise wavelengths,
which generate non-vanishing bandwidths. In this paper, we study the extent to which the phases
of the velocity modes alone can correctly determine the mean wave numbers and the bandwidths
of space-time energy spectra. The bandwidths will be used to rescale the maps in the cross-spectral
approach to reconstruct the space-time energy spectra.

This paper is organized as follows. In Sec. II, we derive exact expressions for the mean wave
numbers and bandwidths. The results are used to evaluate the reconstruction approaches for space-
time energy spectra, such as Taylor’s frozen-flow hypothesis. In Sec. III, we investigate the mean wave
numbers and spectral bandwidths in turbulent channel flows, using their exact expressions. In Sec. IV,
the bandwidths are used to rescale the space-time energy spectra obtained from the cross-spectral
approach, which are consistent with direct numerical simulation (DNS) results. Finally, we present
the conclusions and future work in Sec. V.

II. THE EXACT EXPRESSIONS FOR THE MEAN WAVE NUMBERS
AND SPECTRAL BANDWIDTHS

The mean wave numbers and bandwidths for space-time energy spectra are most simply examined
in the one-dimensional case. Therefore, we consider a one-dimensional velocity field u(x,t) in this
section. The results will be easily extended to three-dimensional cases in the next section. If the
space-time Fourier modes of the velocity u(x,t) are denoted as û(kx,ω), the space-time energy
spectrum is written as

�(kx,ω) = 〈û∗(kx,ω)û(kx,ω)〉
�kx�ω

, (1)

where �kx = 2π/Lx , �ω = 2π/T , Lx is the domain size, T is the largest characteristic timescale,
and 〈(·)〉 is the ensemble average. The space-time energy spectrum �(kx,ω) is a two-dimensional
surface with respect to the wave number kx and the frequency ω. It can also be regarded as a family
of curves {�(kx,ω) : ω} in which each curve is the spatial energy spectrum at a given frequency ω.
For a fixed frequency ω, we define the mean wave number and the bandwidth for the spatial energy
spectrum �(kx,ω) as

kxc(ω) =
∫

kx�(kx,ω)dkx

�t (ω)
, (2)

B(ω) =
∫

(kx − kxc(ω))2�(kx,ω)dkx

�t (ω)
, (3)
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where �t (ω) is the temporal energy spectrum. The mean wave number kxc(ω) is the energy-weighted
average of the wave numbers for the frequency ω, from which the frequency-dependent convection
velocities are estimated as Uc(ω) = ω/kxc(ω) [8,9,18,19]. B(ω) is the standard variance of �(kx,ω),
which gives the extent of the wave numbers to the mean wave number kxc(ω).

In experiments, the velocity field u(x,t) is often measured at a fixed location x, and the temporal
Fourier modes û(x,ω) are obtained through Fourier transformations. To understand the contributions
of the amplitudes and phases to the mean wave numbers and spectral bandwidths, we derive their
exact expressions as functions of the amplitudes |û(x,ω)| and phase θ (x,ω), where

û(x,ω) = |û(x,ω)| exp[iθ (x,ω)]. (4)

To do this, we introduce the mode correlations at two locations x and x + r ,

R(r,ω) = 〈û∗(x,ω)û(x + r,ω)〉
〈û∗(x,ω)û(x,ω)〉 , (5)

which are related to the space-time energy spectra by

R(r,ω) =
∫

�(kx,ω) exp(ikxr)dkx

�t (ω)
. (6)

Taking the first and second derivatives of Eq. (6) with respect to r at r = 0, we obtain

∂R(r,ω)

∂r

∣∣∣∣
r=0

= ikxc(ω), (7)

and

∂2R(r,ω)

∂r2

∣∣∣∣
r=0

= −B(ω) − k2
xc(ω). (8)

The terms on the left-hand sides of Eqs. (7) and (8) can be evaluated using Eqs. (5) and (4), which
are given by

∂R(r,ω)

∂r

∣∣∣∣
r=0

= 〈û∗∂xû〉
〈|û|2〉 = i

〈|û|2∂xθ〉
〈|û|2〉 (9)

and

∂2R(r,ω)

∂r2

∣∣∣∣
r=0

=
〈
û∗∂2

xxû
〉

〈|û|2〉 = −〈|û|2(∂xθ )2〉
〈|û|2〉 − 〈(∂x |û|)2〉

〈|û|2〉 , (10)

where integration by parts and the homogeneity assumption are used. By substituting Eqs. (9) and
(10) into Eqs. (7) and (8), we obtain the exact expressions for the mean wave numbers and the
spectral bandwidths

kxc(ω) = 〈|û|2∂xθ〉
〈|û|2〉 , (11)

