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Abstract The single-, two- andmulti-particle dispersions in isotropic turbulent flows are investigated using the
direct numerical simulation (DNS), filteredDNS (FDNS) and large-eddy simulation (LES)with a spectral eddy
viscosity subgrid scale (SGS) model. The contributions of filtering operation and SGSmodel to the dispersions
are separately studied by comparing the statistics obtained from the threemethods. Themissing SGSmotions in
LES can be observed to significantly hinder two-particle and four-particle dispersions if the initial separations
are less than or comparable to the filter width. A theoretical analysis of the non-monotonic behavior at short
time of the one-time, two-point Lagrangian velocity correlation functions with large initial separations based
on the Taylor expansion and the Kolmogorov similarity theory is derived, and the Reynolds number effect on
the performance of the spectral eddy viscosity SGS model is also investigated. The results show that the SGS
model used performs better with increasing Reynolds numbers. It is concluded that the particle SGS model is
needed to be developed to correctly capture the Lagrangian two- and multi-point dispersion statistics of fluid
particles.

1 Introduction

Particle-laden turbulent flows exist widely in many environmental applications and industrial processes, such
as the pollutant dispersion in the atmosphere, fluidization in process engineering, and aerosol deposition in
spray medication. Efficient dispersion of fluid or inertial particles is one of the key characteristics of turbulent
flows [1]. In the last few years, the air pollution, especially the PM2.5 pollution has become a severe health and
economic problem in developing countries [2,3]. Understanding turbulent dispersion of fine aerosol particles
is of great importance for air pollution prevention and control [4].

For particles with finite inertia suspended in flows, the Eulerian–Lagrangian tracking method [5–8] or
momentum methods [9] have been systematically developed. For aerosol particles with very fine diameters,
the characteristic relaxation timescale tends to vanish; thus, the dynamics of such particles could be considered
as passive scalars like fluid particles [10–12]. Turbulent mixing of the passive scalar can usually be investigated
from the Eulerian point of view [13,14]. However, the tracking of fluid particles is conceptually simple and
in immediate connection with the physics of turbulent dispersion and mixing [15–18]. The time integration of
the Lagrangian velocity correlation function along the trajectories of fluid particles was seminally introduced
by Taylor to relate it to the single-particle or absolute dispersion [15]. The absolute dispersion is defined as the
mean-squared displacement of particles from their initial positions. The single-particle dispersion determines
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the average rate of growth of the clouds consisting of pollutant particles from their initial positions and themean
concentration field. Theoretically, the single-particle dispersion behaves as ballistic regime at short time and as
diffusive regime at long time. Sukhatme [19] studied the Lagrangian velocity correlation function and absolute
dispersion in the midlatitude troposphere using wind data from the European Centre for Medium-Range
Weather Forecasts (ECMWF). There simultaneously exist superdiffusive and subdiffusive anomalous scalings
in the zonal and meridional directions, respectively. The relative dispersion is defined as the mean-squared
separation of pairs of particles. Many researchers try to investigate the relative dispersion of particle pairs
in isotropic turbulent flows [20,21], in turbulent-like flow fields constructed using the kinematic simulation
method [22,23], or experimentally [24]. It is found that the scaling laws of relative dispersion in isotropic
turbulent flows depend on the initial separation of particle pairs [25]. In fact, the turbulent relative dispersion
is related to the local concentration fluctuations in a chemical mixer, which is very important for the rate
of chemical reactions [26,27]. The geometrical properties, such as the evolution of size and shape, are the
critical problems for the investigation of a cloud of particles [28–30], which can be studied by tracking the
motions of multi-particle clusters, especially the tetrahedrons with four particles [31–34]. Pumir et al. [28]
introduced a statistical description of the geometry of the Lagrangian multi-point clusters and predicted a
self-similar distribution of shapes. Bianchi et al. [35] studied the evolution of turbulent puffs, each consisting
of 2000 particle tracers. Their results show a strong dependence on the fluctuations of the instantaneous wind
at the moment of the emission. Yang [36] had systematically studied the temporal evolution of the Lagrangian
structures such as the material surface can be tracked as the iso-surface of the Lagrangian scalar field.

The numerical simulation of turbulent dispersion is one of the important methods to predict the efficiency
of turbulent mixing. In recent years, the large-eddy simulation (LES) method has become a powerful tool for
turbulence prediction [14,37–40]. In LES, the large-scale motions are directly resolved by solving the filtered
Navier–Stokes equations with an SGS model for the purpose of closure and to represent the effects of SGS
motions on the large-scale ones. Usually, LES can give a reasonable prediction of the turbulent energy spectrum
since the construction of an SGS model is based on the energy balance equation and the hypothesis of a k−5/3

