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Abstract The grid fin is an unconventional control surface used on missiles and rockets. Although

aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects.

In this paper, the static aeroelastic simulations are performed by the coupled viscous computational

fluid dynamics with structural flexibility method in transonic and supersonic regimes. The devel-

oped coupling strategy including fluid–structure interpolation and volume mesh motion schemes

is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin

mounted on a body. Horizontal fin results show that the deformed fin is swept backward and

the axial force is increased. The deformations also induce the movement of center of pressure, caus-

ing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow,

respectively. For the vertical fin, the local effective incidences are increased due to the deformations

so that the deformed normal force is greater than the original one. At high angles of attack, both the

deformed and original normal forces experience a sudden reduction due to the interference of lee-

ward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate

strongly with the increment in the square of normal force.
� 2017 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The grid fin, also called the lattice fin, is an unconventional lift-
ing and control surface consisting of a grid structure supported
by the outer frame, and has been used on missiles and rockets

due to its higher aerodynamic performances than conventional
planar control surfaces.

Previous investigations suggest that the use of grid fins has

several advantages.1 The grid fins have better stall characteris-
tics due to the increased normal forces over a wider range of
angles of attack, which improves the control efficiency of grid
fins at high angles of attack compared to the planar control
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surfaces. Because of the use of short chord, the grid fins usually
produce small hinge moments and can reduce the required
power of the actuator system. Besides, the unique internal con-

straints of the grid fins help to improve the structural strength-
to-weight ratio.

Aerodynamic characteristics of grid fins have been studied

experimentally by many researchers. Wind tunnel tests showed
that the shape of the outer frame and the internal web thick-
ness have great effects on the drag characteristics but have

slight impacts on the fin normal forces.2 Curved grid fins are
helpful for compact packaging against the rocket bodies and
the curvature effects on aerodynamic characteristics were
shown to be limited.3 The sweep back effects were also inves-

tigated, indicating that the drag forces can be increased by
the sweep back angle.3 Experiments with deflected grid fins
installed on a projectile body were performed in wind tunnels4,

and the test results showed that the fin deflection angles
affected the aerodynamic coefficients significantly and the roll
moment reversal was observed at large deflection angles in a

subsonic condition.
Numerical simulations were also performed to predict the

aerodynamics of the grid fins. For example, vortex lattice

method and shock-expansion theory were used in the aerody-
namic calculations in subsonic and supersonic flows, respec-
tively, while the nonlinear effects of leeward separated
vortices at high angles of attack were considered by the empir-

ical relations.5,6 Recently, high-fidelity computational fluid
dynamics (CFD) techniques were used to solve the flow fields
around the grid fins with high accuracy. The aerodynamic sim-

ulations of a body and grid fin combination were performed
using the unstructured-mesh solver (FLUENT).7,8 Detailed
pressure distributions were computed, which reveals the com-

plicated flow structures near the grid fins. In transonic condi-
tions, the flows passing through grid fins are choked within
the cells and the development of choking was investigated

using CFD techniques.9 The transonic choked flow causes
the maximum of drag coefficient, to reduce which, the swept-
back grid fin with sharp leading edges was designed and
CFD computations proved this new configuration conduces

to alleviating the flow choking and the associated drag.10

Despeyroux et al.11 used the unstructured finite volume based
code SU2 to analyze the static and dynamic flight stabilities of

gird fin controlled missiles. The pitching motions were simu-
lated by rigid motions of the computational domain and the
results indicated that the missile was statically unstable at

moderate angles of attack in a transonic condition due to the
choking effect, but dynamically stable in both transonic and
supersonic conditions.

Unlike conventional planar control surfaces, grid fins are

installed perpendicularly to the incoming flow and the unique
cell structures enlarge the windward area and increase the axial
forces, which have a potential of pushing the grid fins back-

ward. In the previous studies, the grid fins were assumed to
be rigid and therefore no fluid–structure interaction need to
be considered in the CFD simulations. However, because the

actual fin structures are elastic, the grid fins under aerody-
namic loads could be deformed and then the deformations in
return interact with the fluid field and cause the redistributions

of aerodynamic loads. This aeroelastic effect can be consider-
ably strong due to the specific geometric structure of the grid
fins and may change their aerodynamic performances signifi-
cantly. In the past decades, numerical solutions of aeroelastic
computations have been attempted for the analyses of wings
and aircraft. Mian et al.12 coupled the finite element method
and Reynolds-averaged Navier–Stokes solver to compute the

static deformations of a flexible wing using the radial basis
function method for fluid–structure interpolations and CFD
mesh motions. Bartels et al.13 computed the transonic flutter

boundary of an aircraft model using the Navier–Stokes code
FUN3D for unsteady aerodynamic simulations and the modal
technique to solve structural equations of motion. Lamorte

and Friedmann14 developed a framework of hypersonic
aerothermoelastic analysis. The CFD++ code was used to
compute aerodynamic loads and heat-flux, coupled with the
structural heat and dynamics analyses using the finite element

method code MSC.NASTRAN.
As far as we know, the grid fin aeroelasticity was seldom

studied before, so it is necessary to construct the numerical

strategy for the fluid–structure interaction analyses and to
investigate the aeroelastic effects on grid fin aerodynamic
performances.

In this paper, the computational fluid dynamics-
computational structural dynamics (CFD-CSD) coupling
method is used in the aeroelastic simulations which decouples

the fluid–structure interaction problems and solves the aerody-
namic forces and structural motions separately. The forces and
displacements between the fluid and structure domains are
communicated at the interface using interpolation techniques.