B(ω) = 〈|û|2(∂xθ − kxc)2〉
〈|û|2〉︸ ︷︷ ︸
Term I

+ 〈(∂x |û|)2〉
〈|û|2〉︸ ︷︷ ︸
Term II

. (12)

The phase derivative ∂xθ can be interpreted as a local wave number. Therefore, Eq. (11) implies that
the mean wave number kxc(ω) is the energy-weighted average of the local wave numbers for a given
frequency ω. Equation (12) implies that the spectral bandwidth is determined by two terms: “Term
I” is associated with the phase derivative, and “Term II” is associated with the amplitude derivative.
In other words, both the phase and the amplitude contribute to the spectral bandwidths.
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If u(x,t) satisfies Taylor’s frozen-flow hypothesis, the velocity at a future time t + τ is

u(x,t + τ ) = u(x − Uτ,t), (13)

where U is a constant convection velocity. Therefore, its temporal Fourier mode û(x,ω) can be
expressed as

û(x,ω) = û(0,ω) exp
(

i
ωx

U

)
, (14)

which leads to ∂xθ = ω/U and ∂x |û| = 0. According to Eqs. (11) and (12), the mean wave number
and bandwidth in Taylor’s hypothesis are given by

kT A
xc (ω) = ω/U (15)

and

BT A(ω) = 0, (16)

respectively, where the superscript “TA” denotes the results from Taylor’s hypothesis. Therefore, the
spectral bandwidths in Taylor’s frozen-flow hypothesis are zero. However, if the convection velocity
U exhibits spatial fluctuations and thus ∂xθ − kxc �= 0, the bandwidths may not be zero [B(ω) �= 0],
which implies “spectral broadening” [14]. McKeon and Sharma suggest that Taylor’s hypothesis
would be better validated in terms of the bandwidths of the space-time energy spectra [22].

If u(x,t) satisfies the random-sweeping hypothesis [10,13] in one dimension, its temporal Fourier
mode can be written as

û(x,ω) = û(0,ω) exp
(

i
ωx

v

)
, (17)

where ∂xθ = ω/v, ∂x |û| = 0, and the random velocity v is constant in space and time and satisfies
a symmetric probability distribution with a mean of zero. Substituting Eq. (17) into Eqs. (11) and
(12) yields

kSW
xc (ω) = 0, (18)

BSW (ω) =
〈(ω

v

)2
〉

> 0, (19)

where the superscript “SW” denotes the results from the random-sweeping hypothesis. The results
are consistent with those calculated from definitions (2) and (3). Therefore, the spectral bandwidths
in the random-sweeping hypothesis are non-zero.

III. THE MEAN WAVE NUMBERS AND SPECTRAL BANDWIDTHS
IN TURBULENT CHANNEL FLOWS

In this section, we use the exact expressions in Eqs. (11) and (12) to investigate the mean wave
numbers and spectral bandwidths in turbulent channel flows. The interesting finding is that both the
amplitudes and phases make significant contributions to the spectral bandwidths; the phases alone
are insufficient to determine the spectral bandwidths.

In this study, we use data from DNS of turbulent channel flows at Reτ ≡ uτh/ν = 550 [23–25],
where uτ is the friction velocity, h is the channel half-width, and ν is the kinematic viscosity.
The bulk Reynolds number is Re ≡ Ubh/ν = 10000, where Ub is the bulk velocity. A pseudo-
spectral method is used to numerically solve the Navier-Stokes equations [26]. Periodic boundary
conditions are employed in the homogeneous streamwise and spanwise directions, and no-slip
boundary conditions are applied in the wall-normal direction. The dimensions of the computational
domain are 8πh × 2h × 3πh in the streamwise (x), wall-normal (y), and spanwise (z) directions,
respectively, and the domain contains 1536 × 256 × 1152 grid points. The time step is taken as
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�t = 1.25 × 10−3h/Ub (�t+ ≈ 0.037, and “+” indicates normalization with the viscous scales).
The instantaneous velocity fields are stored every eight time steps during a period of 20.48h/Ub

in the statistically stationary state. We ran two DNS cases of turbulent channel flows at Reτ = 180
and 550. The results at Reτ = 180 are consistent with those of Moser et al. [27], which are not used
in the present paper. The results at Reτ = 550 are consistent with those of Del Álamo and Jiménez
[28] and will be used in the present paper.