energy spectrum up to the cutoff wavenumber [41,42]. However, LES may not accurately predict the particle
dispersion in turbulence due to the lack of velocity fluctuations at small scales. The effects of missing small-
scale motions on the dispersion of particles represent a long-standing challenge in LES. There are many studies
focusing on the assessment of SGS turbulence effects on the particle motion. The effects of filtering on different
statistics of particle motion in isotropic turbulent flows were studied by applying the sharp spectral filter [43]
and top filter [44] to the direct numerical simulation (DNS) velocity field. Armenio et al. [45] investigated the
effects of small scales of turbulence and SGS model on the motion of tracer particles by releasing particles
in a turbulent channel flow and following their motions in time. Compared with inertial particles, the tracer
particles are more sensitive to the subgrid scale velocity fluctuations. Fede and Simonin [46] investigated the
effects of the subgrid fluid turbulence on the motion of non-settling colliding particles suspended in steady
homogeneous isotropic turbulent flows and characterized the statistical properties of the subgridfluid turbulence
experienced by inertial particles. They found that accumulation and collision phenomena for inertial particles
are significantly influenced by the subgrid fluid velocity fluctuations.Marchioli et al. [47] addressed some open
issues related with the modeling of inertial particle dispersion in LES of turbulent wall-bounded flows and
discussed the necessity of using closure models for the equations of particle motion when using LES. The two
approaches, DNS and LES of particle-laden turbulent channel flow, in which the particles experience a drag
force, were performed by Kuerten and Vreman [48], and the effects of turbophoresis by LES were discussed.
Besides, different models such as stochastic model [49], approximate deconvolution method (ADM) [50]
and Lagrangian filtered mass density function (LFMDF) model [51] were applied to model the effects of the
missing SGS fluid motions in the LES of various particle-laden turbulent flows.

For inertial particles, inertia causes an extra time filtering effect on the fluid velocity experienced by the
particle depending on the particle relaxation time. The inertia time filtering effect coupled with the spatial
filtering effect makes it difficult to investigate the effects of the small-scale turbulence on the particle motion.
Tracking of fluid particles would remove the important contribution from the overall filtering effects felt by the
particles. Thus, the statistics of fluid particle dispersion in the present work are determined solely by spatial
filtering of the flow field. Yang et al. [52] had investigated the contributions of the spectral eddy viscosity-based
SGS model to the Lagrangian dispersion of a single-, two- and four-fluid particle in isotropic turbulence. Their
results show that LES can give an accurate prediction of the long-time turbulent dispersion coefficient, while
LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles
if initial separation distances are less than the filter width. The errors in LES come from several sources:
(i) the filtering operation on the Navier–Stokes equations, (ii) the SGS model errors, (iii) the interpolation
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error of fluid velocity into the positions of fluid particles, and (iv) the numerical discretization errors of the
fluid and particle equations of motions [53–55]. Usually, the effects of these errors are mixed and lead to the
errors in the prediction of Lagrangian dispersion. Marchioli et al. [56] have used the fractal interpolation and
approximate deconvolution techniques to reduce the effects of the filtering error on near-wall accumulation
of inertial particles in turbulent gas flow in a flat channel. Their results show that reconstructing the correct
energy spectrum is not enough to represent the effects of SGSmotions on particle accumulation, and additional
information on the flow field at the subgrid level is needed.

The objective of this work is to separate and further clarify the source of errors in LES of Lagrangian
dispersion of fluid particles with focus on the first two errors. We shall use the highly accurate pseudo-
spectral method in the Navier–Stokes equations and a high-order Lagrangian interpolation method for the fluid
velocity experienced by fluid particles to neglect the last two. For this purpose, we shall compare the results
about Lagrangian dispersion from DNS, filtered DNS (FDNS) and LES with a spectral eddy viscosity model.
In the DNS, turbulent flows at the Taylor-based Reynolds number of 205.5 are obtained, much higher than in
the previous study [52]. The FDNS is a post-process of the DNS data by filtering out the small-scale motion
and can be regarded as an ideal LES without any model error. The results about Lagrangian dispersion of fluid
particles consist of single-, two- and four-particle statistics. The relative dispersion and velocity correlations
for particle pairs are significantly affected by small-scale fluid motion, which can be applied to evaluate the
prediction of particle dispersion by FDNS and LES. The four-particle dispersion describes the evolution of size
and shape of tetrahedrons and provides more information on the turbulent transport process than single-particle
and two-particle dispersion. The new contributions include a thorough analysis of the non-monotonic behavior
of the one-time, two-point Lagrangian velocity correlation functions with large initial separations at short
time based on the Taylor expansion of the variance of particle separations in short time and the Kolmogorov
similarity theory, and the Reynolds number effect on the performance of the SGS model using the relative
error of one-time, two-point Lagrangian correlation functions obtained from FDNS and LES.

This article is organized as follows. In Sect. 2, we present the numerical simulation methods including
DNS, FDNS, and LES. The flow field statistics are given in Sect. 3. In Sect. 4, we present the numerical results
and discuss the contributions of SGS motions to single-particle, particle-pair and four-particle dispersions in
turbulence. The non-monotonic variation of the relative dispersion with a large initial separation at short time
is theoretically analyzed based on Taylor series expansion and Kolmogorov similarity hypothesis. In Sect. 5,
we shall give the conclusions and possible directions for future work.

2 Methods

2.1 Direct numerical simulation

The Navier–Stokes equations for isotropic turbulent flows are

∂u
∂t

= u × ω − ∇
(
p

ρ
+ 1

2
u2

)
+ ν∇2u + f (x, t) , (1)

∇ · u = 0 (2)

where u denotes the velocity field, ω = ∇ × u is the vorticity, p is the pressure, ρ is the fluid density, and ν is
the fluid kinematic viscosity. f (x, t) is the large-scale random force used to drive and maintain the turbulent
flow.