Because of the complicated geometry of the grid fins, it is quite
challenging to implement a proper interpolation scheme that
meets the accuracy and efficiency requirements. In the current

study, the time efficient fluid–structure interpolation and mesh
motion schemes based on radial basis functions (RBF) are
developed for the static aeroelastic simulations and it can be

demonstrated that the developed scheme is effective for such
complicated geometries as the grid fins. The organization of
the paper is as follows. Section 2 describes the numerical strat-

egy for the aeroelastic simulations of the grid fins. The simula-
tion results and discussions are presented in Section 3,
followed by the conclusions in Section 4.
2. Numerical approach

2.1. Model descriptions

2.1.1. Geometry model

The geometric model evaluated in the present study originates
from the experimental model tested by Miller and Washing-
ton.2 The model shown in Fig. 1(a) is 52 in (1 in = 25.4 mm)

long, with a 15 in tangent ogive nose, and the diameter of
the body is 5 in. There are four fins mounted 2 calibers ahead
of the base. The right-handed coordinate system is located at

the nose of the body, with x axis pointing downstream along
the center line, y axis upward and z axis along the left side
viewed from the rear. The outer frame thickness of the grid
fin tested in the experimental model varies from 0.02 into

0.06 in. For computational convenience, the outer frame thick-
ness was simplified as a constant of 0.04 in by Lin et al.15, while
the total windward area of grid fin remained the same as the

experimental model. The simplified model is adopted in the
present paper with rectangular outer frame shape. In addition,
the thickness of the internal web is 0.008 in and the chord

length of grid fin is 0.384 in.



Fig. 1 Aerodynamic mesh on surface.
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2.1.2. CFD mesh

The CFD model was designed for the aerodynamic simulations

of the grid fins. The hybrid mesh was generated with clustered
boundary layer cells, and the total number of volume cells is
about 14 million. There are 0.63 million trilateral elements

generated on the surface(Fig. 1(a)), while the grid refinement
is performed with about 0.15 million cells on each fin surface
(Fig. 1(b)). The whole computational domain is a regular hex-

ahedron with approximately 10 times body length in the x
direction and about 40 times diameter length in the y and z
directions, respectively.

2.1.3. Structural model

A three dimensional structural model was constructed for the
grid fin, based on which the finite element method can be uti-

lized to calculate the structural responses of the model under
the aerodynamic loads. The solid elements are used to dis-
cretize the grid fin shown in Fig. 2(a) and (b) plots the detailed
mesh distributions near the foot. The outer frame and the

internal webs are meshed using 8-node hexahedrons except
for their junctions at which 6-node wedges are used. The struc-
tural model has 2620 elements in total including 2580 hexahe-

drons and 40 wedges, which is constructed by 5760 nodes. A
typical metallic material, the copper with elastic modulus
Fig. 2 Finite el
110 GPa, Poisson’s ratio 0.31, is used for the material property
of the grid fin. It should be noted that the body was not
included in the structural model in the current study, since

the body is much stiffer than the grid fins and hence was
assumed to be rigid to simplify the aeroelastic problem.

In an actual flight, the grid fins are connected to the actua-

tors which control the packaging, deployments and deflections
of the fins, hence there exists inevitable joint stiffness at the
connections. It is not necessary to build a detailed finite ele-

ment model for the connection structure since our focus is
on the grid fin. Instead, a spring element is designed to model
the joint stiffness effect. In the present paper, the spring ele-
ment is added at the root of the grid fin though it is not

included in the original test model, and its location is
(41.808, 0, 2.559) inch for the left fin shown in Fig. 2(a). The
hinge line coincides with the axis of symmetry along the

z-axis direction. Two degrees of freedom are released at the
spring element. The rotation around the hinge line is defined
as the twist, while the rotation about another line along the

y axis direction (Fig. 2(a)) is defined as the bending. The stiff-
ness coefficients are designed to be 50 N�m/rad in the bending
direction and 25 N�m/rad in the twist direction, respectively.
Additionally, the multiple-point-constraint (MPC)16 is used

to connect the spring element and the solid elements at the
root. This structural model was tested using the general
ement model.
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purpose finite element analysis programMSC.NASTRAN and
the flexibility matrix of the grid fin was computed for the
aeroelastic analyses which will be described in the next section.

2.2. Fluid-structure interaction techniques

2.2.1. Strategy for static aeroelastic analysis

The solution strategies of the coupled fluid–structure system
are classified into two categories17: the monolithic approach

that solves the aerodynamic forces and structural motions
simultaneously using the integrated aero-structure solver but
causes additional complexities; and the partitioned approach

that solves the aerodynamic forces and the structure motions
in a separate manner with additional data communications
between different solvers. In the current study, the static aeroe-
lastic problem is solved using the partitioned approach which

allows the use of the existing CFD solvers and structural anal-
ysis tools.

Static aeroelasticity studies the interactions between the sta-

tic structural deformations and the aerodynamic loads. The
elastic structure may deform under the aerodynamic forces
generated by the fluid flows, while the deformations of the

structure can alter the surrounding flows and change the aero-
dynamic loads in response, until the static equilibrium is
obtained. To achieve this state numerically, an iterative pro-
cess is performed as follows:

(1) Compute the aerodynamic loads using CFD.
(2) Interpolate the forces from aerodynamic nodes onto

structural nodes.
(3) Calculate the structural displacements using the flexibil-

ity method.

(4) Interpolate the displacements from structural nodes
onto aerodynamic nodes at the interface and deform
the volume mesh.

(5) Repeat (1) to (4) until the static equilibrium is achieved.

2.2.2. Flexibility method

The flexibility method is adopted to calculate the structural
displacements so that the elastic behavior of grid fins can be
analyzed under the aerodynamic loads. The flexibility matrix
C was achieved in advance by linear static analyses using

MSC.NASTRAN, therefore the structural displacements u

can be computed by

u ¼ CF ð1Þ
where F denotes the vector of forces acting on the structural

nodes. This method is based on the linear assumption and is
suitable for small deformation problems, e.g. grid fins. The
matrix size of C is 3N � 3N, where N denotes the number of

structural nodes. Since only simple matrix multiplications are
required, the flexibility method can be integrated with CFD
codes for fluid–structure interaction analyses without much

work.