In turbulent channel flows, the streamwise velocity fluctuations u(x,y,z; t) are homogeneous in
the spanwise direction but inhomogeneous in the wall-normal direction. To clarify this, we explicitly
express the dependencies of the velocities and their related physical quantities on the wall-normal
locations y. For example, the spatial, temporal and space-time Fourier modes of u(x,y,z; t) are
written as û(kx,y,z; t), û(x,y,z; ω), and û(kx,y,z; ω), respectively. In cases with no confusion, these
modes can be abbreviated as û(kx,t ; y), û(x,ω; y), and û(kx,ω; y), respectively. We calculate the
temporal Fourier modes from the DNS data using the Hanning window as follows [29,30]:

û(x,ω; y) = 1√
T

∫ T

0 w(t)2dt

∫ T

0
w(t)u(x,t ; y) exp(iωt)dt, (20)

where w is the Hanning window. The temporal length T of the window is taken as T = 5.12h/Ub.
Furthermore, we calculate the streamwise space-time Fourier modes

û(kx,ω; y) = 1

Lx

∫ Lx

0
û(x,ω; y) exp(−ikxx)dx. (21)

Using those definitions, the space-time energy spectrum �(kx,ω; y) can be calculated from Eq. (1).
In particular, the spatial energy spectrum �s(kx ; y) and the temporal energy spectrum �t (ω; y) can
be obtained by integrating �(kx,ω; y) with respect to the wave number kx and the frequency ω,
respectively:

�s(kx ; y) =
∑

ω

�(kx,ω; y)�ω, �t (ω; y) =
∑
kx

�(kx,ω; y)�kx. (22)

Finally, the mean wave number kxc(ω; y) and the bandwidth B(ω; y) of �(kx,ω; y) can be calculated
from Eqs. (2) and (3), respectively.

Figure 1(a) compares the space-time energy spectrum at y+ = 92 obtained from the DNS
of turbulent channel flows at Reτ = 550 with the spectrum from Taylor’s hypothesis, where
�T A(kx,ω) = �t (ω)δ(kx − ω/U ), and U is the convection velocity. The former is a two-dimensional
surface, and the latter is a single curve. Consequently, the spectral bandwidth in Taylor’s hypothesis
is zero. However, it is not zero in the DNS. The true values of the bandwidths are presented in
Fig. 3. For further comparison, Fig. 1(b) shows sketches of the spatial energy spectra from Taylor’s
hypothesis and the DNS at a given frequency. The results from Taylor’s frozen-flow hypothesis are
concentrated at a single wave number, and those from the DNS are distributed over a range of wave
numbers. Figure 2 compares the mean wave numbers from the exact expression (11) and the DNS,
which are in good agreement.

Figure 3 plots the bandwidths of the space-time energy spectra at y+ = 92 obtained from the DNS
and the exact expression [Eq. (12)] for the spectral bandwidths. Using the existing DNS database of
turbulent channel flows, we calculate the space-time energy spectra and estimate their bandwidths.
We also calculate the temporal modes of the velocity fluctuations and use the exact expression for
the spectral bandwidths [Eq. (12)] to determine the bandwidths. The results are in agreement. An
important finding is that the amplitude contribution associated with “Term II” is large compared
to the phase contribution associated with “Term I”. Therefore, the amplitude contribution to the
bandwidths in turbulent channel flows cannot be ignored.
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FIG. 1. (a) Space-time energy spectra of the streamwise velocity at y+ = 92 in turbulent channel flows at
Reτ = 550. The colored surface shows the energy spectra � from the DNS, and the blue solid line indicates
the energy spectra obtained using Taylor’s hypothesis. The spatial energy spectra �s(kx) (green dashed line)
and temporal energy spectra �t (ω) (brown dashed line) are also plotted for comparison. The spectrum contours
(red solid lines) are aligned in the preferential direction (blue dashed line) ω = kxU indicated by Taylor’s
hypothesis. The transverse curve (green solid line) indicates the spatial energy spectrum at a fixed frequency
(ωh/Ub = 60) from the DNS, and the straight line (brown solid line) indicates the spectrum from Taylor’s
hypothesis. (b) Sketch of the spatial energy spectra at a fixed frequency obtained from Taylor’s hypothesis (left
figure) and the DNS (right figure), which illustrates “spectral broadening”.

IV. SPACE-TIME ENERGY SPECTRA FROM THE CROSS-SPECTRAL METHOD

de Kat and Ganapathisubramani [21] propose the cross-spectral method (hereafter referred to as
the CS method) to reconstruct space-time energy spectra. This method uses two-point measurements,
in which time series of the velocity fluctuations at pair-points are recorded. The method can be
described as follows:

FIG. 2. Mean wave numbers of the space-time energy spectra at y+ = 92 obtained from the DNS and the
exact expression in Eq. (11).
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FIG. 3. Bandwidths of the space-time energy spectra at y+ = 92 obtained from the DNS, the exact
expression [Term I+II in Eq. (12)] and the cross-spectral method. The phase contribution (Term I) and the
amplitude contribution (Term II) are also plotted.