The DNS of isotropic turbulent flows is performed using a standard pseudo-spectral method in a periodic
box of side L = 2π . In Fourier space, Eqs. (1) and (2) can be represented as (k ≤ kmax )(

∂

∂t
+ νk2

)
û (k, t) = P (k)F (u × ω) + f̂ (k, t) (3)

where û (k, t) is theFourier coefficient or thefluid velocity in Fourier space,F denotes aFourier transformation,
the projection tensor P (k) = δi j − ki k j/k2 (i, j = 1, 2, 3) projects F (u × ω) onto the plane normal to k
and eliminates the pressure term in Eq. (1) with the aid of the continuity equation (2), and the maximum
wavenumber kmax is about N/3, where N is the number of grid points along each of the three axes. The
wavenumber components in Fourier space are k j = n j (2π/L)where n j = −N/2, . . . ,−1, 0, 1, . . . , N/2−1
for j = 1, 2, 3. Aliasing errors are removed using the two-thirds truncation method. The spatial resolution is



3206 Z. Zhou et al.

monitored by the value of kmaxη, where η is the Kolmogorov length scale. The value of kmaxη should be larger
than 1.0 for the Kolmogorov scale of the flow to be well resolved, which is always larger than 1.3 in this work.
The Fourier coefficients of the flow velocity are advanced in time using a second-order Adams–Bashforth
method for the nonlinear term and an exact integration for the linear viscous term. The time step is chosen to
ensure that the CFL number is 0.5 or less for numerical stability and accuracy.

2.2 Filtered direct numerical simulation

In order to investigate the effects of small-scale velocity fluctuations on Lagrangian dispersion, we shall filter
out the small-scale motions from the full range scale velocity obtained from the above DNS. The filtered DNS
(FDNS) velocity field is obtained from the DNS velocity field by truncating the Fourier coefficients larger than
the cutoff wavenumber kc with the sharp spectral filter,

ũ (x, t) =
kc∑

|k|=k0

û (k, t) eik·x, (4)

where ũ (x, t) is the filtered velocity in physical space, k0 = 1 is the lowest wavenumber in the DNS. FDNS
can be regarded as an ideal LES to study the effects of subgrid scale (SGS) eddies on the statistics of fluid
particle motions since FDNS does not contain any eddy viscosity SGS model errors.

2.3 Large-eddy simulation

The LES of isotropic turbulent flows is performed with a much coarser grid resolution using the same pseudo-
spectral method and large-scale forcing scheme as the above DNS. The governing equation for LES is given
by (|k| ≤ kc, where kc is the cutoff wavenumber in LES)

(
∂

∂t
+ [ν + νe (k |kc )] k2

)
ˆ̄u (k, t) = P (k)F (ū × ω̄) + f̂ (k, t) (5)

where ū and ω̄ are the resolved velocity and vorticity in physical space, respectively. A spectral eddy viscosity
SGS model is used [41,42],

νe (k |kc ) = ν+
e (k |kc )

√
E (kc) /kc, (6)

ν+
e (k |kc ) = C−3/2

k

[
0.441 + 15.2exp (−3.03kc/k)

]
. (7)

The spectral viscosity νe (k |kc ) depends on the wavenumber k, the maximum wavenumber kc, and E (kc), the
value of the energy spectrum function at kc. Ck = 2.0 is taken in this paper. The quantity E (kc) is calculated
from the LES flow field at each time step. The above SGS model is constructed based on the turbulent energy
budget equations. The statistical two-point closure theory, that is, the eddy-damped quasi-normal Markovian
(EDQNM) approximation is used to construct the above SGSmodel. The hypothesis of a k−5/3 energy spectrum
up to the cutoff wavenumber kc was used to parameterize the SGS model. This hypothesis is believed to be
better fulfilled in turbulent flows with increasing Reynolds number. One can expect that the energy spectrum
obtained from the LES with the above SGS model approaches the energy spectrum obtained from the FDNS
with increasing Reynolds number. One question is whether or not such a model could predict Lagrangian
statistics as the FDNS does in turbulent flows with increasing Reynolds number.

3 Eulerian statistics of the isotropic turbulent flows

TheEulerian statistics of flowfields from theDNS,FDNSandLESare listed inTable 1. In the isotropic turbulent
flows with zero mean velocity, Taylor-based Reynolds number Reλ = u′λ/ν, where u′ = √〈uiui 〉 /3 is the

root mean square (rms) of turbulent fluctuating velocity, λ =
(
15νu′2/ε

)1/2
is the Taylor microscale, and

TE = u′2/ε is the eddy turnover time. For the turbulent flow at the same Reynolds number obtained using
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Table 1 Eulerian statistics of flow fields from different cases

Case Case 1 Case 2 Case 3 Case 4

Flow field type DNS FDNS LES LES
Grid number N 5123 – 1283 643

Maximum wavenumber kmax (kc) 170 42 42 21
Mesh length dx 0.012 – 0.049 0.098
Viscosity ν 0.0010 0.0010 0.0010 0.0010
Taylor-based Reynolds number Reλ 205.51 – – –
rms fluctuating velocity u′ 0.870 0.866 0.865 0.854
Dissipation rate ε 0.204 – – –
Spatial resolution kmaxη 1.432 – – –
Kolmogorov length scale η 0.00835 – – –
Kolmogorov time scale τη 0.06976 – – –
Eulerian integral length scale LE 1.462 1.478 1.485 1.531
Eddy turnover time TE 3.701 5.722 3.734 3.788

Fig. 1 Energy spectra from DNS (case 1), LES with 1283-grid resolution (case 3) and LES with 643-grid resolution (case 4). The
dashed line denotes the classic k−5/3 turbulent energy spectrum

DNS at a 5123-grid resolution, two cases of LES at different grid resolutions are performed with the closure
of the eddy viscosity model: Case 3 with a 1283-grid resolution and Case 4 with a 643-grid resolution. For the
FDNS (Case 2), the cutoff wavenumber is kc = 42, corresponding to the LES at 1283-grid resolution (Case
3). Figure 1 shows the energy spectra from cases 1, 3, and 4. At large resolved scales, we can observe that
the energy spectra from the LES are in good agreement with the one from the DNS. At small resolved scales,
the energy spectra from the LES decay faster than the one from the DNS, showing that the eddy viscosity
SGS model over-dissipates turbulent energy at high wavenumbers. Moreover, the energy spectra decay faster
at coarser resolutions.