2.2.3. Fluid-structure interpolation

The partitioned approach decouples the fluid–structure inter-

action problem, and solves the aerodynamic forces and struc-
tural motions separately. Because of the independent manners
of the aerodynamic and structural models, the aerodynamic
nodes are usually inconsistent with the structural nodes at
the interface. Therefore interpolations need to be implemented
to transfer forces and displacements between the aerodynamic

and structural nodes following physical laws, including the
conservation of total force, moment and energy. The interpo-
lations with RBF are based on the spatial positions of control

points only and can be performed on arbitrary point clouds
with no connectivity information required. The general form
of RBF interpolation is17

sðxÞ ¼ c0 þ c1xþ c2yþ c3zþ
XN
i¼1

ai/ kx� xikð Þ ð2Þ

where x = [x, y, z], kx� xik2 ¼ ðx� xiÞ2 þ ðy� yiÞ2þ
ðz� ziÞ2, c0, c1, c2, c3 and ai are the interpolation coefficients,

/ is the radial basis function. It can be proven later in this sec-
tion that the linear terms in Eq. (2) constrain the total force
and moment to be conserved. To complete the equation system

with (N + 4) coefficients, four additional equations are
imposed:

XN
i¼1

ai ¼ 0

XN
i¼1

xiai ¼ 0

XN
i¼1

yiai ¼ 0

XN
i¼1

ziai ¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð3Þ

which is a three-dimensional extension from the infinite plate
spline (IPS) method18 and can be recognized as the equations

of equilibrium. There are many radial basis functions17 avail-
able and the most widely used functions include the Wend-
land’s C0 function

/ kx� xikð Þ ¼ 1� kx� xik=dð Þ2 kx� xik 6 d

0 kx� xik > d

(
ð4Þ

and the Wendland’s C2 function

/ðkx� xikÞ ¼
1� kx� xik=dð Þ4 4kx� xik=dþ 1ð Þ

kx� xik 6 d

0 kx� xik > d

8><
>: ð5Þ

where d is the support radius of the radial influence range and

is chosen to be a suitable value to consider enough points near
the interface and exclude the points far away.19 In the current
study, the support radius is 7.87 in which is about two times
the grid fin height defined as the length from the root to the

top. Comparisons of interpolation errors between the C0 and
C2 functions of Wendland are performed later, and the better
one is chosen for the aeroelastic simulations. The displace-

ments and forces in all the three directions should be
exchanged between the aerodynamic nodes and the structure
nodes. Without loss of generality, the interpolation of x com-

ponent is described below. Applying Eq. (2) to all N structural
nodes, with the combination of Eq. (3), yields

0

Dxs

� �
¼ 0 P

PT M

� �
k ¼ Cssk ð6Þ
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Css ¼
0 P

PT M

� �

P ¼

1 � � � 1

xs1 � � � xsN

ys1 � � � ysN

zs1 � � � zsN

2
6664

3
7775

M ¼
/s1s1 � � � /s1sN

..

. ..
.

/sNs1 � � � /sNsN

2
664

3
775

k ¼ c0 c1 c2 c3 a1 � � � aN½ �T
/s1s2 ¼ / kxs1 � xs2kð Þ
where subscript ‘‘s” denotes the structure nodes. The solution
of Eq. (6) yields the coefficients k, then the displacements of all

M aerodynamic nodes on the surface can be attained by

Dxa ¼ Aask ð7Þ

Aas ¼
1 xa1 ya2 za3 /a1s1 /a1s2 � � � /a1sN

..

. ..
.

1 xaM yaM zaM /aMs1 /aMs2 � � � /aMsN

2
664

3
775

where subscript ‘‘a” denotes the aerodynamic surface nodes.
Integrations of pressures and viscous stresses on the surface

yield the vector of forces fa at the aerodynamic nodes. For the
interpolations of structural forces, the aerodynamic/structural
coupling matrix needs to be calculated directly in Ref.17 which

requires costly computations. In this paper, a positive definite
system of linear equations is constructed by the introduction of
pseudo structural forces fs

i = [fs1
i , fs2

i , fs3
i , fs4

i ]T. The acting

forces fs on the structural nodes then can be calculated more
efficiently via the solution of the linear system, avoiding the
costly computations of the aerodynamic/structural coupling

matrix. The relation of equivalence of virtual work can be
rewritten as

f i
s

fs

� �T
0

Dxs

� �
¼ f T

a Dxa ð8Þ

Substitution of Eq. (6) and Eq. (7) into Eq. (8), yields

Css

f i
s

fs

� �
¼ AT

asfa ð9Þ

then fs can be attained by solving the linear Eq. (9). The first
four rows of Eq. (9) are

1 � � � 1

xs1 � � � xsN

ys1 � � � ysN

zs1 � � � zsN

2
6664

3
7775

fs1

..

.

fsN

2
664

3
775 ¼

1 � � � 1

xa1 � � � xaM

ya1 � � � yaM

za1 � � � zaM

2
6664

3
7775

fa1

..

.

faM

2
664

3
775 ð10Þ

which suggest the conservation of total force and total
moments when communicating the forces between the aerody-

namic and the structural nodes.

2.2.4. Volume mesh deformation scheme

The deformation of fluid–structure interface, due to the deflec-

tion of the structure, usually requires the updates of the vol-
ume mesh. It is tedious to regenerate the entire mesh
manually especially in the case of aeroelastic simulations which
require mesh update to be performed repeatedly. Mesh defor-
mation is the preferred choice to update the CFD mesh auto-
matically and various methods have been investigated, i.e.

transfinite interpolation (TFI),20 spring analogy (SA),21 PDE
solution method,22 and Delaunay mapping,23 etc. However,
all the mesh type dependent methods require the knowledge

of the grid connectivity. The displacements of interior grids
usually need to be solved by a system of equations including
all the points in the domain, and can therefore be computa-

tionally expensive.
In the present paper, the RBF method is used to deform the

mesh. Similar to Eq. (2), the interpolation relation for the mesh
motion is

sðxÞ ¼
XNsp

i¼1

ai/ kx� xikð Þ ð11Þ

where the linear terms are removed since the conservations of
the total force and moments are not needed, and Nsp refers to
the number of control points driving the mesh motion and is

usually less than M, the total number of the aerodynamic sur-
face nodes. Substituting the Nsp control points into Eq. (11),
yields

DxaNsp
¼

/a1a1 � � � /a1aNsp

..

