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a b s t r a c t 

Two-dimensional contact problems including a Boussinesq model, a semi-infinite substrate punched by 

a rigid flat-ended indenter or a cylindrical one, are systematically investigated with a recently developed 

continuum theory, in which surface effect on mechanical properties of materials is considered based on 

the concept of surface energy density. The contact stress and displacement fields are analyzed. It is found 

that the surface energy density of the indented bulk substrate, as only one additional parameter, serves 

as an important factor to influence the contact properties in contrast to the classical contact models. 

All the results show that the semi-infinite substrate becomes hardened when the surface effect is con- 

sidered. Scaling analysis further demonstrates that differences between the theoretical predictions with 

surface effect and the classical contact solutions without surface effect become significant only if the 

contact width is comparable with the ratio of the bulk surface energy density to the bulk shear modulus. 

Specially, in the two-dimensional cylindrical punch problem, the smaller the punch size or the external 

compressive load, the more serious the deviation of the nano-indentation hardness predicted by the the- 

oretical model with surface effect and the classical contact one. The results should be helpful not only 

for precise measurement of nano-indentation hardness but also for accurate evaluation of service perfor- 

mance of nanomaterials and nano-devices. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Micro- and nano-indentation tests have been widely adopted

in recent decades as one of the major techniques for measur-

ing mechanical properties (hardness, elastic modulus, yield stress,

etc.) of advanced materials such as crystalline solids, electrome-

chanically intelligent materials and biomaterials with complex mi-

crostructures, etc. ( Zhang and Xu, 2002; Rar et al., 2006; Li et al.,

2007 ). The indentation size effect (ISE) has been reported as the

indentation hardness inversely proportional to the micro- or nano-

indentation depth ( Gerberich et al., 2002; Feng and Nix, 2004 ). 

In micrometer scale, the ISE was believed to arise essentially

from the geometrically necessary dislocations associated with the

non-uniform plastic deformation under indenters ( Fleck et al.,

1994; Voyiadjis and Al-Rub, 2005 ). As a result, many representa-

tive strain gradient plasticity theory were developed, in which in-
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rinsic length parameters are involved in the constitutive relations

 Nix and Gao, 1998; Chen and Wang, 20 0 0, 20 02; Huang et al.,

006 ). When the indenter size or indentation depth shrinks to a

anometer scale, the surface effect induced by a large surface-to-

olume ratio of the contact zone becomes a crucial or even dom-

nant factor responsible for the ISE, which is usually addressed as

ize effect in nanoscales ( Gerberich et al., 2002 ). Nano-indentation

ardness as a function of the surface energy density or surface

tress was empirically derived by fitting experimental data of hard-

ess ( Gerberich et al., 2002; Zhang and Xu, 2002 ), which proves

he prominent role of surface effect in nanoscale contact problems.

uch a surface effect cannot be predicted within the framework of

he classical contact mechanics ( Johnson, 1987 ). 

The developed surface elasticity theory in 1970s returns to the

esearcher’s perspective, which now has been extensively devel-

ped and widely used as a feasible theoretical approach to account

or the surface effect in nanomaterials and nanostructures ( Gurtin

nd Murdoch, 1975, 1978 ). The main difference between the sur-

ace elasticity theory and the classical continuum one is the modi-

ed stress boundary condition, where a surface-induced traction as

http://dx.doi.org/10.1016/j.ijsolstr.2017.07.007
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 function of the surface stress was introduced ( Chen et al., 2006 ).

 linearly elastic constitutive relation was assumed to describe the

elationship between the surface stress and surface strain. 

Besides the pioneering works of Gurtin and Murdoch (G-M

odel) (1975, 1978), lots of important progresses have been made

n the field of surface effect in nanomaterials. Based on the G-

 model, Steigmann and Ogden (1997) and Chhapadia et al.

2011) introduced a surface flexural stiffness into the constitutive

elation, in order to characterize the curvature-dependence of sur-

ace energy under a bending or wrinkling conditions. Huang and

ang (2006, 2010), Huang and Sun (2007), Huang (2010) proposed

 hyperelastic model within the framework of finite deformation

heory, in which the Lagrangian and Eulerian formulations of the

urface energy density depending on the residual surface stress

ere well achieved. The residual elastic field in the bulk part of

 nanomaterial was further included in Huang and Wang (2013) .

nspired by the above researches, Gao et al. (2014b; 2017 ) devel-

ped a comprehensive finite deformation theory, in which both the

urvature-dependence of interface energy and the interface and

ulk residual elastic fields were considered. With the surface elas-

icity theory and its extension, many problems related to nanoscale

ere investigated, for examples, size-dependent elastic behaviors

f nano-wires, nano-particles, as well as nano-films were studied

 He and Lilley, 2008; Wang and Feng, 2009; Li et al., 2011 ). 

Recently, the surface elasticity theory has also been extended

o analyze the nanoscale elastic contact problem, based on which

 surface-induced traction in terms of surface stress is introduced

nto the stress boundary condition at the contact surface. Analyti-

al models can be generally categorized into two groups according

o the constitutive formulation of surface stress. One is to directly

et the surface stress equal to the surface residual one (induced

y surface relaxation), i.e., σs = τ 0 I , where σs , τ 0 and I are sur-

ace stress tensor, surface residual stress and unit tensor, respec-

ively ( Hajji, 1978; Koguchi, 1996, 2008; Long et al., 2012 ). Another

s to consider the surface residual stress and surface deformation

nduced by the external load simultaneously, i.e., σs = τ 0 I + C s : ε s ,
here C s and ε s denote the surface elastic constant and surface

train tensors, respectively ( Zhao and Rajapakse, 2009; Gao et al.,

013; Zhou and Gao, 2013 ). A common finding is that the sur-

ace residual stress serving as a pre-stress on the contact surface

ields relatively smooth distributions of the normal displacement

nd stress on the contact surface. The latter also reveals a dom-

nant role of surface elasticity in affecting the shear stress at the

ontact surface. 

Either the surface residual stress (surface tension) or the surface

lastic constants were naturally introduced in the stress boundary

onditions at the contact surface, both of which, however, are still

ifficult to determine experimentally till now. All the data used in

heoretical analysis were mainly provided by molecular dynamics

MD) simulations ( Miller and Shenoy, 20 0 0; Shenoy, 20 05; Mi et

l., 2008 ) or taken arbitrarily. Even for MD simulation, many influ-

nce factors cannot be avoided in order to find the surface elastic

onstants or surface residual stress, for example, the selection of

 proper atomic potential, the size of numerical model, how many

tom layers forming the surface of nanomaterials. Furthermore, for

he case of a semi-infinite elastic substrate, whether the effect of

urface residual stress induced by surface relaxation on the contact

ehavior is obvious or not. 