4 Lagrangian dispersion of fluid particles in isotropic turbulent flows

In this work, we assume that an aerosol particle behaves like a fluid particle, and the trajectory of a fluid particle
is calculated by the equation

∂X (x0, t0|t)
∂t

= V (x0, t0|t) = u [X (x0, t0|t) , t] (8)

where X (x0, t0|t) is the location of the fluid particle at time t which was initially located at x0 at time t0,
and V (x0, t0|t) is the Lagrangian velocity of the fluid particle at time t , which equals the Eulerian velocity
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Fig. 2 The standard variance of single-particle displacement. The dashed lines on left bottom and right top have the slopes of 1
and 0.5, respectively

u [X (x0, t0|t) , t] of the flow field at location X (x0, t0|t). In order to calculate the velocity of a fluid particle,
we make use of a sixth-order Lagrangian interpolation scheme. Then, the trajectory of the fluid particle can be
obtained by the explicit fourth-order Adams–Bashforth scheme.

In this work, the particle number is Np = 500, 000 which is initially divided into Np/4 regular tetrahe-
drons with prescribed side lengths of 1/4η, 1η, 8η, 32η, and 96η, respectively. The regular tetrahedrons are
randomly distributed in the flow field. Each tetrahedron can form six groups of particle pairs with prescribed
initial separation. Then, we can track the trajectory of each particle and then calculate the statistics denoting
Lagrangian dispersion of single-, two- and four-particles. In addition, we realize several independent samples
of Lagrangian statistics starting from different time points during an eddy turnover time to effectively reduce
the fluctuations in Lagrangian statistics.

4.1 Single-particle dispersion

The variance of single-particle displacement is defined as

σ 2
X (τ ) =

〈
3∑

i=1

(Xi (x0, t0|t0 + τ) − x0i )
2

〉
(9)

where
∑3

i=1 (Xi (x0, t0|t0 + τ) − x0i )2 is the square of displacement of the fluid particles at time t0+τ relative
to the initial position x0 = (x01, x02, x03), τ is the time interval. According to Taylor [15], the following two
asymptotic scaling laws at short and long times are

{
σX (t) = σV t, t � TL ,

σX (t) = σV (2TLt)1/2, t 	 TL
(10)

where σ 2
V = 〈ViVi 〉 is the variance of the Lagrangian velocity of a fluid particle, and TL is the integral time

of the two-time velocity correlation function for a single particle. For a stationary, isotropic turbulent flow,
σV = √

3u′. Figure 2 shows the standard variances of the single-particle displacement obtained from the DNS,
FDNS, and LES with different grid resolutions. We can observe that the standard variance of single-particle
displacement increases with time, and the numerical results validate the theoretical ballistic regime at short
time and diffusion regime at long time. Also we observe that the single-particle dispersion is insensitive to
the missing small-scale motions, and the spectral eddy viscosity SGS model accurately predicts the particle
displacement variance such that the results from DNS, FDNS, and LES collapse together.
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τ

ρ
τ)

Fig. 3 Lagrangian time correlation functions from DNS at Reλ = 205.51, FDNS, and LES at different resolutions

The Lagrangian velocity correlation function (LVCF) for a single particle is defined as

ρL (τ ) = 〈Vi (x0, t0|t0) Vi (x0, t0|t0 + τ)〉
σ 2
V

(11)

where Vi (x0, t0|t0) Vi (x0, t0|t0 + τ) denotes the dot product of particle velocity vectors at two times, and the
angle brackets 〈〉 denote average over the number of particles. Then, we can calculate the Lagrangian integral
time scale by

TL =
∞∫
0

ρL (τ ) dτ. (12)

Figure 3 shows the Lagrangian time correlation functions from the DNS, FDNS, and LES. The correlation
function from the FDNS decays slower than those from the DNS, but faster than those from the LES. The
former is due to the lack of velocity fluctuations at small scales, whereas the latter is due to both the filtering
and the over-dissipation of turbulent energy by the eddy viscosity SGSmodel. The over-dissipation of the SGS
model makes the flow field more coherent and the life of the eddy longer. Besides, the correlation functions
from the low-resolution LES (643) decay slower than that from the high-resolution LES (1283) due to the
smoother flow field in the former.

4.2 Two-particle dispersion

For a particle pair, the relative separation vector R at one time is defined as

R (r, t0|τ) = X (x0, t0|t0 + τ) − X (x0 + r, t0|t0 + τ) (13)

where r is the initial separation vector between the particle pair and τ is the time interval from the initial time
t0. The separation distance between the pair particles is calculated from

R (r, t0|τ) = √
R (r, t0|τ) · R (r, t0|τ). (14)

Then, we calculate the mean and variance of separation distance,

m2 (r, τ ) = 〈R (r, t0|τ)〉 , (15)