. ..
.

/aNspa1
� � � /aNspaNsp

2
664

3
775

a1

..

.

aNsp

2
664

3
775 ð12Þ

where DxaNsp
denote the displacements of Nsp control points

extracted from Dxa. The coefficients a1, a2, . . ., aNsp
are

attained by the solution of Eq. (12), and then the substitutions

of volume node coordinates into Eq. (11) yield the
displacements,

Dxv ¼
/v1a1 � � � /v1aNsp

..

. ..
.

/vNvpa1
� � � /vNvpaNsp

2
664

3
775

a1

..

.

aNsp

2
664

3
775 ð13Þ

where subscript ‘‘v” denotes the volume nodes, and Nvp the
total number of volume nodes. Then, Dxv are superposed on

the current coordinates to update the mesh.
The computational effort associated with the volume mesh

updates scales with Nvp � Nsp. Selecting allM surface points as

control points will make calculations expensive. To reduce the
computational cost, Rendall and Allen24 proposed the ‘greedy’
algorithm to reduce the size of the control points, which sacri-
fices the accuracy of the deformation at the surface with an

acceptable error. Different error signals related to the ‘greedy’
algorithm were tested, and the comparisons of the interpola-
tion errors showed that the unit function provided the smallest

errors as well as the best efficiency.25 Therefore, the error sig-
nal using the unit function is adopted for the selection of the
reduced control points in this paper.

2.2.5. CFD solver

The unstructured finite volume-based solver Ansys Fluent 14.0
is used for the steady CFD simulation. The governing equa-

tions are three-dimensional compressible Navier–Stokes equa-
tions in the conservation form:

@

@t

Z
X
WdXþ

Z
@X
ðFc � FvÞdS ¼

Z
X
HdX ð14Þ
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where W denotes the conservative variables, X the control vol-

ume, S the surface area, Fc the vector of convective fluxes eval-
uated by the Roe-FDS scheme, Fv the vector of viscous fluxes,
and H the source terms which vanishes in the present calcula-

tions. The gradients are evaluated by the Green-Gauss scheme,
while the turbulence is simulated using the one-equation Spa-
lart–Allmaras model. The second-order upwind scheme is used
for the spatial discretizations of the flow variables and the tur-

bulent viscosity.
For aeroelastic simulations, the flexibility method, fluid–

structure interpolation and mesh deformation schemes based

on the RBF method were implemented into the CFD solver
through the user-defined functions.26

3. Results and discussion

The results and discussion are divided into four parts: firstly,
the study of RBF interpolation accuracy; secondly, the valida-

tions of the CFD simulations; thirdly, the static aeroelastic
analyses of the left fin; and finally, the analyses of the upper
fin.

3.1. Assessment of RBF accuracy

Because of the complex geometric topology of the grid fin, it is
a challenge to meet the accuracy requirement when performing

the interpolations and mesh motions. In this section, the inter-
polation precision is studied with the Wendland’s C0 and C2
functions, and the reduced set of control points is determined.
Fig. 3 The first four mode shapes with the RBF interpolation
The first four structural mode shapes of the grid fin are used
to examine the RBF interpolation errors for accuracy evalua-
tion. The ‘greedy’ algorithm is used to select the reduced set of

control points, based on which the displacements at all surface
points are interpolated. The errors Ei

x, Ei
y, Ei

z are the differ-
ences between the exact values and the interpolated values at

point i in the x, y, z directions. These errors are further squared
and normalized with the maximum displacement umax to give
the scalar error:

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEx

i Þ2 þ ðEy
i Þ2 þ ðEz

i Þ2
q

=umax ð15Þ
Fig. 3 shows the mode shapes and their error distributions

on the surface using the C2 function with 200 control points.

The first mode denotes the bending deformation and the max-
imum interpolation error is the order of 10�3 occurring at the
lower part of the fin. The second mode denotes the deforma-
tion of twist about the hinge line with the maximum interpola-

tion error of the order of 10�3. The third mode denotes the
deformation in the y-z plane and the maximum error reaches
the order of 10�2. The fourth mode denotes the stretch along

the symmetric axis and its maximum interpolation error is
the order of 0.1 occurring at the center of the internal webs.
It can be shown that the higher order the mode is, the more

complicated the shape will be with larger interpolation errors.
It is demonstrated later that under aerodynamic loads, the
deformed grid fins are close to the combinations of low order

mode shapes, which produce errors small enough. Hence, the
RBF method is satisfactory for the aeroelastic simulations of
grid fins.
error distributions using C2 function, 200 control points.



Table 1 Free-stream conditions.

Mach

number

Dynamic

pressure (Pa)

Static pressure

(Pa)

Static

temperature (K)

0.7 35383 105490 266.11

1.2 62005 62053 230.56

2.5 67032 15168 128.89
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Fig. 4(a) and (b) compare the interpolation errors between
the Wendland’s C0 and C2 functions. The errors are calculated
as the maximum error Emax and the average error Eavg, respec-

tively. Both the Emax and Eavg decrease as the number of con-
trol points increases for all the mode shapes. The errors
associated with the C2 function are shown to be consistently

smaller than those with the C0 function. The comparison of
the control points (Fig. 5) shows that there are more points
scattering inside the grid fin with more uniform global point

distributions using the C2 function than using the C0 function,
which induces larger errors on the internal cell walls (Fig. 5
(b)). Therefore, the Wendland’s C2 function performs better
than the C0 function and is adopted in the present aeroelastic

simulations. The number of the control points is designed to be
500, which not only ensures the interpolation errors small
enough, but also saves much computation work for the mesh

deformations.