Another problem in the study of Hertzian contact problems

ith surface effect is that most models directly adopted the el-

iptical function given by the classical contact mechanics ( Johnson,

987 ) to describe the distribution of normal pressure at the con-

act area ( Gao et al., 2013; Zhou and Gao, 2013 ). As we know that

he normal pressure should be a result yielded by boundary value

olution of elastic problems. The surface-induced traction as an ad-

itional boundary condition would affect the distribution of nor-
al pressure in contact problems with surface effect. Fortunately,

onsidering the effect of surface residual stress, ( Long et al., 2012 )

as noted this issue and predicted a non-zero normal pressure at

he contact fringe in contrast to a vanishing one in the classical

ontact mechanics ( Johnson, 1987 ). Precise analysis of the Hertzian

ontact behavior with surface effect still lacks. It is worth noting

hat the adhesive interaction between two nano-sized elastic solids

s another important factor that would affect the contact behav-

or. Some researchers have carried out studies based on the surface

lasticity theory and its extensions ( Gao et al., 2014a; Long et al.,

016 ). 

In order to avoid the introduction of surface elastic constants,

hen and Yao (2014) developed a new elastic theory for nanoma-

erials recently. Since the surface energy density is an accepted pa-

ameter to characterize a surface, the surface-induced traction as

 function of the surface energy density is well expressed from

n atomistic viewpoint for nanomaterials, instead of the relation

ith the surface stress. As a result, the surface elastic constants

re avoided. The mechanical properties of several typical nano-

tructures have been effectively studied based on the concept of

urface energy density ( Yao and Chen, 2015; Yao et al., 2015; Yao

nd Chen, 2016 a, b; Yao et al., 2017 ). 

In this paper, two-dimensional contact problems are investi-

ated with the developed elastic theory for nanomaterials, where

he surface effect is characterized by the surface energy density.

ne is the plane strain Boussinesq problem and the other two

re a semi-infinite elastic substrate punched by a flat-tip inden-

er and a cylindrical one. Stress boundary conditions at the contact

urface are formulated, in which the surface energy density is in-

olved. General solutions of the contact stress and displacement

re achieved and analyzed for three contact models, in which sur-

ace effect on the elastic contact behaviors can be clearly eluci-

ated. The size effect of nano-indentation hardness is further dis-

ussed. 

. Brief introduction of the theory based on surface energy 

ensity 

An elastic theory for nanomaterials was developed by Chen and

ao (2014) , which is based on the surface energy density of nano-

aterials. Consider a nano-solid with an idealized crystal structure

n an initial (or reference) configuration. A Lagrangian coordinate

ystem is imbedded in the crystal surface with two principal axes

 and 2 parallel to the two basic vectors of a surface unit cell as

hown in Fig. 1 . a 01 , a 02 represent the initial lattice lengths in the

wo principal directions, respectively. Due to spontaneous surface

elaxation, the lattice lengths become a r 1 and a r 2 , and further be-

ome a 1 and a 2 in the current configuration when subjected to an

xternal loading. β denotes an angle between the two basic vec-

ors. 

The potential energy function � of the nano-solid in the cur-

ent configuration can be written as 

(u ) = 

∫ 
V −S 

ψ(ε ) d V + 

∫ 
S 

φ( ε s ) d S −
∫ 

V −S 

f · u d V −
∫ 

S p 

p · u d S 

(1) 

here ψ is the elastic strain energy density, φ is the Eulerian sur-

ace energy density in the current configuration, f and p are the

ody force and external surface traction, respectively. u, ε and ε s 
enote the displacement, strain and surface strain, respectively. 

Variation analysis of Eq. (1) yields the following equilibrium

quations and stress boundary conditions: 
 

σ · ∇ + f = 0 ( in V − S ) 
n · σ · n = p · n − γn n ( on S ) 
( I − n � n ) · σ · n = ( I − n � n ) · p − γt ( on S ) 

(2) 
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Fig. 1. Schematic of a surface unit cell in the initial (reference), relaxed and current configurations. 
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where σ is the bulk Cauchy stress tensor, n is the unit normal vec-

tor perpendicular to the boundary surface S of the nano-solid, I is

a unit tensor; γ n and γ t are the normal and tangential compo-

nents of an additional surface-induced traction vector γ , respec-

tively, which is similar to a force disturbance at boundaries due to

the surface effect. 

Based on an infinitesimal element, the virtual work method

yields the surface-induced traction directly related to the surface

energy density ( Chen and Yao, 2014 ) 

γt = ∇ s φ, γn n = φ
(

1 

R 1 

+ 

1 

R 2 

)
n = φ( n · ∇ s ) n (3)

where ∇ s is a surface gradient operator, φ is the Eulerian sur-

face energy density in the current configuration, R 1 and R 2 are two

principal radius of curvature of a curved surface. 

Combining Eqs. (2) and ( 3 ) and using the relationship between

the Eulerian surface energy density φ and the Lagrangian surface

energy density φ0 in the reference configuration φ =φ0 / J s , where

J s is a Jacobean determinant characterizing the surface deformation

from a reference configuration to a current one, yield the equilib-

rium equation and stress boundary conditions ⎧ ⎪ ⎨ 

⎪ ⎩ 

σ · ∇ + f = 0( in V − S) 
n · σ · n = p · n − φ0 ( n · ∇ s ) / J s ( on S ) 
( I − n � n ) · σ · n = ( I − n � n ) 

·p + φ0 ( ∇ s J s ) /J 2 s − ( ∇ s φ0 ) / J s ( on S ) 

(4)

The Lagrangian surface energy density φ0 in the reference con-

figuration can be divided into a structural part φstru 
0 

related to the

surface strain energy and a chemical part φchem 

0 
originating from

the surface dangling-bond energy 

φ0 = φstru 
0 + φchem 

0 (5)

where 

φstru 
0 = 

E b 
2 sin β

2 ∑ 

i =1 

a 0 i ηi 

{[
3 + ( λi + λi ε si ) 

−m − 3( λi + λi ε si ) 
]

·
[
λ2 

i ε 
2 
si + ( λi − 1) 

2 + 2 λi ( λi − 1) ε si 

]}
φchem 

0 = φ0 b 

(
1 − w 1 

D 0 

D 

)
, η1 = a 01 / a 02 , η2 = a 02 / a 01 (6)

Here, φ0 b is the surface energy density of a bulk material (ad-

dress as the bulk surface energy density in this paper), D 0 is a crit-

ical size ( D 0 = 3 d a for nanoparticles, nanowires and 2 d a for nano-

films, where d a is the atomic diameter). D is a characteristic length

of nanomaterials or nanostructures (e.g., thickness, diameter, etc.).

w 1 is a parameter governing the size-dependent behavior of φchem 

0 
.