σ 2
2 (r, τ ) = 〈

[R (r, t0|τ) − 〈R (r, t0|τ)〉]2〉 = 〈Ri (r, t0|τ) Ri (r, t0|τ)〉 − m2
2 (r, τ ) , (16)
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Fig. 4 Time evolution of the mean separations of particle pairs with different initial separation distances: solid lines DNS
5123, dashed lines FDNS kc = 42 and dash-dotted lines LES 1283. Different symbols are corresponding to the different initial
separations where η denotes the Kolmogorov length scale

where r is the norm of the initial separation vector r. Then, the relative dispersion of a particle pair between
initial time t0 and time t0 + τ is defined as 〈δR (r, τ ) · δR (r, τ )〉, where δR (r, τ ) = R (r, t0 |τ ) − r is the
separation increment from the initial separation r. There are two regimes for the relative dispersion, which are
the Batchelor regime and Richardson regime at very short and long times, respectively,

〈δR (r, τ ) · δR (r, τ )〉 =
{

11
3 C0r2

(
τ
ta

)2
, τ � ta ≡

(
r2
ε

)1/3
,

gRετ 3, ta � τ � TE
(17)

where gR is the Richardson constant.
The one-time two-point Lagrangian velocity correlation function of particle pairs with initial separations

r at t0 is defined as

ρr (r, τ ) = 〈Vi (x0, t0 |t0 + τ) Vi (x0 + r, t0 |t0 + τ )〉 /σ 2
V (18)

where x0 is the initial position of the reference particle in a particle pair, r is the magnitude of r, and τ is the
time lag.

The mean and variance of separation distances of particle pairs at five different initial separations r/η =
1/4, 1, 8, 32, 96 are shown in Figs. 4 and 5, respectively. In Fig. 4, one can observe that particle pairs with
small and moderate separations depart from each other faster in the DNS flow field than in the FDNS flow
field, and most slowly separate in the LES flow field, showing that the relative dispersion of the particle pair in
the LES flow field is the least efficient one. For the particle pairs with large initial separations such as r = 96η,
the relative dispersion of such particle pairs is mainly controlled by the flow at large scales, so that the mean
separation distances in the LES and FDNS are close to the result from DNS. As shown in Fig. 5, all the
separation variances obtained from the DNS, FDNS, and LES initially increase with time with a slope equal
to 2 on the log–log plot. At long times, the variances increase linearly with time. Between the two limiting
regimes, the transient range of smaller initial separations is longer than that of larger initial separations due
to the effect of velocity fluctuations at small scales. However, the FDNS and LES underpredict the separation
variances compared to the DNS because of the lost small-scale velocity fluctuations. Besides, the separation
variances in LES grow more slowly than that in FDNS, because the dissipation of the SGS model further
reduces the velocity fluctuations, and the flow field in LES is more coherent.

Pitton et al. [57] studied the particle-laden turbulent gas flow in a channel and examined the turbulent
pair dispersion from a statistical point of view. The role of mean shear and small-scale turbulent velocity
fluctuations on dispersion is analyzed by focusing on the mean square separation 〈R (r, t0|τ) · R (r, t0|τ)〉,
where R (r, t0|τ) denotes the separation vector between the particle pair, as described in Eq. (13). Figure 6
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Fig. 5 Time evolution of the variance of separation distances of particle pairs for different initial separation distances: solid lines
DNS 5123, dashed lines FDNS kc = 42, and dash-dotted lines LES 1283. The left two dashed straight lines have a slope of 2,
and the right top one has a unity slope

τ/τη
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η

Fig. 6 The comparison of the mean square separation of fluid particle pairs between the present numerical results and the results
by Pitton et al. [57]. The solid line denotes the mean square separation results without the shear effects by Pitton et al. [57]. The
dashed line with symbols denotes the DNS results of the present work

shows the comparison of themean square separation of fluid particle pairs between the present numerical results
and the results at the center plane of the channel by Pitton et al. [57]. d0,x denotes the initial pair orientation,
where x-, y- and z-directions denote the streamwise, spanwise and wall-normal direction, respectively. The
quantities of transverse and longitudinal axis are scaled by the Kolmogorov timescale τη and Kolmogorov
length scale η at the center of the channel.

In Fig. 6, the solid line denotes the mean square separation results without the shear effects by Pitton
et al. [57]. The results without the shear effects are obtained by tracking particles using only the fluctuating
streamwise fluid velocity, which can be calculated by subtracting the mean velocity at the particle location
from the fluid particle velocity. The dashed line with symbols denotes the DNS results of the present work. At
large times, the results of Pitton et al. without the shear effects differ from the present DNS results, because the
particles may move away from the center plane of the channel, and shear plays roles in dispersion. But before
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Fig. 7 Time evolution of the relative dispersion of particle pairs for different initial separations: solid lines DNS 5123, dashed
lines FDNS kc = 42, and dash-dotted lines LES 1283. The symbols are corresponding to the different initial separations, and η
denotes the Kolmogorov length scale. The slopes of the left and right dashed lines are equal to 2 and 3, respectively

that, the results of Pitton et al. without the shear effects are consistent with the present DNS results, indicating
that the small-scale turbulent fluctuations of the fluid velocity field dominate the particle-pair dispersion near
the center of the channel.

Figure 7 plots the temporal evolutions of the relative dispersion of particle pairs from the DNS, LES, and
FDNS at different initial separations. At the beginning, the relative dispersion grows with a slope of 2 on the
log–log plot, which confirms the Batchelor regime. With the increase in time, the slopes of the curves with
small initial separations change. At long times, the curves of different initial separations tend to converge.
At intermediate ranges, the slopes of the curves with larger initial separations are always smaller than 3.
Furthermore, the relative dispersion in FDNS grows with time more slowly than that in DNS but faster than
that in LES, just like Fig. 5. It is noted that we cannot observe the Richardson regime for the initial separations
in the inertial subrange; this is due to the relatively low Reynolds number in our simulation. The Richardson
regime cannot even be observed in laboratory turbulent flows at a much higher Reynolds number of Reλ = 815
[27]. In order to validate our numerical result, we compare the scaled relative dispersion obtained from DNS
and the experimental data of Bourgoin et al. [27] by putting our simulation data on their plot in Fig. 8. We can
observe that our numerical results agree well with the theoretical and the experimental results.