3.2. Validations

The flow conditions are given in Table 1 including the subsonic
(Ma = 0.7), transonic (Ma= 1.2) and supersonic (Ma= 2.5)
regimes. The aerodynamic and aeroelastic characteristics are
Fig. 4 Interpolation errors vs the number of contro

Fig. 5 Comparisons of 500 control points and the fir
studied for both the upper and left fins in the present work,
since the surrounding flow fields are different between the ver-

tical and the horizontal grid fins at nonzero angles of attack.
The reference length and the reference area are set to be equal
to the diameter (5.0 in) and the body cross sectional area

(19.635 in2), respectively. The sign conventions of the aerody-
namic coefficients are shown in Fig. 6, where CL is the lift coef-
ficient, CD is the drag coefficient, CA is the axial force

coefficient, CN is the normal force coefficient, CHM is the hinge
moment coefficient, V1 is the freestream velocity, a is the
angle of attack.

To validate the CFD mesh and the numerical results, the

computed force and moment coefficients are compared with
the experiment results at angles of attack ranging from �5�
l points using Wendland’s C0 and C2 functions.

st mode interpolation error between two functions.



Fig. 6 Sign conventions for force and moment coefficients.

Fig. 7 Aerodynamic coefficients comparisons between computations and measurements, left fin.
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to 15� (Fig. 7). Since the wind tunnel test data are only avail-
able for the horizontal fin in the Ref.2, the validations of the

CFD simulations are only performed for the left fin.
The normal force coefficients CN become higher as the

angle of attack increases, and the slopes of the linear portions

ranging from �5� to 5� are in a quite good agreement between
the computed results and the experimental results (Fig. 7(a)–
(c)). The nonlinear characteristics of normal forces at higher

angles of attack are well predicted with reasonable errors.
The result deviations between the computations and measure-
ments at high incidences are within 6% at Mach number 0.7,
11% at Mach number 1.2 and 12% at Mach number 2.5,

respectively.
The axial force coefficients CA are computed accurately

with errors less than 5% at Mach number 1.2 and Mach
number 2.5. The computed axial force coefficients at zero
angle of attack are 0.0479 for Mach number 0.7, 0.0586

for Mach number 1.2, 0.0523 for Mach number 2.5 respec-
tively, which suggests that the highest drag exists at the
transonic condition. Fig. 7(d) shows the hinge moment

coefficients CHM versus angles of attack at Mach number
0.7 and Mach number 2.5, and the different curve trends
are predicted well. The hinge moment coefficients at Mach

number 2.5 are much smaller than those at Mach number
0.7. This is because the chordwise center of pressure at
Mach number 2.5 (near mid-chord) is closer to the hinge
line than that at Mach number 0.7 (near 25% chord).2

Therefore, the moment arm and moment coefficient about
the hinge line at Mach number 2.5 are smaller than those
at Mach number 0.7.



Fig. 8 Convergence of the maximum displacement at a= 5�, Ma = 1.2, left fin.
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3.3. Static aeroelastic analyses of left fin

3.3.1. Convergence

To achieve the static equilibrium state of the grid fin, the iter-

ative process described in Section 2 is performed. The maxi-
mum displacement umax is normalized with the grid fin chord
length c = 0.384 in. The final equilibrium state is defined as
the increment of umax/c reduces to the order of 10�4. Fig. 8

(a) and (b) shows the convergence histories at a= 5� in the
transonic condition, which is defined in Table 1. The con-
verged result is obtained within 5 iterative steps.

3.3.2. Static aeroelastic effects

The effects on aerodynamic performances of the left fin are
studied in this subsection. The results at �5� to 15� angles of
attack are shown from Figs. 9–14, where ’rigid’ denotes the
original state and ’elastic’ denotes the deformed state. The dis-
cussions are as follows.

(1) Deformation and normal force

The top view of the deformed fin relative to the original fin
at a= 10� at Mach number 1.2 is illustrated with Fig. 9.
Under aerodynamic loads, the deformations of the left fin

mainly contain three parts, the bending, the elastic twist, and
the movement in the y-z plane. It is noted that the bending
Fig. 9 Deformed and original configurations from top view, left

fin, Ma = 1.2, a= 10�.
plays a major part in the deformations. What’s more, the elas-
tic twist is induced by the hinge moment and tends to increase
the effective angle of attack of the left fin. The change in inci-

dence can be illustrated with the change in pressure distribu-
tion. Fig. 11(a) shows the pressure coefficient Cp contours on
the rigid fin at a = 10�, and the blue contours on the webs

and outer frame indicate the suction regions contributing to
the normal force. As for the elastic Cp (Fig. 11(b)), there are
larger suction areas compared with the rigid case, so that the

normal force is increased slightly at Mach number 1.2
(Fig. 10(a)).

At Mach number 2.5, the change in CN is shown to be

insignificant (Fig. 10(b)). This is because in this Mach regime,
the elastic twist angle is tiny due to the small hinge moment, so
that the effective angle of attack is nearly unchanged.

(2) Axial force

The elastic CA is about 10% and 4% larger than the rigid

CA for Mach number 1.2 and Mach number 2.5, respectively
(Fig. 12(a)). The reason is the sweep back effect caused by
bending deformation. In Ref.3, the grid fin was rigid but could

be deployed and swept backward by controls. The angle
between the original fin and the swept fin was investigated
experimentally and the results showed that the sweep back
angle was to augment the drag significantly. In the current

study, when the left fin produces bending deformations, it is
also swept backward and the windward area increases, thus
the axial force coefficients are increased.

(3) Hinge moment

At Mach number 1.2, the rigid CHM is generally larger than
elastic CHM (Fig. 13(a)). The difference between the elastic and
rigid CHM is mainly due to the movement of center of pressure.

The position of chordwise center of pressure xCP can be calcu-
lated as

xH � xCP

c
¼ CHM

CN

� L
c

ð16Þ

where xH denotes the x coordinate of the hinge line, L the ref-

erence length. The (xH � xCP)/c values are summarized in
Table 2. In the transonic condition, the center of pressure is
between 20% and 30% of the grid fin chord. When the elastic
cases are considered, (xH � xCP)/c is reduced, indicating the



Fig. 10 Normal force coefficients, left fin.