E b is the Young’s modulus of a bulk material (addressed as the bulk

Young’s modulus in this paper), λi = a ri / a 0 i denotes the surface re-

laxation parameter, εsi = ( a i − a ri )/ a ri is defined as the surface strain

induced only by the external loading; m is a parameter describing

the dependence of bond lengths on the binding energy ( m = 4 for
lloys or compounds and m = 1 for pure metals). Details can be

ound in Chen and Yao (2014) . 

The most important difference between our theory and the

xisting surface energy theories ( Gurtin and Murdoch, 1975;

teigmann and Ogden, 1997; Huang and Wang, 2006; Huang and

un, 2007; Huang, 2010; Huang and Wang, 2010; Chhapadia et al.,

011; Gao et al., 2014b; Gao et al., 2017 ) is the boundary condi-

ion. A surface induced traction due to surface effect in nanoma-

erials is introduced in the boundary condition of both the pre-

ious surface energy theories and ours. In the previous theories,

he surface induced traction is related to the surface stress, which

beys a surface elastic constitutive equation. In our model, we es-

ablish a relation between the surface energy density and the sur-

ace induced traction. As a result, the surface stress in the exist-

ng theories would depend on the surface elastic constants. How-

ver, with the help of Nix and Gao (1998), Sun (2003), Jiang and

u (2008) and Ouyang et al. (2009) , we derive a new expression

f surface energy density from an atomistic perspective, as shown

n Eq. (6) . Two material parameters, i.e., the bulk surface energy

ensity and surface relaxation parameter, are adopted to charac-

erize the surface effect, instead of the surface elastic constants.

oth effects of surface residual stress induced by surface relaxation

nd the elastic stress induced by an external loading are included

n the surface energy density without the introduction of surface

lastic constants. 

. Plane strain contact problems with surface effect 

Similar to the classical contact mechanics ( Johnson, 1987 ) and

ontact models considering surface effect ( Long et al., 2012; Gao

t al., 2013 ), three typical plane strain contact problems symmetric

bout z axis are studied with surface effect in the present paper,

ncluding an elastic half space subjected to a uniformly distributed

oad (Boussinesq problem), a rigid flat punch and a cylindrical one,

espectively, as shown in Fig. 2 . The contact width is a . The origin

 of a Cartesian coordinate system xOz is located at the center of

he contact zone − a ≤ x ≤ a , with x axis along the initially flat

urface and z axis perpendicular to the surface. The deformation

n the out-of-plane direction ( y axis) is neglected due to a plane

train assumption. 

.1. Basic equations 

The equilibrium equations of a plane-strain contact problem

hown in Fig. 2 are as follows 

∂ σx 

∂x 
+ 

∂ τxz 

∂z 
= 0 , 

∂ τxz 

∂x 
+ 

∂ σz 

∂z 
= 0 (7)

The normal strains ε x , ε z , and the shear strain γ xz can be writ-

en as 

 x = 

∂u 

∂x 
, ε z = 

∂w 

∂z 
, γxz = 

∂u 

∂z 
+ 

∂w 

∂x 
(8)
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Fig. 2. Schematic of three plane strain contact problems. (a) an elastic half space 

subjected to uniformly tangential and normal loads; (b) a semi-infinite elastic sub- 

strate indented by a rigid flat-ended punch and (c) a Hertzian contact problem with 

a rigid cylindrical punch. 
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here u and w are displacements in the x-axis and z-axis direc-

ions, respectively. 

The constitutive equations of the elastic half space are 

 x = 

1 

2 μ
[ ( 1 − ν) σx − νσz ] , ε z = 

1 

2 μ
[ ( 1 − ν) σz − νσx ] , γxz = 

τxz 

μ

(9) 

here μ and ν are the bulk shear modulus and Poisson’s ratio of

he half space. 

Considering the surface effect leads to an additional surface-

nduced traction at the contact surface as shown in Eq. (2) , in addi-

ion to the externally-applied load. The stress boundary conditions

t the contact surface can be written as 

σz | z=0 + p ( x ) = − γn 

τxz | z=0 + q ( x ) = γx 
(10) 

here p ( x ) and q ( x ) represent the normal and tangential compo-

ents of the externally-applied traction, respectively. In this pa-

er, we assume that p ( x ) is symmetric with respect to z -axis and

 ( x ) = 0 for the three contact models. 

According to Eq. (3) and φ = φ0 / J s , the surface-induced traction

an be directly formulated as a function of the Lagrangian surface

nergy density φ0 , 

x = 

1 

J s 

∂ φ0 

∂x 
− φ0 

J 2 s 

∂ J s 
∂x 

∣∣∣∣
z=0 

, γn = 

φ0 

J s 

∂ 2 w 

∂ x 2 

∣∣∣∣
z=0 

(11) 

The general formula of φ0 has been given in Eqs. (5) and ( 6 ).

or simplicity, we consider xOy as a (100) surface, which has an

qual atom spacing in both bond directions. For a semi-infinite
lastic substrate, surface relaxation in both bond directions van-

shes, i.e., λ1 = λ2 ≈ 1 ( Zhang et al., 2014 ) and the chemical sur-

ace energy density is equal to the surface energy density of a bulk

olid due to a large characteristic length D , i.e., φchem 

0 
= φ0 b . The

urface strain εsi ( i = 1, 2) in both bond directions equals εx /2 for

 (100) surface ( Yao and Chen, 2015, 2016b ). Using the technique

f Taylor’s expansion and ignoring the high-order strain terms ( n

 2), Eq. (5) can be written as 

0 ≈ φ0 b + 

√ 

2 E b a 0 
8 

ε 2 x 

∣∣∣∣
z=0 

(12) 

here a 0 denotes the lattice constant of a bulk material. The

train-dependent surface energy density φ0 has been derived as

hown in Eq. (12) , which is mainly applicable for materials with

n idealized crystal structure, such as metals, alloys and so on. 