In Fig. 9, the one-time two-point Lagrangian velocity correlation functions of particle pairs from the DNS,
LES, and FDNS at different initial separations are compared. One can observe that the correlation functions
from the FDNS decay slower than those from the DNS, but faster than those from the LES. This behavior can
be explained by the fact that the flow fields in FDNS and LES are more correlated than that in DNS due to
the shortage of small-scale motions. And in the LES flow field, the over-dissipation of energy by the spectral
eddy viscosity SGS model leads to a much more coherent flow field and an overprediction of correlation
functions [59,60]. For large initial separation distances, the differences in the correlation functions obtained
from LES, FNDS, and DNS gradually vanish since the large-scale motions of the flow field dominate the
dispersion of particle pairs at such separations.We can observe that the correlation functions decrease with time
monotonously for particle pairs with small initial separation distances. However, the correlation functions of
particle pairs with moderate separations non-monotonically vary with time, for example r = 32η and r = 96η.
They slightly increase with time and then decease (Fig. 9b). This phenomenon can be understood due to the
fact that part of total particle pairs moves closer to each other after release and becomes more correlated,
causing the slight increase in the correlation functions. This fact can be observed from the temporal evolution
of the probability density function (PDF) of the separations in Fig. 10, where the vertical solid line denotes
the initial separation of r = 96η. The areas under the curves on the right-hand side of the vertical solid line
show that most of the particle pairs will depart from each other, and the peak of the curves moves to larger
values of separation with increasing time, while the areas under the curves on the left-hand side of the vertical
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Fig. 8 The comparison of rescaled relative dispersion between the DNS results and experimental results by Bourgoin et al. [27]
at turbulent level of Reλ = 815. All the curves are scaled by the constant 11C2(εr)2/3/3. The solid line denotes the theoretical
results of Batchelor [58]. The curves composed of small symbols denote experimental results for 50 different initial separations
from 43η to 2150η or from 0–1 to 49–50 mm. The symbols denote the DNS results
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Fig. 9 a The one-time two-point Lagrangian velocity correlation functions of particle pairs for different initial separations: solid
lines DNS 5123, dashed lines FDNS kc = 42 and dash-dotted lines LES 1283. The symbols are corresponding to the different
initial separations, and η denotes the Kolmogorov length scale. b The enlargement of the curves for initial separation r = 32η
and r = 96η to show the non-monotonic variation at short times. The straight dashed lines represent the linear slope at short
time, as indicated by Eq. (23)

line represent the probability of the particle pairs which move closer to each other. These approaching particle
pairs make one-time two-point Lagrangian velocity correlation functions increase at short time, as shown in
Fig. 9b.

To further explain the increase in one-time two-point Lagrangian velocity correlation functions at short time
in detail, we shall define the separation vectorR,R = xp2−xp1, the relative velocity δv = dR/dt = vp2−vp1,
and the relative acceleration δa = dδv/dt = d2R/dt2, respectively. Then, the longitudinally relative velocity
is δuL = Riδui/R, and the longitudinally relative acceleration is δaL = Riδai/R where R = √

Ri Ri is the
separation distance of a particle pair, vp1 and vp2 are the velocities of two particles in the pair and Ri is the
component of vectorR. The relation between separation distance and Lagrangian velocity correlation function
can be described by
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Fig. 10 Temporal evolution of the probability density function (PDF) of particle separations. The vertical solid line represents
the initial separations for all particle pairs

〈(
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· dR
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〉
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〈
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〉
σ 2
V

=
〈 dR
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dR
dt

〉
σ 2
V
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Here we use the relations dR
dt = 2Ri

2
√
Ri Ri

dRi
dt = Ri

R
dRi
dt and dR

dt
dR
dt = Ri

R
dRi
dt

Ri
R

dRi
dt = dRi

dt
dRi
dt = dR

dt · dR
dt .

For isotropic turbulence, σ 2
V = v2p1 = v2p2, we can obtain

ρr = 1 −
〈 dR
dt

dR
dt

〉
2σ 2

V

. (21)

We take the Taylor expansion of
〈 dR
dt · dR

dt

〉
to the first-order approximation with a very short time t as follows:

〈
dR

dt
· dR
dt

〉
=

〈(
dR

dt

dR

dt

)∣∣∣∣
t=0

〉
+

〈(
2
dR

dt

d2R

dt2

)∣∣∣∣
t=0

〉
t + · · · . (22)

We have dR
dt = Ri

R
dRi
dt = Ri

R δvi = δvL , and d2R
dt2

= dδvL
dt . According to the Kolmogorov similarity theory, the

following expressions exist for the separations located in the inertial subrange:
〈
(δvL)2

〉 = C · (εR)2/3 and〈
δvL

dδvL
dt

〉
= − 6

5ε. Introducing these relationships into Eq. (22), we obtain the expression

ρr = 1 − C · (εr)2/3

6u′2 + 2ε

5u′2 t. (23)

Equation (23) demonstrates that the one-time two-point correlation function initially increases slightly for the
separations located in the inertial subrange. In Fig. 9b, the predicted slope of the correlation functions is plotted
with dashed lines.