Fig. 11 Pressure coefficient distributions, left fin, Ma = 1.2, a= 10�.
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center of pressure shifts backward. As a result, the moment
arm for the normal force about the hinge line is reduced, so

that the elastic CHM is generated smaller than the rigid one.
However, at Mach number 2.5, when a> 0�, the rigid CHM

is positive but the elastic CHM is negative, indicating that the

reversal in hinge moment occurs (Fig. 13(b)). In this supersonic
flow, the center of pressure is very near the mid-chord for the
rigid cases, so that it will move behind the hinge line when the
fin is deformed (Table 2). Therefore, the elastic normal forces

generate negative hinge moments.

(4) Normalized maximum displacement

At Mach number 1.2, the umax/c reaches the minimum at
a = 0� and then increases rapidly until a = 10� (Fig. 14(a)),

while the low growth rate at a = 15� may be due to the slight
decrease in elastic CA. However, the curve trend observed at
Mach number 2.5 is different from that observed at Mach
number 1.2. The umax/c gets the maximum at a = 0� and then

declines in this supersonic flow (Fig. 14(b)). This curve trend is
similar to that of elastic CA (Fig. 12(b)).

3.4. Static aeroelastic analyses of upper fin

3.4.1. Changes in flow field in transonic condition

At Mach number 1.2, the static aeroelasticity of the upper fin is
studied. Because both the flow field and the deformed config-
uration are symmetric, it is convenient to analyze the aeroelas-
tic effects by visualizations of flow field on the symmetry plane
(z= 0). This symmetry plane cuts the upper fin and there are
four internal spars, the top and the bottom spars in figures. As
shown in Fig. 15(a) for the rigid Mach contours at a = 0�, a
bow shock wave is formed in front of the fin and reduces the
speed of flow to subsonic value. The flow passing through
the cells accelerates so that the sonic condition is met near

exits, indicating the flow-choking phenomenon occurs. What’s
more, the supersonic regions on the internal spars are much
like the flow field around a transonic airfoil. Fig. 15(b) shows

the deformed Mach contours, and the supersonic regions
become larger than those in the rigid case within the cells.

The rigid Cp contours (Fig. 16(a)) show that there are suc-
tion regions on the upper surfaces of the internal spars so that

the normal force points upward. The reason is that streamlines
are deflected after the bow shock and the upward component
of velocity is created in front of the fin, so that the effective

angle of attack is actually positive at a = 0�. The deformed
Cp contours (Fig. 16(b)) illustrate that the suction areas con-
tributing to the normal force grow so that the elastic CN

(0.0386) is larger than the rigid CN (0.0173), confirming that
the aerodynamic changes for the elastic grid fin mainly come
from the increased local effective angle of attack due to the

structural deformations.

3.4.2. Changes in flow field in supersonic condition

For the case of Mach number 2.5, Fig. 17 shows the pressure

contours on the z = 0 cutting plane at three angles of attack.



Fig. 12 Axial force coefficients, left fin.

Fig. 13 Hinge moment coefficients, left fin.

Fig. 14 Normalized maximum displacements, left fin.

Table 2 Position of center of pressure.

a (o) Position of center of pressure

Ma= 1.2 Ma= 2.5

Rigid Elastic Rigid Elastic

5 0.2936 0.1553 0.0193 �0.1617

10 0.2895 0.0899 0.0552 �0.1059

15 0.2584 0.0412 0.0745 �0.0699
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The cutting sections are rectangular. In this supersonic regime,

the bow shock wave in front of the fin has been swallowed, and
the flow choking has vanished within the cells. However, each
spar acts like a supersonic thin wing, with a detached bow

shock formed about the blunt leading edge. The flow is com-
pressed across the shock, followed by an expansion fan ema-
nating from the corner of the leading edge. The shock and

expansion waves intersect with the others coming off the
opposite side within each cell, and then continue propagating



Fig. 15 Mach number contours on z = 0 cutting plane, upper fin, a= 0�.

Fig. 16 Pressure coefficient contours on z = 0 cutting plane, upper fin, Ma = 1.2.
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downstream, leading to more intersections behind the grid fin.

For the rigid case at a = 0� (Fig. 17(a)), the pressure distribu-
tions are almost the same between the upper and lower
surfaces of each internal spar, so that the rigid normal force
coefficient is near zero. As for the elastic case (Fig. 17(d)),

the expansion of flow on the upper surface becomes more
intense than that on the lower surface, indicating the local
angle of attack of each internal spar is increased. Therefore,

the elastic CN (0.0256) is larger than the rigid CN (0.002) at
a = 0�.

3.4.3. Linear and nonlinear characteristics of elastic normal
force

At Mach number 1.2, the normal force coefficients at angles of
attack from �14� to 18� are illustrated with Fig. 18(a). The

elastic CN is generally greater than the rigid CN because of
the increased effective angle of attack. When the body is at
angle of attack from �14� to 0�, indicating the upper fin is

in the windward side, the curve of elastic CN is linear and is
almost parallel to that of rigid CN. However, when the angle
of attack of the body is positive, the upper fin is situated in
the leeward side and the normal forces behave nonlinearly.

Both the elastic CN and rigid CN increase with the angle of
attack until a= 8� and then decline from the maximums to
negative values.
It is the separated vortex effect that causes the sharp

decrease in normal forces at high angles of attack. The visual-
ization of the separated vortices at a= 18� is shown in Fig. 19,
with the streamlines on z= 0 and x= 37 in cutting planes.
The pair of symmetric vortices on the crossflow plane is

observed in the leeward, and the upper fin is almost enclosed
by the separation region. The downwash velocity induced by
the vortices is shown to pull down the streamlines, so that

the effective angle of attack of the upper fin is reduced. The
rigid Cp contours at a = 18� (Fig. 16(c)) illustrate that there
are suction regions on the lower surfaces of the four internal

spars, indicating their local angles of attack are negative even
at a> 0. As for the elastic Cp contours (Fig. 16(d)), the suction
is reduced, demonstrating that the local a of each internal spar

increases but is still less than zero. Therefore, the elastic CN

(�0.0437) is greater than the rigid CN (�0.0560) at a = 18�,
but both are negative.