(1) The cross-spectrum � is calculated in terms of

�(x,ω; �x; y) = û∗(x,ω; y)û(x + �x,ω; y) = |�| exp(i�θ ), (23)

where |�| is the cross-spectral energy, and �θ is the phase difference between û(x,ω; y) and
û(x + �x,ω; y). The phase difference �θ can be simply obtained from the cross-spectra, �θ =
arctan[Im(�)/Re(�)], and used to estimate the local wave number kCS

x for a given frequency ω

kCS
x (x,ω; �x; y) = �θ

�x
. (24)

(2) The transfer function is determined from the cross-spectrum

GCS(kx,ω; �x; y) =

∑
kCS
x ∈Bin(kx )

|�(x,ω; �x; y)|

�kx

∑
x

|�(x,ω; �x; y)| , (25)

where Bin(kx) ≡ [kx − �kx/2,kx + �kx/2] is an interval centered at the wave number kx with
a width �kx . The summation in the numerator is taken for the locations x such that the local
wave number kCS

x (x,ω; �x; y) belongs to Bin(kx), and the summation in the denominator is taken
for the samples at all locations x. Therefore, the transfer function is the normalized space-time
energy spectrum that satisfies

∫
GCS(kx,ω; �x; y)dkx = 1. The accuracy of the transfer functions is

dependent on the sample number of the pair of points and the correct choice of bins.
(3) The space-time energy spectrum is reconstructed from the transfer function GCS(kx,ω; �x; y)

and the temporal energy spectrum �t (ω; y)

�CS(kx,ω; �x; y) = �t (ω; y)GCS(kx,ω; �x; y), (26)

where
∫

�CS(kx,ω; �x; y)dkx = �t (ω; y).
In the CS method, the sample of the phase differences at the pair-points is used to determine all

possible wave numbers that correspond to a fixed frequency. Therefore, this method can account
for the spectral broadening. However, in Taylor’s frozen-flow hypothesis, only one wave number
is obtained for this fixed frequency through a constant convection velocity. As a result, it excludes
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the spectral broadening. In fact, the convection velocity in Taylor’s hypothesis is the average of the
phase velocities in the CS method.

In the limit of �x → 0, the cross-spectral energy is

�(x,ω; y) ≡ �(x,ω; �x → 0; y) = |û(x,ω; y)|2, (27)

and the local wave number is

kCS
x (x,ω; y) ≡ kCS

x (x,ω; �x → 0; y) = ∂xθ. (28)

Therefore, using the definition of the mean wave number kxc, the mean wave numbers in the CS
method can be expressed as

kCS
xc (ω; y) =

〈|û|2kCS
x

〉
〈|û|2〉 = 〈|û|2∂xθ〉

〈|û|2〉 . (29)

Hence, the CS method can predict the mean wave numbers. We now calculate the bandwidth of the
space-time energy spectrum in the CS method using the local wave number kCS

x and the mean wave
number kCS

xc

BCS(ω; y) =
〈|û|2(kCS

x − kCS
xc

)2〉
〈|û|2〉 = 〈|û|2(∂xθ − kxc)2〉

〈|û|2〉 . (30)

Consequently, the CS method correctly predicts “Term I”, which is associated with the phases in
Eq. (12). It is a good approximation for the spectral bandwidths for the frozen amplitudes ∂x |û| = 0.

The bandwidths BCS(ω; y) of the space-time energy spectra obtained from the CS method are
plotted in Fig. 3. They are consistent with the predictions from “Term I” in Eq. (12). However, the
bandwidths BCS(ω; y) are smaller than the DNS results. This implies that the contribution of the
amplitude to the bandwidths in turbulent channel flows cannot be ignored.

The CS method utilizes phase derivatives but does not account for amplitude derivatives. To
account for the amplitude derivatives, we propose a rescaling technique for the transfer function
GCS . This technique is described as follows:

(1) We calculate the ratio of BCS(ω; y) to B(ω; y)

η(ω; y) = BCS(ω; y)

B(ω; y)
= 〈|û|2(∂xθ − kxc)2〉

〈|û|2(∂xθ − kxc)2〉 + 〈(∂x |û|)2〉 , (31)

where B(ω; y) is the true value of the spectral bandwidth, which can be obtained from two-point
measurements. It is explicitly dependent on the amplitude derivatives.