In order to investigate the effects of the turbulent Reynolds number on the performance of the spectral SGS
model for LES to predict particle-pair dispersion, we calculate the relative error of Lagrangian velocity corre-
lation functions of particle pairs between the LES and FDNS as Δρr/ρrFDNS = (ρrLES − ρr FDNS) /ρrFDNS.
The cutoff wavenumber is set to kc = 42 for the LES and FDNS at different Reynolds numbers. We plot
the results at two initial separations r = η and r = 4η in Fig. 11, from which we can observe that the
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Fig. 11 The relative error of Lagrangian velocity correlation functions of particle pairs between the LES and FDNS with the
same cutoff wavenumber kc = 42 at different Reynolds numbers for different initial separations: a r = η and b r = 4η. The
numbers in the parentheses () of line legend denote the grid resolutions for the DNS of different Reynolds numbers

relative error decreases with increasing Reynolds numbers. This is expected since the current spectral SGS
viscosity model is developed with the aid of the two-point closure theory, and the hypothesis of a k−5/3

energy spectrum up to the cutoff wavenumber was used, which is more accurate at higher Reynolds num-
bers.

For further validating the observations about the relative dispersion of particle pairs in the flow fields
obtained from FDNS, LES, and DNS, the PDFs of the separation distances at the same time τ = 20τη for five
initial separations are plotted in Fig. 12. It is observed that the PDF obtained from the LES exhibits a higher
peak and a lower tail than the DNS and FDNS, showing a slower dispersion in flow fields obtained on LES than
in FDNS and DNS. At small initial separations, the dispersion of particle pairs is dominated by small-scale
motions, so that the absence of small-scale motions in the FDNS and the further reduction in small-scale
velocity fluctuations by the SGS model in the LES cause the deviations in PDF of separations between the
DNS, FDNS, and LES. However at large initial separations, the PDF from the DNS, FDNS, and LES tends to
coincide because the large-scale motions dominate the relative dispersion of particle pairs. Furthermore, the
higher peak and lower tail can be observed in the LES with coarser grid (LES, 643) than those in the LES with
finer grid (LES, 1283).

4.3 Four-particle dispersion

Multi-particle dispersion could provide more information on turbulent transport processes than single-particle
and two-particle dispersion. Here we shall study the time evolution of the size and shape of tetrahedrons each
formed by four-fluid particles. Our purpose is to investigate the variations of tetrahedrons with an initial side
length η in turbulent flows by FDNS and LES, in comparison with the DNS. The statistics are the mean surface
area, volume of tetrahedrons, and their renormalized ratios.

A regular tetrahedron is formed by a reference particle at X(1)
0 = (x0, y0, z0) and other three particles,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X(2)
0 =

{
x0 −

√
3
6 η, y0 − 1

2η, z0 −
√
6
3 η

}
,

X(3)
0 =

{
x0 −

√
3
6 η, y0 + 1

2η, z0 −
√
6
3 η

}
,

X(4)
0 =

{
x0 +

√
3
3 η, y0, z0 −

√
6
3 η

}
.

(24)
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Fig. 12 The PDFs of the separation distances at τ = 20τη for the different initial separations: a r = 0.25η, b r = η, c r = 8η, d
r = 32η, e r = 96η
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Fig. 13 The mean surface areas of tetrahedrons from the DNS, FDNS, and LES

The area of the triangle formed by the first three particles can be calculated by

S(123) = 1

2

{[(
y(2) − y(1)

) (
z(3) − z(1)

)
−

(
z(2) − z(1)

) (
y(3) − y(1)

)]2

+
[(

z(2) − z(1)
) (

x (3) − x (1)
)

−
(
x (2) − x (1)

) (
z(3) − z(1)

)]2

+
[(

x (2) − x (1)
) (

y(3) − y(1)
)

−
(
y(2) − y(1)

) (
x (3) − x (1)

)]2} 1
2

(25)

where the superscript “123” denotes the serial numbers of the particles forming the triangle. The areas of
the other three triangles S(124), S(134) and S(234) can be calculated similarly. The total surface area of one
tetrahedron is S = S(123) + S(124) + S(134) + S(234).

The volume of the tetrahedron can be calculated by

V = 1

6

∣∣∣∣∣∣
x (2) − x (1) x (3) − x (1) x (4) − x (1)

y(2) − y(1) y(3) − y(1) y(4) − y(1)

z(2) − z(1) z(3) − z(1) z(4) − z(1)

∣∣∣∣∣∣ . (26)

In the simulations, the mean surface area 〈S〉 and volume 〈V 〉 are obtained from 25,000 tetrahedrons with
initial side length η. Figures 13 and 14 show the temporal evolution of the normalized mean surface area
〈S〉 /η2 and volume 〈V 〉 /η3 from the DNS, FDNS, and LES. At the initial stage, there is a little change for the
size and shape of the tetrahedrons due to the local incompressible velocity fields, so that the mean surface area
and volume exhibit little change for all the simulations. At t > 3τη, the two quantities start to grow because of
the two-point dispersion behavior, see Fig. 7. The dispersion increases in the sequence of low-resolution LES
(643), high-resolution LES (1283), FDNS, and DNS at the same time. In the FDNS, the small-scale motions are
filtered out, which causes the lack of small-scale velocity fluctuations. In the LES, the turbulence is resolved on
the coarser grid, and the dissipation by the eddy viscosity SGS model further reduces the velocity fluctuations.
These facts lead to the underpredictions of the four-particle dispersion.