At Mach number 2.5, Fig. 18(b) plots the rigid and elastic

CN versus a from �10� to 15�. Each curve contains a linear
portion and the nonlinear drop due to vortex interference, sim-
ilar to those observed at Mach number 1.2. The rigid Cp con-

tours at a= 10� (Fig. 17(b)) show that the first two internal
spars are at positive local a, while the vortex effect reduces
local a to zero and a negative value for the third and fourth

internal spars, respectively. As for the elastic case (Fig. 17(e)),



Fig. 17 Pressure coefficient contours on symmetry plane (z = 0) at Ma = 2.5, upper fin.

Fig. 18 Normal force coefficients, upper fin.
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the changed Cp contours show that the deformation can

alleviate the vortex effect, especially for the third internal spar
whose local a turns from zero (rigid) to a positive value
(elastic).

3.4.4. Change of sign of normal force

At both Mach regimes, the change of sign of CN occurs at
some negative and high positive angles of attack, where the

rigid CN is slightly less than zero but the elastic one is positive.
At Mach number 1.2, this feature can be observed at a = �6�,
a= �4� and a= 15� (Fig. 18(a)). As for the case of Mach
number 2.5, since the rigid CN is near zero at a = 0�, the
change of sign of CN can occur at small negative angles of

attack from �3.4� to �0.2� (interpolated) (Fig. 18(b)). For
example, at a= �2�, the local angles of attack experience
the change from a negative to a positive value for all the inter-

nal spars, illustrated with the comparison of the Cp contours
between the rigid and elastic cases (Fig. 17(c) and (f)).



Fig. 19 Streamlines on symmetry plane (z = 0) and crossflow plane (x = 37 in) with Cp contours, Ma = 1.2, a= 18�, rigid.

Fig. 20 Axial force coefficients at Ma = 1.2, upper fin.

Fig. 21 Axial force coefficients at Ma = 2.5, upper fin.
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3.4.5. Correlation between DCA and DCN
2

As shown in Fig. 20(a) for the axial force coefficients at Mach
number 1.2, the elastic CA is larger than the rigid CA at angles

of attack from �6� to 15�. Out of this interval, the aeroelastic
effect is to reduce the CA. The two CA curves intersect at the
points near which the changes of sign of CN occur. It is noted

that pressure is perpendicular to surfaces, and the cell walls are
inclined when the grid fin is deformed (Fig. 16(b)). Therefore,
the pressure on the walls not only contributes to normal force

but also creates axial force for the elastic cases, indicating that
the change in CA is associated with CN. Fig. 20(b) plots the
DCA versus DCN

2, where DCA is defined as the difference

between the elastic CA and rigid CA. DCN
2 is the difference

of the square of CN between the elastic and rigid data, and is
relevant to the increment in drag due to lift. As a increases,

the curve first goes up, and then it turns back at a = 8�. This
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curve behaves almost linearly, demonstrating the strong corre-
lation between DCA and DCN

2.
At Mach number 2.5, the elastic and rigid CA are shown in

Fig. 21(a). The correlation between DCA and DCN
2 is illus-

trated with Fig. 21(b). This curve goes up from a = �10�
and turns back at a = 5�. The curve trend is nearly linear as

well, except for the point at a = 15� where the flow separation
is significant in the leeward of the body.

4. Conclusions

This study demonstrates the importance of static aeroelastic
effects on grid fin aerodynamic performances. The static defor-

mations of the grid fins due to the fluid–structure interactions
are simulated and the aeroelastic effects are investigated
numerically. The fluid–structure interpolation and mesh

motion schemes are based on the RBF method, which is shown
to be accurate enough for the grid fin deformations by assess-
ing the interpolation errors. The equilibrium state is reached
within limited steps by the iterative process. It is demonstrated

that the developed CFD-CSD coupling scheme is effective for
the aeroelastic analyses of grid fins. The static aeroelastic
effects are studied for both the upper and left fins under the

transonic and supersonic conditions.
For the left fin, the results are as follows. First, the axial

force is augmented due to the sweep back effect caused by

bending deformation. Second, the normal force is increased
slightly at Mach number 1.2, but the change in normal force
is negligible at Mach number 2.5. Third, because of the move-
ment of center of pressure, the elastic hinge moment is smaller

than the rigid one at Mach number 1.2, while the reversal in
hinge moment is observed at Mach number 2.5.

For the upper fin, the results are as follows. First, the local

effective angles of attack are increased due to the structural
deformations so that the elastic normal force is greater than
the rigid one. Second, at negative angles of attack the curve

of elastic normal force is fairly parallel to the rigid curve, while
at high positive angles of attack both the elastic and rigid nor-
mal forces experience a nonlinear drop due to the interference

of separated vortices in the leeward of the body. Third, the
change of sign of normal force is observed at the points where
the rigid normal force is slightly less than zero but the elastic
one is positive. Finally, the relationship between DCA and

DCN
2 is approximately linear, except when the flow separation

is considerable.

References

1. Washington WD, Miller MS. Experimental investigations of grid

fin aerodynamics: A synopsis of nine wind tunnel and three flight

tests. In: Proceedings of RTO MP-5 meeting on missile aerody-

namics; 1998.

2. Miller MS, Washington WD. An experimental investigation of

grid fin drag reduction techniquesProceedings of the AIAA 12th

applied aerodynamics conference. Reston (VA): AIAA; 1994.

3. Washington WD, Booth PF, Miller MS. Curvature and leading

edge sweep back effects on grid fin aerodynamic characteris-

ticsProceedings of the AIAA 11th applied aerodynamics confer-

ence. Reston (VA): AIAA; 1993.
4. Berner C, Dupuis A. Wind tunnel tests of a grid finned projectile

configurationProceedings of the AIAA 39th aerospace sciences

meeting and exhibit. Reston (VA): AIAA; 2001.