Combining Eqs. (11) and ( 12 ) and noting that J s = λ2 (1 + εx /2) 2 

ield 

σz | z=0 + p(x ) = −φ0 b ( 1 − ε x ) 
∂ 2 w 

∂ x 2 

∣∣
z=0 

τxz | z=0 = −φ0 b ( 1 − χε x ) 
∂ 2 u 
∂ x 2 

∣∣
z=0 

(13) 

here χ = 2 + 

√ 

2 E b a 0 / ( 4 φ0 b ) is a dimensionless parameter re-

ated to the material properties. Under the infinitesimal deforma-

ion condition, the normal strain εx = ∂ u / ∂ x is much less than

. Moreover, when the surface effect is considered, εx should be

maller than its counterpart ε c x obtained by classical contact model

 Gao et al., 2013 ), while the latter is already a very small quantity

nly considering the normal pressure p ( x ) ( Johnson, 1987 ). There-

ore, the strain terms ε x and χε x in Eq. (13) could be approxi-

ately omitted, which leads to 

σz | z=0 + p(x ) = − φ0 b 
∂ 2 w 

∂ x 2 

∣∣
z=0 

τxz | z=0 = −φ0 b 
∂ 2 u 
∂ x 2 

∣∣
z=0 

(14) 

Comparing with the classical contact mechanics ( Johnson, 1987 )

hows that the surface energy density of the indented bulk mate-

ial is involved in the stress boundary conditions in order to char-

cterize the surface effect in nano-indentation. Combining Eqs. (7) –

 9 ) and Eq. (14) results in a boundary-value problem. 

.2. General solutions 

Using the stress function method and the Fourier transform

echnique with respect to x leads to the integral solutions of stress

nd displacement fields ( Selvadurai, 20 0 0 ) 
 

 

 

 

 

 

 

 

 

 

 

 

 

σx = 

∂ 2 U ( x, z ) 

∂ z 2 
= 

1 √ 

2 π

∫ ∞ 

−∞ 

∂ 2 ˜ U 

∂ z 2 
e −iξx dξ

σz = 

∂ 2 U ( x, z ) 

∂ x 2 
= − 1 √ 

2 π

∫ ∞ 

−∞ 

ξ 2 ˜ U e −iξx dξ

τxz = −∂ 2 U ( x, z ) 

∂ x∂ z 
= 

i √ 

2 π

∫ ∞ 

−∞ 

ξ
∂ ̃  U 

∂z 
e −iξx dξ

(15) 

nd 

 

 

 

 

 

 

 

u = 

i 

2 

√ 

2 πμ

∫ ∞ 

−∞ 

[
( 1 − ν) 

∂ 2 ˜ U 

∂ z 2 
+ νξ 2 ˜ U 

]
e −iξx 

ξ
dξ + C 1 

w = 

1 

2 

√ 

2 πμ

∫ ∞ 

−∞ 

[
( 1 − ν) 

∂ 3 ˜ U 

∂ z 3 
− ( 2 − ν) ξ 2 ∂ ̃  U 

∂z 

]
e −iξx 

ξ 2 
dξ + C 2 

(16) 

here C 1 and C 2 are integral constants. ˜ U ( ξ , z ) is the Fourier trans-

ormation of the stress function U ( x, z ) with respect to x , which

atisfies the following form 

˜ 
 ( ξ , z ) = ( A + Bz ) e −| ξ | z (17) 

here A and B are functions of ξ . 
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Substituting Eqs. (15) –( 17 ) into Eq. (14) yields ⎧ ⎪ ⎨ 

⎪ ⎩ 

A = 

4 [ 1 + ( 1 − ν) l | ξ | ] 
ξ 2 [ 4 + 8 ( 1 − ν) l | ξ | + ( 3 − 4 ν) l 2 ξ 2 ] 

˜ p (ξ ) 

B = 

2 

(
2 | ξ | + l ξ 2 

)
ξ 2 [ 4 + 8 ( 1 − ν) l | ξ | + ( 3 − 4 ν) l 2 ξ 2 ] 

˜ p (ξ ) 

(18)

in which ˜ p (ξ ) is the Fourier transformation of p ( x ). l is an intrinsic

length scale related to the surface effect, which is defined as a ratio

of the bulk surface energy density to the bulk shear modulus, i.e.,

l = 

φ0 b 

μ
(19)

In our model, the effect of surface relaxation of a semi-infinite

substrate tends to vanish (very weak), which is actually reason-

able. Thus, the bulk surface energy density serves as a unique ma-

terial parameter to characterize the surface effect, instead of the

surface elastic constant and surface tension used in the other the-

oretical models ( Gao et al., 2013; Gao et al., 2014a ). As a result,

only one length scale related to the bulk surface energy density is

involved in such a semi-infinite half space problem, in contrast to

the two length scales associated with surface tension and surface

elastic constant in existing models for nano-scale contact problems

( Gao et al., 2013; Gao et al., 2014a ). 
Then, combining Eqs. (15) –( 18 ) yields ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σx = −
√ 

2 

π

∫ ∞ 

0 

{
[ 4 ( 1 + νlξ ) − 2 ( 2 + lξ ) ξz ] cos ( ξx ) 

4 + 8 ( 1 − ν) lξ + ( 3 − 4 ν) l 2 ξ 2 
˜ p (ξ ) 

}
e −ξz dξ

σz = −
√ 

2 

π

∫ ∞ 

0 

{
2 [ 2 ( 1 + lξ − νlξ ) + ( 2 + lξ ) ξz ] cos ( ξx ) 

4 + 8 ( 1 − ν) lξ + ( 3 − 4 ν) l 2 ξ 2 
˜ p (ξ ) 

}
e −ξz dξ

τxz = −
√ 

2 

π

∫ ∞ 

0 

{
2 [ ( 1 − 2 ν) lξ + ( 2 + lξ ) ξz ] sin ( ξx ) 

4 + 8 ( 1 − ν) lξ + ( 3 − 4 ν) l 2 ξ 2 
˜ p (ξ ) 

}
e −ξz dξ

(20)

and ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

u = 

1 

μ
√ 

2 π

∫ ∞ 

0 

{
[ 4 ( −1 + 2 ν) + 2 ( 2 + lξ ) ξz ] sin ( ξx ) 

ξ [ 4 + 8 ( 1 − ν) lξ + ( 3 − 4 ν) l 2 ξ 2 ] 
˜ p (ξ ) 

}
e −ξz dξ + C 1 

w = 

1 

μ
√ 

2 π

∫ ∞ 

0 

{
2 [ 4 ( 1 − ν) + lξ ( 3 − 4 ν) + ( 2 + lξ ) ξz ] cos ( ξx ) 

ξ [ 4 + 8 ( 1 − ν) lξ + ( 3 − 4 ν) l 2 ξ 2 ] 
˜ p (ξ ) 

}
e −ξz dξ + C 2

(21)