(2) A linear transformation is performed on the local wave numbers and the transfer function in
the CS method

kx → √
η
(
kx − kCS

xc

) + kCS
xc , (32)

GCS → √
ηGCS. (33)

As a result, we obtain the rescaled transfer function

GRS(kx,ω; �x; y) = √
ηGCS

(√
η
(
kx − kCS

xc

) + kCS
xc ,ω; �x; y

)
, (34)

where the superscript “RS” denotes the results from the rescaling technique. The rescaled transfer
functions can be shown to give the exact mean wave numbers and spectral bandwidths. In fact, the
rescaled transfer function (34) is used to calculate the space-time energy spectra (26). The results
are then substituted into Eqs. (2) and (3), which lead to

kRS
xc (ω; y) = kCS

xc (ω; y) = 〈|û|2∂xθ〉
〈|û|2〉 (35)
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FIG. 4. Comparisons of the space-time energy spectra at y+ = 92 obtained from the DNS and the
reconstruction methods. (a) Contours of the space-time energy spectra obtained from the DNS (colored shades)
and the cross-spectral method (dashed lines with dots). (b) Spatial energy spectra at three frequencies obtained
from the DNS (colored solid lines) and the cross-spectral method (dashed lines with dots). (c) Contours of the
space-time energy spectra obtained from the DNS (colored shades) and the rescaling technique (dashed lines
with dots). (d) Spatial energy spectra at three frequencies obtained from the DNS (colored solid lines) and the
rescaling technique (dashed lines with dots).

and

BRS(ω; y) = 1

η(ω; y)
BCS(ω; y) = B(ω; y) = 〈|û|2(∂xθ − kxc)2〉

〈|û|2〉 + 〈(∂x |û|)2〉
〈|û|2〉 , (36)

which are the right-hand terms of Eqs. (11) and (12), respectively. The rescaling technique requires
the true values of the spectral bandwidths, including the amplitude derivatives, which can be obtained
from two-point measurements. This result suggests the potential extension of the CS method to
correctly predict the spectral bandwidths.

The space-time energy spectra at y+ = 92 from the DNS, the CS method and the rescaling
approach are compared in Fig. 4. In this study, �x is taken to be the same as the streamwise mesh
size. The unfolding technique [20,21] is used to calculate �θ , where �θ is unfolded into the range
ω�x/Uc − π < �θ < ω�x/Uc + π and Uc is an estimated convection velocity. For Eq. (25), the
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width �kx of Bin(kx) is taken as π/(300�x). In Figs. 4(a) and 4(b), we compare the results from
the DNS with those from the CS method. The CS method can map the temporal energy spectra
to the space-time energy spectra in terms of the shape. However, their bandwidths are distinctly
narrower than the DNS results, because the amplitude derivatives are ignored. The comparisons of
the space-time energy spectra from the DNS and the rescaling approach are presented in Figs. 4(c)
and 4(d), and they are in good agreement. In fact, the comparisons at y+ = 5, 12, 44, and 270,
which are not shown due to space limitations, are also in close agreement. Therefore, we find that
the CS method can obtain a good estimate of the shape of the space-time energy spectra and that the
rescaling approach makes further improvements by including the effect of the amplitude derivative.
In summary, it is observed by the use of the DNS data of turbulent channel flows that the results
obtained from the rescaling technique are in good agreement with those directly calculated from
the numerical channel. The rescaling technique offers a remedy for the CS method. Therefore, a
reconstructive method that essentially includes the amplitude contributions needs to be developed.

V. CONCLUSIONS AND FUTURE WORK

This paper uses the mean wave numbers and bandwidths to characterize the space-time energy
spectra in turbulent shear flows. We derive exact expressions for the means and bandwidths. The exact
expressions show that the bandwidths of the energy spectra are determined by both the amplitudes
and phases of the velocity modes. Therefore, the phase velocity alone is not sufficient to determine
the bandwidths of the energy spectra in turbulent shear flows.

The expressions for the bandwidths are further used to evaluate the approaches to reconstruct
space-time energy spectra. Taylor’s frozen-flow hypothesis is shown to lead to vanishing bandwidths
and thus cannot be used to reconstruct space-time energy spectra. The cross-spectral method
precisely predicts the phase contributions to the bandwidths. However, it does not account for
the amplitude contributions, which results in narrower bandwidths. The DNS results demonstrate
that the rescaling approach for the cross-spectral method, which uses both the amplitude and phase,
can correctly estimate the bandwidths of space-time energy spectra. Therefore, future work will
focus on incorporating the amplitude information into the cross-spectral method.
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