5. Theerthamalai P. Aerodynamic characterization of grid fins at

subsonic speeds. J Aircraft 2007;44(2):694–8.

6. Theerthamalai P, Nagarathinam M. Aerodynamic analysis of

grid-fin configurations at supersonic speeds. J Spacecraft Rockets

2006;43(4):750–6.

7. DeSpirito J, Edge HL, Weinacht P, Sahu J, Dinavahi SPG.

Computational fluid dynamics analysis of a missile with grid fins. J

Spacecraft Rockets 2001;38(5):711–8.

8. DeSpirito J, Vaughn ME, Washington WD. Numerical investiga-

tion of canard-controlled missile with planar and grid fins. J

Spacecraft Rockets 2003;40(3):363–70.

9. Hughson MC, Blades EL, Abate GL. Transonic aerodynamic

analysis of lattice grid tail fin missilesProceedings of the 24th AIAA

applied aerodynamics conference. Reston (VA): AIAA; 2006.

10. Zeng Y. Drag reduction for sweptback grid fin with blunt and

sharp leading edges. J Aircraft 2012;49(5):1526–31.

11. Despeyroux A, Hickey JP, Desaulnier R, Luciano R, Piotrowski

N, Hamel N. Numerical analysis of static and dynamic perfor-

mances of grid fin controlled missiles. J Spacecraft Rockets

2015;52(4):1236–52.

12. Mian HH, Wang G, Ye ZY. Numerical investigation of structural

geometric nonlinearity effect in high-aspect-ratio wing using CFD/

CSD coupled approach. J Fluids Struct 2014;49:186–201.

13. Bartels RE, Scott RC, Funk CJ, Allen TJ, Sexton BW. Computed

and experimental flutter/LCO onset for the Boeing truss-braced

wing wind-tunnel modelProceedings of the 44th AIAA fluid

dynamics conference. Reston (VA): AIAA; 2014.

14. Lamorte N, Friedmann PP. Hypersonic aeroelastic and aerother-

moelastic studies using computational fluid dynamics. AIAA J

2014;52(9):2062–78.

15. Lin H, Huang JC, Chieng CC. Navier-Stokes computations for

body/cruciform grid fin configuration. J Spacecraft Rockets

2003;40(1):30–8.

16. MSC. Software Corp. MSC Nastran 2004 reference manual. Santa

Ana (CA): MSC. Software Corp.; 2004. p. 327–8.

17. Rendall TCS, Allen CB. Unified fluid–structure interpolation and

mesh motion using radial basis functions. Int J Numer Meth Eng

2008;74(10):1519–59.

18. Harder RL, Desmarais RN. Interpolation using surface splines. J

Aircraft 1972;9(2):189–91.

19. Beckert A, Wendland H. Multivariate interpolation for fluid-

structure-interaction problems using radial basis functions. Aerosp

Sci Technol 2001;5(2):125–34.

20. Eriksson LE. Generation of boundary-conforming grids around

wing-body configurations using transfinite interpolation. AIAA J

1982;20(10):1313–20.

21. Blom FJ. Considerations on the spring analogy. Int J Numer Meth

Fluids 2000;32(6):647–68.

22. Helenbrook BT. Mesh deformation using the biharmonic opera-

tor. Int J Numer Meth Eng 2003;56(7):1007–21.

23. Liu XQ, Qin N, Xia H. Fast dynamic grid deformation based on

Delaunay graph mapping. J Comput Phys 2006;211(2):405–23.

24. Rendall TCS, Allen CB. Efficient mesh motion using radial basis

functions with data reduction algorithms. J Comput Phys 2009;228

(17):6231–49.

25. Rendall TCS, Allen CB. Reduced surface point selection options

for efficient mesh deformation using radial basis functions. J

Comput Phys 2010;229(8):2810–20.

26. ANSYS Inc. ANSYS FLUENT UDF manual. Canonsburg (PA):

ANSYS Inc.; 2011. p. 187–9.

http://refhub.elsevier.com/S1000-9361(17)30120-6/h0010
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0010
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0010
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0015
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0015
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0015
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0015
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0020
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0020
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0020
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0025
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0025
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0030
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0030
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0030
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0035
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0035
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0035
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0040
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0040
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0040
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0045
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0045
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0045
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0050
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0050
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0055
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0055
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0055
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0055
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0060
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0060
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0060
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0065
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0065
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0065
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0065
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0070
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0070
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0070
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0075
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0075
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0075
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0085
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0085
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0085
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0090
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0090
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0095
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0095
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0095
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0100
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0100
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0100
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0105
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0105
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0110
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0110
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0115
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0115
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0120
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0120
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0120
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0125
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0125
http://refhub.elsevier.com/S1000-9361(17)30120-6/h0125

	Numerical studies of static aeroelastic effects on grid fin aerodynamic performances
	1 Introduction
	2 Numerical approach
	2.1 Model descriptions
	2.1.1 Geometry model
	2.1.2 CFD mesh
	2.1.3 Structural model

	2.2 Fluid-structure interaction techniques
	2.2.1 Strategy for static aeroelastic analysis
	2.2.2 Flexibility method
	2.2.3 Fluid-structure interpolation
	2.2.4 Volume mesh deformation scheme
	2.2.5 CFD solver


	3 Results and discussion
	3.1 Assessment of RBF accuracy
	3.2 Validations
	3.3 Static aeroelastic analyses of left fin
	3.3.1 Convergence
	3.3.2 Static aeroelastic effects

	3.4 Static aeroelastic analyses of upper fin
	3.4.1 Changes in flow field in transonic condition
	3.4.2 Changes in flow field in supersonic condition
	3.4.3 Linear and nonlinear characteristics of elastic normal force
	3.4.4 Change of sign of normal force
	3.4.5 Correlation between ΔCA and ΔCN2


	4 Conclusions
	References