Since all the three contact models are symmetric with respect

to z -axis as shown in Fig. 2 , we have u (0, z ) = 0. Meanwhile, we

define the vertical displacement w ( r 0 a,z ) = 0, where r 0 is taken as

a finite value ( r 0 ≥ 5) ( Gao et al., 2013 ). These two displacement

boundary conditions can be used to determine C 1 and C 2 . 
Let ξ = t / a, x = x ′ a, z = z ′ a, l = l r a . Eqs. (20) and ( 21 ) become 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σx 

(
x ′ , z ′ 

)
= −

√ 

2 

π

∫ ∞ 

0 

4 ( 1 + νl r t ) − 2 ( 2 + l r t ) tz ′ 
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

˜ p ( t/a ) 

a 
cos 

(
tx ′ 

)
e −tz ′ dt 

σz 

(
x ′ , z ′ 

)
= −

√ 

2 

π

∫ ∞ 

0 

2 
[
2 ( 1 + l r t − νl r t ) + ( 2 + l r t ) tz ′ 

]
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

˜ p ( t/a ) 

a 
cos 

(
tx ′ 

)
e −tz ′ dt 

τxz 

(
x ′ , z ′ 

)
= −

√ 

2 

π

∫ ∞ 

0 

2 
[
( 1 − 2 ν) l r t + ( 2 + l r t ) tz ′ 

]
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

˜ p ( t/a ) 

a 
sin 

(
tx ′ 

)
e −tz ′ dt 

(22)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u 
(
x ′ , z ′ 

)
= 

1 

μ
√ 

2 π

∫ ∞ 

0 

⎡ 

⎣ 

4 ( −1 + 2 ν) + 2 ( 2 + l r t ) tz ′ 

t 
[
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 
] ·

˜ p ( t/a ) sin 

(
tx ′ 

)
e −tz ′ 

⎤ 

⎦ dt 

w 

(
x ′ , z ′ 

)
= 

2 

μ
√ 

2 π

∫ ∞ 

0 

⎧ ⎨ 

⎩ 

4 ( 1 − ν) + ( 3 − 4 ν) l r t + ( 2 + l r t ) tz ′ 

t 
[
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 
] ·

˜ p ( t/a ) 
[
cos 

(
tx ′ 

)
− cos ( r 0 t ) 

]
e −tz ′ 

⎫ ⎬ 

⎭ 

dt 

(23)
n which the Fourier transformation of the normal pressure p ( x )

atisfies 

˜ p ( t/a ) = 

a √ 

2 π

∫ 1 

−1 

p 
(
aη′ ) cos 

(
tη′ )dη′ , η′ = η/a (24)

It is interesting to find that only the bulk surface energy den-

ity of the indented material is involved in Eqs. (22) and ( 23 ) to

haracterize the surface effect in contact problems in contrast to

he commonly-used surface residual stress and surface elastic con-

tants ( Wang and Feng, 2007; Long et al., 2012; Gao et al., 2013 ). 

(a) For a Boussinesq problem as shown in Fig. 2 (a), the elastic

half space is subjected to a uniform pressure, i.e., p ( x ) = p 0 ,

then the Fourier transformation in Eq. (24) is 

˜ p ( t/a ) = p 0 a 

√ 

2 

π

sin t 

t 
(25)

with which the stresses and displacements can be obtained. 
(b) For a semi-infinite elastic substrate indented by a rigid

punch as shown in Fig. 2 (b) and 2(c), the normal pressure
p ( x ) at the contact surface is unknown in advance. Substi-
tuting Eq. (24) directly into Eqs. (22) and ( 23 ) yields the
stresses and displacements at the contact surface ( z = 0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

σx 

(
x ′ , 0 

)
= − 1 

π

∫ 1 
−1 

[ 
−H 2 

(
x ′ , η′ , l r , b 1 

)
+ 

3 

3 − 4 ν
H 2 

(
x ′ , η′ , l r , b 2 

)] 
p(aη′ ) dη′

σz 

(
x ′ , 0 

)
= − 1 

π

∫ 1 
−1 

[ 
H 2 

(
x ′ , η′ , l r , b 1 

)
+ 

1 

3 − 4 ν
H 2 

(
x ′ , η′ , l r , b 2 

)] 
p(aη′ ) dη′ 

τxz 

(
x ′ , 0 

)
= − 1 

π

∫ 1 
−1 

[ 
H 1 

(
x ′ , η′ , l r , b 1 

)
− 1 

3 − 4 ν
H 1 

(
x ′ , η′ , l r , b 2 

)] 
p(aη′ ) dη′ 

(26)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u 
(
x ′ , 0 

)
= − a l r 

4 μπ

∫ 1 
−1 

[ 
H 1 

(
x ′ , η′ , l r , b 1 

)
− ( 3 − 4 ν) H 1 

(
x ′ , η′ , l r , b 2 

)
+2 ( 1 − 2 ν) H 3 

(
x ′ , η′ , l r 

)
] 

p(aη′ ) dη′ 

w 

(
x ′ , 0 

)
= 

a l r 
4 μπ

∫ 1 
−1 

⎡ 

⎢ ⎣ 

−H 2 

(
x ′ , η′ , l r , b 1 

)
− ( 3 − 4 ν) H 2 

(
x ′ , η′ , l r , b 2 

)
+ H 5 

(
r 0 , η′ , l r , b 1 

)
+ ( 3 − 4 ν) H 5 

(
r 0 , η′ , l r , b 2 

)
+4 ( 1 − ν) H 4 

(
x ′ , η′ , l r 

)
⎤ 

⎥ ⎦ 

p(aη′ ) dη′ 

(27)

here 

H 1 

(
x ′ , η′ , l r , b 

)
= 

∫ ∞ 

0 

sin 

[
t 
(
x ′ − η′ )]

l r t + b 
dt 

= 

1 

l r 

[ 
π

2 

sgn ( � ) cos ( � ) − cos ( � ) Si ( � ) + sin ( � ) Ci ( | � | ) 
]

H 2 

(
x ′ , η′ , l r , b 

)
= 

∫ ∞ 

0 

cos 
[
t 
(
x ′ − η′ )]

l r t + b 
dt 

= 

1 

l r 

[ 
π

2 

sin ( | � | ) − cos ( � ) Ci ( | � | ) − sin ( � ) Si ( � ) 

] 
H 3 

(
x ′ , η′ , l r 

)
= sgn ( � ) 

π

2 l r 
, H 4 

(
x ′ , η′ , l r 

)
= 

1 

l r 
ln 

(∣∣∣� 0 

� 

∣∣∣)
H 5 

(
r 0 , η

′ , l r , b 
)