The size and shape of a tetrahedron can also be characterized by the renormalized volume ratio λV and
surface area ratio λS ,

λV = V/S3/2, λS = S/C2, (27)

where C is the perimeter of the tetrahedron. It is known that the regular tetrahedron has the largest ratios.
Meanwhile, there are two extreme cases about the ratios: λV = 0 for the tetrahedron with four-particles
coplanar and λS = 0 for the tetrahedron with four-particles collinear. Figure 15 plots the temporal evolution
of the mean ratios 〈λV 〉 and 〈λS〉 of the initially regular tetrahedrons.
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Fig. 14 The mean volumes of tetrahedrons from the DNS, FDNS, and LES

τ/τη

λ
λ

Fig. 15 Temporal evolution of mean renormalized volume and surface area ratios from DNS, FDNS, and LES: solid lines DNS
5123, dashed lines FDNS kc = 42, dash-dotted lines LES 1283, and long-dashed lines LES 643

At the initial stage, the volume and surface ratios from the DNS, FDNS, and LES basically coincide
with each other and exhibit little changes because the local velocity fields preserve the size and shape of the
tetrahedrons. As time increases, the tetrahedrons are dispersed by turbulent stretching, so that the ratios drop
to the lowest point. After that, the ratios start to gradually increase. Finally, the results from the DNS, FDNS,
and LES tend to converge because most of the side lengths of tetrahedrons correspond to the Eulerian integral
length scale so that the shapes of the tetrahedrons are governed by large-scale motions of turbulent flows.
During the intermediate stages, the change in the ratios from FDNS is always slower than that from DNS and
faster than that from LES. As described in Fig. 12b, the PDF of separation of FDNS exhibits a higher peak
than the PDF of the separations from DNS and a highest peak from LES, where a higher peak in PDF means
slower dispersion of particle pairs. The distorted tetrahedron in LES is most likely to have edges comparable
to subgrid scales. Therefore, the changes in size and shape of a tetrahedron in LES are slower than those in
FDNS and DNS.
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Fig. 16 Temporal evolution of the ratio 〈I2〉 from DNS, FDNS, and LES

For a tetrahedron, another indicator for the shape variation is the ratio of the intermediate eigenvalue of
the inertia matrix I = ρρT , where

ρ =
⎛
⎜⎝

ρ
(1)
x ρ
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x ρ
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x

ρ
(1)
y ρ

(2)
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y
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(1)
z ρ

(2)
z ρ

(3)
z

⎞
⎟⎠ (28)

with ρ(i) =
(
ρ

(i)
x , ρ

(i)
y , ρ

(i)
z

)
, i = 1, 2, 3, and ρ(1) = (

x(2) − x(1)
)
/
√
2, ρ(2) = (

2x(3) − x(1) − x(2)
)
/
√
6,

ρ(3) = (
3x(4) − x(1) − x(2) − x(3)

)
/
√
12 [29].

The three eigenvalues of the inertia matrix I are denoted as g1, g2, and g3 from large value to small one,
so the volume V = 1

3det (ρ) = 1
3
√
g1g2g3 and the ratio Ii = gi/G2, where G = √

tr (I) = √
g1 + g2 + g3

is the characteristic size of a tetrahedron. For a regular tetrahedron, I1 = I2 = I3 = 1
3 . For the two extreme

cases, the four-point coplanar case, I3 = 0, and the four-point collinear case, I2 = I3 = 0. Figure 16 shows
the temporal evolution of the ratio 〈I2〉 from DNS, FDNS, and LES. The change in the ratio I2 from FDNS is
a little slower than that from DNS and faster than that from LES. And the trends of the curves are similar to
the curves of the renormalized mean volume and surface area ratios as shown in Fig. 15.

5 Conclusions

In this work, the Lagrangian dispersions of single-, two- and four-particles in isotropic turbulent flows are
investigated using direct numerical simulation (DNS), filtered DNS (FDNS) and large-eddy simulation (LES).
We aim to separate and study the error sources of the turbulent dispersion obtained from the LESmethod which
has become more and more important in the prediction of pollutant dispersion in the atmosphere and chemical
mixing in process engineering. The FDNS can be regarded as an ideal LES without any subgrid scale (SGS)
model errors, and the comparison between the statistics obtained from FDNS and DNS can be used to study the
contributions of small-scale motions to turbulent dispersion of fluid particles, while the comparison between
the statistics obtained from FDNS and LES can be used to study the contributions of SGS model errors to
turbulent dispersion of fluid particles. LES usually underpredicts the relative turbulent dispersion and multi-
particle dispersion when the initial separations are smaller than or comparable to the width of the filter. This is
because the missing small-scale motions in LES have significant effects on the relative dispersion of particle
pairs. The Reynolds number-dependent relative error of Lagrangian velocity correlation functions of particle
pairs between the LES and FDNS shows that the current spectral SGS model becomes more accurate with
increasing Reynolds number. The theoretical analysis based on Taylors expansion of the relative separation
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and the Kolmogorov similarity theory demonstrates the non-monotonic variation of the one-time two-point
Lagrangian velocity correlation functions of particle pairs at short time.

Due to the importance of the missing SGS motions on particle relative dispersion, we need to construct
corresponding particle SGS models to recover the effects of the missing SGS motions on particle dispersions.
Recently, the efforts have beenmade for both fluid and inertial particles in this direction, including the stochastic
model [61,62], deconvolutionmethod [63,64], the hybridmethod [65], and the kinematical simulations [66,67].
We shall develop particle SGS models for LES of Lagrangian dispersion of fluid particles by developing such
models based on the space–time correlation models [40,59,68–70] which are necessary for two- or multi-
particle dispersion.
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