= 

∫ ∞ 

0 

cos 
[
t 
(
r 0 − η′ )]

l r t + b 
dt 

= 

1 

l r 

[ 
π

2 

sin ( | � 0 | ) − cos ( � 0 ) Ci ( | � 0 | ) − sin ( � 0 ) Si ( � 0 ) 

] 
� = 

x ′ − η′ 
l r 

b, � 0 = 

r 0 − η′ 
l r 

b, b = 

{
b 1 = 2 b 2 = 2 / ( 3 − 4 ν) 

Si ( x ) = 

∫ x 

0 

sin χ

χ
dχ f or − ∞ < x < ∞ 

Ci (x ) = −
∫ ∞ cos χ

dχ f orx > 0 (28)

x χ
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Fig. 3. Distributions of the stresses and displacements at the contact surface in the model of an elastic half-space subjected to a uniform pressure. (a) for the normal stress 

σ x ; (b) for the normal stress σ z ; (c) for the shear stress τ xz ; (d) for the tangential displacement u and (e) for the normal displacement w . 
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.3. Solutions of an elastic half space under uniform pressure 

Substituting Eq. (25) into Eqs. (22) and ( 23 ) yields the stress
nd displacement fields for the Boussinesq problem as shown in
ig. 2 (a), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σx 

(
x ′ , z ′ 

)
= − 2 p 0 

π

∫ ∞ 

0 

4 ( 1 + νl r t ) − 2 ( 2 + l r t ) tz ′ 

4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 
2 

sin t 

t 
cos 

(
tx ′ 

)
e −tz ′ dt 

σz 

(
x ′ , z ′ 

)
= − 2 p 0 

π

∫ ∞ 

0 

2 
[
2 ( 1 + l r t − νl r t ) + ( 2 + l r t ) tz ′ 

]
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

sin t 

t 
cos 

(
tx ′ 

)
e −tz ′ dt

τxz 

(
x ′ , z ′ 

)
= − 2 p 0 

π

∫ ∞ 

0 

2 
[
( 1 − 2 ν) l r t + ( 2 + l r t ) tz ′ 

]
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

sin t 

t 
sin 

(
tx ′ 

)
e −tz ′ dt 

(29) 
 

 

 

 

 

 

 

 

 

 

 

u 
(
x ′ , z ′ 

)
= 

p 0 a 

μπ

∫ ∞ 

0 

4 ( −1 + 2 ν) + 2 ( 2 + l r t ) tz ′ 
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

sin t 

t 2 
sin 

(
tx ′ 

)
e −tz ′ dt

w 

(
x ′ , z ′ 

)
= 

2 p 0 a 

μπ

∫ ∞ 

0 

⎡ 

⎣ 

4 ( 1 − ν) + ( 3 − 4 ν) l r t + ( 2 + l r t ) tz ′ 
4 + 8 ( 1 − ν) l r t + ( 3 − 4 ν) l 2 r t 

2 

sin t 

t 2 
·[

cos 
(
tx ′ 

)
− cos ( r 0 t ) 

]
e −tz ′ 

⎤ 

⎦ dt 

(30) 

.4. Solutions of a semi-infinite substrate punched by a rigid flat 

ndenter 

As for a semi-infinite elastic substrate indented by a rigid

at-ended punch with a resultant force P along the z -direction,
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Fig. 4. Distribution of the normal pressure in the contact area of a semi-infinite 

elastic substrate indented by a rigid flat-ended punch. 
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in a previous study considering surface effect, a function p(x ) =
P/ ( π

√ 

a 2 − x 2 ) was used to represent the distribution of the normal

pressure at the contact surface ( Gao et al., 2013 ), which is actually

a result obtained by the classical contact mechanics without sur-

face effect ( Johnson, 1987 ). In a contact model considering surface

effect, the normal pressure at the contact surface should be an un-

known quantity in advance. For a semi-infinite substrate punched

by a rigid flat indenter, the normal pressure p ( x ) at the contact sur-

face should be obtained using the following displacement bound-
Fig. 5. Distributions of the stresses and displacements at the contact surface in the mod

the normal stress σ z ; (b) for the shear stress τ xz and (c) for the normal displacement w c
ry condition, 

 ( x, 0 ) = δ = const, ( | x | ≤ a ) (31)

here δ denotes the indent depth. 

Differentiating Eq. (31) with respect to x leads to 

∂w ( x, 0 ) 

∂x 
= 0 , ( | x | ≤ a ) (32)

Combining Eqs. (23) , ( 28 ) and ( 32 ) yields 

1 

2 μπ

∫ 1 

−1 

[
H 1 

(
x ′ , η′ , l r , b 1 

)
+ H 1 

(
x ′ , η′ , l r , b 2 

)]
p(aη′ ) dη′ = 0 

(33)

In addition, the relation between the resultant force P and the

ormal pressure satisfies 

1 

π

∫ 1 

−1 

p 
(
aη′ )dη′ = 

P 

πa 
(34)

Then, with a given external load P and a punch width a , the

ontact pressure p ( x ) can be determined based on Eqs. (33) and

 34 ). According to the numerical method provided by Erdogan and

upta (1972) , we transform Eqs. (33) and ( 34 ) to a linear algebraic

quation as 

p = f (35)

n which 

B = 

[
[ b mk ] 

[ b nk ] 

]
, b mk = 

1 

n 

[
H 1 

(
x ′ m , η′ 

k , l r , b 1 
)

+ H 1 

(
x ′ m , η′ 

k , l r , b 2 
)]√ 

1 − ( η′ 
k ) 

2 

 nk = 

1 
√ 

1 − ( η′ 
k ) 

2 
, p = 

[
p 
(
a η′ 

1 

)
, · · ·p 

(
a η′ 

k 

)
, · · ·, p 

(
a η′ 

n 

)]T 
n 

el of a semi-infinite elastic substrate indented by a rigid flat-ended punch. (a) for 

ompared with the results of Gao et al. (2013) . 
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Fig. 6. The normalized contact width a / a c as a function of the non-dimensional 

parameter P /( μR ) in the model of a semi-infinite elastic substrate indented by a 

rigid cylindrical punch (a Hertzian contact model) with different values of parame- 

ter φ0 b / P . 
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Fig. 7. The normal pressure at the contact surface influenced by different mechan- 

ical parameters in the model of a semi-infinite elastic substrate indented by a rigid 

cylindrical punch. (a) for the parameter φ0 b / P ; (b) for the parameter P /( μR ). 

 

c  

t

4

 

p  

e  

s  

ν

4

 

s  

(  

r  

f  

a  

t  

t  

A  
f = [ 0 , 0 , · · ·, 0 , P/ πa ] 
T 
, x ′ m = cos 

(
m 

n 
π
)
( m = 1 , · · ·, n − 1 ) 

′ 
k = cos 

(
2 k − 1 

2 n 
π

)
( k = 1 , · · ·, n ) (36)

Thus, p ( x ) can be obtained by solving Eq. (35) , substituting

hich into Eqs. (26) and ( 27 ) yields the stresses and displacements

t the contact surface ( z = 0). 

.5. Solutions of a semi-infinite substrate punched by a rigid 

ylindrical indenter 

As for a semi-infinite substrate punched by a rigid cylin-

er indenter of radius R with a concentrated force P in the z-

irection, the contact width a varies with the external force P . If

he surface effect is considered, the classical solution of the nor-

al pressure p(x ) = 2 P 
√ 

1 − ( x/ a c ) 
2 
/ ( πa c ) and the contact width

 c = 

√ 

2( 1 − ν) RP/ ( πμ) obtained in ( Johnson, 1987 ) are no longer

alid ( Long et al., 2012 ). The relation between the resultant force

 and the normal pressure in Eq. (34) still holds. The displace-

ent boundary condition in the normal direction can be expressed

s, 

− w ( x, 0 ) ≈ x 2 

2 R 

, ( | x | ≤ a ) (37) 

Differentiating Eq. (37) with respect to x yields 

∂w ( x, 0 ) 

∂x 
= − x 

R 

, ( | x | ≤ a ) (38) 

Combining Eqs. (23) , ( 28 ) and ( 38 ) leads to 

1 

2 μπ

∫ 1 

−1 

[
H 1 

(
x ′ , η′ , l r , b 1 

)
+ H 1 

(
x ′ , η′ , l r , b 2 

)]
p(aη′ ) dη′ = −ax ′ 

R 

(39) 

Similar to Section 3.4 , Eqs. (34) and ( 39 ) can be written as a
inear algebraic equation according to Erdogan and Gupta (1972) , 

Bp = f , B = 

[
[ b mk ] 

[ b nk ] 

]
, 

 mk = 

1 

n 

[
H 1 

(
x ′ m 

, η′ 
k , l r , b 1 

)
+ H 1 

(
x ′ m 

, η′ 
k , l r , b 2 

)]√ 

1 − ( η′ 
k ) 

2 

b nk = 

1 
√ 

1 − ( η′ 
k ) 

2 
, p = 

[
p 
(
a η′ 

1 

)
, · · ·p 

(
a η′ 

k 

)
, · · ·, p 

(
a η′ 

n 

)]T 
n 
t  
f = 

[ 
· · ·, 2 aμ

R 
x ′ m 

, · · ·, P/ πa 

] T 
, x ′ m 

= cos 

(
m 

n 
π
)
( m = 1 , · · ·, n − 1 ) 

η′ 
k = cos 

(
2 k − 1 

2 n 
π

)
( k = 1 , · · ·, n ) (40) 

Solving Eq. (40) numerically yields the pressure p ( x ) and the

ontact width a , substituting which into Eqs. (26) and ( 27 ) yields

he stresses and displacements at the contact surface ( z = 0). 

. Results and discussion 

Based on the above numerical solutions, the stresses and dis-

lacements in three two-dimensional contact models with surface

ffect are predicted and compared with those obtained by the clas-

ical contact mechanics ( Johnson, 1987 ). In this paper, we take

= 0.3 and r 0 = 5. 

.1. Case of an elastic half space subjected to a uniform pressure 

Stresses and displacements at the surface of an elastic half

pace subjected to a uniform pressure can be obtained from Eqs.

29) and ( 30 ), which are shown in Fig. 3 with a dimensionless pa-

ameter l r = φ0 b /( μa ) characterizing the surface effect. It is clearly

ound from Fig. 3 (a) and (b) that the normal stresses in the contact

rea are obviously smaller than the classical solutions in the con-

act region, while the ones outside the contact area are larger than

he classical solutions (absolute values for compressive stresses).

s a result, the surface effect in such a Boussinesq problem leads

o a smoother distribution of normal stresses at the surface as
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Fig. 8. Distributions of the stresses and displacements at the contact surface in the model of a semi-infinite elastic substrate indented by a rigid cylindrical punch. (a) for 

the normal stress σ z ; (b) for the shear stress τ xz and (c) for the normal displacement w . 
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p  
compared to the classical ones, in which an unphysical discon-

tinuous jump exists at the contact edge | x | = a . Fig. 3 (c) shows

a non-zero shear stress at the contact surface in contrast to the

zero one predicted by classical contact models, which is essentially

due to the action of surface-induced tangential traction. Both the

tangential and normal displacements are smaller than their classi-

cal counterparts as shown in Fig. 3 (d) and 3(e), which indicates a

hardening effect due to the surface effect. As the intrinsic length

parameter l r decreases, all the results predicted by the present

model approach the classical ones. Meanwhile, Fig. 3 (d) shows that

the gradient of the tangential displacement with surface effect is

smaller than the that of the classical result, which is consistent

with the phenomenon revealed by Gao et al. (2013) that the nor-

mal strain εx = ∂ u / ∂ x due to the surface effect is smaller than its

classical counterpart ε c x = −( 1 − 2 ν) p 0 / ( 2 μ) . 

4.2. Case of a semi-infinite substrate punched by a rigid flat indenter 

As pointed out in Section 3.4 , the normal pressure under a rigid

flat punch should no longer follow the classical description p(x ) =
P/ ( π

√ 

a 2 − x 2 ) ( Johnson, 1987 ) if the surface effect is considered.

The difference is clearly illustrated in Fig. 4 . The normal pressure

p ( x ) with surface effect is smaller and more uniform than the clas-

sical one, which decreases with an increasing intrinsic length l r . 

The distributions of normal and shear stresses and the normal

displacement are presented in Figs. 5 (a)–(c). The solutions given

by the classical contact mechanics are also shown for comparison.

Similar to the Boussinesq case in Section 4.1 , the normal stresses

with surface effect are smoother than the classical solutions. That

is the normal stresses with surface effect are smaller than the clas-
ical ones in the contact region, while the absolute values of the

ormal stresses with surface effect are larger than the classical

nes outside the contact area as shown in Fig. 5 (a). Furthermore,

 non-zero shear stress at the contact surface exists in contrast to

 vanishing one in the classical contact solution as shown in Fig.

 (b). When the surface effect is considered, the normal displace-

ent is smoother than the classical solution. That is the absolute

alues of the displacements with surface effect are smaller than

he classical ones. All the results are influenced by the intrinsic

ength l r , which characterizes the surface effect. When the intrinsic

ength decreases, all the terms approach to the classical solutions. 

Moreover, Fig. 5 (c) shows that the normal displacement in

he contact region predicted by the present model keeps a con-

tant, whether the surface effect is considered or not. However,

 non-uniformly normal displacement was predicted in Gao et al.

2013) though it is a problem with a rigid flat-ended indenter. It

hould be due to the simple assumption that the normal pressure

 ( x ) was adopted directly to be the same as the classical solution,

.e., the so-called “elliptic function” ( Johnson, 1987 ), even though

he surface effect was considered at the contact surface ( Gao et al.,

013 ). In order to check the applicable range of the elliptical func-

ion adopted by Gao et al. (2013) , Fig. 5 (c) presents the prediction

f the normal displacement obtained by Gao et al. (2013) and the

resent model, in which the increase of the intrinsic length means

n enhancement of surface effect ( Gao et al., 2013 ). One can see

hat the displacement under a flat indenter predicted by Gao et

l. (2013) is not a constant and the deviation of the non-uniform

isplacement from a constant one in the contact region becomes

ore and more significant with an enhancing surface effect. Com-

arison of the results obtained by Gao et al. (2013) and the present
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Fig. 9. The effect of the cylindrical punch radius on the distributions of mechanical properties. (a) for the normal stress σ z ; (b) for the shear stress τ xz and (c) for the normal 

displacement w . 
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nes shows that the elliptic function may be appropriate to de-

cribe the pressure distribution only for the case with a relatively

eak surface effect. 

.3. Case of a semi-infinite substrate punched by a rigid cylindrical 

ndenter 

As for the plane strain contact model of a semi-infinite sub-

trate punched by a rigid cylindrical indenter, the contact width a

hould vary with the external force P . A dimensionless ratio φ0 b / P

s adopted to characterize the surface effect instead of the previ-

usly adopted non-dimensional parameter l r = φ0 b /( μa ). In addi-

ion, a non-dimensional parameter P /( μR ) is also introduced in or-

er to characterize the size effect of cylinder radius. 

The normalized contact width a / a c versus the non-

imensional parameter P /( μR ) is shown in Fig. 6 , where

 c = 

√ 

2( 1 − ν) RP/ ( πμ) denotes half of the contact width pre-

icted by the classical contact mechanics. It is found that the

ontact width is influenced significantly by the surface effect.

or a fixed parameter φ0 b / P , the present contact width is smaller

han the classical one and decreases with an increasing parameter

 /( μR ). For a fixed parameter P /( μR ), the present contact width

ecreases with an increasing φ0 b / P , which means the larger the

ulk surface energy density, the smaller the contact width. In gen-

ral, surface effect will exhibit a hardening effect on the indented

ubstrate. 

Analogous to the previous two cases, the normal pressure p ( x )

n this case becomes more uniform than the classical solution as

hown in Fig. 7 (a) and (b). Furthermore, the normal pressure does

ot vanish at the contact edge x = ±a in contrast to the classical
ertzian solution, which is due to a non-vanishing surface-induced

raction. Figs. 7 (a) and (b) also show that p ( x ) gradually tends to

he average value P /(2 a ) for an increasing φ0 b or a decreasing R . 

Comparisons of the normal stresses and the tangential one as

ell as the displacements at the contact surface predicted by the

resent model and the classical solution are shown in Figs. 8 and

 for a fixed parameter P /( μR ) and φ0 b / P , respectively. The varia-

ion trends of all the terms in this case are similar to those of the

rst two cases, when the present results are compared with the

lassical ones. An increasing bulk surface energy density or a de-

reasing punch radius should be responsible for the enhanced sur-

ace effect. Moreover, it is interesting to note from Figs. 8 (b) and

 (b) that the shear stress at contact surface is non-zero though the

ontact between the substrate and the rigid indenter is assumed

o be frictionless, which is different from the zero shear stress

redicted by Long et al. (2012) considering the effect of surface

ension. This difference is due to the surface-induced tangential

raction in the boundary condition of our surface energy model,

s shown in Eq. (14) , which was not included in classical contact

odels and the model of Long et al. (2012) . 

The indentation hardness is further analyzed for the present

odel, which is defined as H = P /(2 a ). Normalized indentation

ardness H / H c as a function of the non-dimensional parameter R / l

s shown in Fig. 10 for different values of φ0 b / P , where H c has a

lassical definition, H c = 

√ 

P πμ/ [ 8( 1 − ν) R ] . Similar to the ISE in

icro-mechanics, for a fixed value of φ0 b / P , the smaller the punch

adius (equivalent to a decreasing contact width), the larger the in-

entation hardness. Furthermore, for a fixed R / l and a determined

 , the larger the bulk surface energy density, the larger the pre-



182 N. Jia et al. / International Journal of Solids and Structures 125 (2017) 172–183 

Fig. 10. Normalized indentation hardness H / H c varying with the non-dimensional 

parameter R / l in the model of a semi-infinite elastic substrate indented by a plane 

strain cylindrical punch. 
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dicted indentation hardness. All these further demonstrate a hard-

ening effect on the substrate due to the surface effect. 

5. Conclusions 

An elastic theory developed for nanomaterials is adopted in

this paper to analyze the surface effect on a semi-infinite sub-

strate’s contact behaviors and its indentation hardness. Three two-

dimensional models are studied, including an elastic half space un-

der uniformly normal pressure, a semi-infinite substrate punched

by a flat-ended indenter as well as a semi-infinite substrate

punched by a cylindrical indenter. The contact stresses and the dis-

placements are mainly investigated. It is found that surface effect

on the contact behaviors cannot be neglected when the contact

width is on the same magnitude with the ratio of the bulk surface

energy density to the bulk shear modulus of the indented material.

Comparisons of the present theoretical predictions with the classi-

cal contact solutions demonstrate that surface effect could not only

smoothen and reduce the normal stresses and displacements, but

also induce a non-zero shear stress at the contact surface. More-

over, the normal stresses under a rigid flat punch or a cylindrical

one as well as the width of the Hertzian contact zone are deter-

mined. The former becomes more uniform and the latter shrinks

as compared to the corresponding classical predictions. The sur-

face effect can be enhanced by an increasing bulk surface energy

density of the indented material or a reducing punch size (con-

tact width). Nano-indentation hardness is also influenced signifi-

cantly by surface effect of the indented material, which can be im-

proved obviously with a decreasing punch size or external force

in comparison with the classical prediction. All the results should

be helpful not only for precise measurement of nano-indentation

hardness but also for accurate evaluation of surface properties of

nanomaterials and nano-devices. 
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