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a b s t r a c t 

The dynamic behavior of a Timoshenko nanobeam would be significantly different from a macro-one due to 
the large ratio of surface area to volume of nanomaterials. Furthermore, the shear deformation effect would be 
obvious for a Timoshenko nanobeam in contrast to an Eulerian one. In this paper, a recently developed elastic 
theory is adopted in order to predict the resonant frequency of a Timoshenko nanobeam, in which not only the 
surface effect but also the shear deformation effect and the rotary inertia one are considered. In contrast to the 
existing surface effect theories, surface effect of nanomaterials is characterized by the surface energy density in 
the adopted theory. The resonant frequency of both a fixed-fixed nanobeam and a cantilevered one is analyzed. 
It is found that the dynamic behavior of nanobeams deviates significantly from the one predicted by both the 
classical Timoshenko beam theory and the Euler–Bernoulli one due to the surface effect. Furthermore, the shear 
deformation effect and the rotary inertia effect cannot be neglected in nanobeams with a relative small aspect 
ratio, which cannot be precisely characterized by the Euler–Bernoulli beam theory. In addition, the influencing 
mechanism of surface effect on the dynamic behavior of nanobeams would depend on the boundary conditions. 
The resonant frequency of a fixed–fixed Timoshenko nanobeam would be improved, while that of a cantilevered 
one would be weakened by the surface effect in contrast to the corresponding classical solutions. The results in 
this paper should be useful for precise design of nano-devices and helpful for reasonable assessment of test results 
of nano-instruments. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nanobeam, as a simple but promising elements, has been widely
sed in flexible electronics [1] , biological sensors [2] and nano-electro-
echanical systems (NEMS) [3] . There is no doubt that its static and dy-
amic mechanical behaviors attract much attention. Many experiments
ave shown that not only the static mechanical properties but also the
ynamic ones of nanobeams are significantly different from those of
acro-beams due to the large surface-to-volume ratio of nanomaterials,

uch as the effective Young’s modulus and resonant frequency [4–12] . 
Compared with the static bending experiment, resonance measure-

ent is a more convenient treatment to achieve nanobeams ’ elastic
roperties in view of the clear relationship between the resonant fre-
uency and elastic parameters of a beam [13–15] . The effective Young’s
oduli of silicon, gallium nitride (GaN), silicon nitride (SiN x ) and zinc

xide (ZnO) cantilever nanowires could be achieved experimentally by
easuring the resonant frequency of vibrating nanobeams [4–7,11] .
owever, classical beam theories are invalid for predicting the vibration
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roperties of nanobeams, due to the lack of parameters accounting for
he surface effect in nanomaterials. Several researchers proposed strain
radient elasticity theories and nonlocal elasticity theory with intrinsic
ength scales to study the size-dependent mechanical behaviors of micro-
r nano-scale beams [16–22] , but how to interpret and determine the
ntrinsic lengths is still a challenging issue in these high-order theories.

The surface elasticity theory established by Gurtin and Murdoch
23,24] (G–M model) were widely adopted recently, instead of the clas-
ical continuum one to study the mechanical behaviors of nanomaterials
nd nanostructures, in which the surface is assumed to have a zero-
hickness and abide by the elastic constitutive relation. Based on the
–M model and its extension, not only the elastic behavior of static-
ending nanobeams but also the dynamic vibration property was car-
ied out [13,14,20,25–31] . Both the effective Young’s modulus and the
esonant frequency of nanobeams depend on the surface elastic modu-
us. It was further found that the mechanical parameters are also influ-
nced by the boundary conditions. As for the dynamic vibration behav-
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or of nanobeams, the normalized resonant frequency of a fixed–fixed
anobeam (both ends fixed) would increase, while that of a cantilevered
anobeam decreases with a reducing characteristic size. Chiu and Chen
32] further discussed the effect of the surface bending modulus on the
esonant frequency of nanowires. Recently, Zhang et al. [33] analyzed
he motion equation of vibrating nanowires, based on which contribu-
ions of surface elasticity and surface stress to the resonant frequency
an be abstracted, respectively. 

Though the surface elasticity theory is a recently popular theoretical
pproach in predicting the mechanical properties of nanomaterials and
anostructures, the surface elastic constants impose some restrictions on
ts applications. The surface elastic constants are introduced in order to
escribe the elastic constitutive relation between the surface stress and
urface strain. However, it is found that the surface elastic constants
annot be measured experimentally till now. The unique technique to
nd the parameters is MD simulations [34–36] . Even in MD calcula-
ions, some problems still exist, such as how to choose a proper atomic
otential, how to choose the numerical model size and how many atom
ayers could be regarded as the surface of a nanobeam. Therefore, to
etermine surface elastic constants in the surface elasticity theory is a
ey problem, which is worth focusing on in the future. 

In view of the above thorny problem, an alternative elastic theory
as been established for nanomaterials by Chen and Yao [37] within
he framework of continuum mechanics. The surface energy density is
sed to characterize the surface effect in nanomaterials instead of the in-
roduction of surface elastic constants, which depends only on the bulk
urface-energy density and the surface-relaxation parameter. Both pa-
ameters are easily found from Material Handbooks or simple MD simu-
ations. Typical problems have been well analyzed based on such a novel
heory and the predicted results agree well with the existing experimen-
al data and numerical calculations [38–41] . 

In this paper, the developed theory [37] will be adopted to analyze
he resonant vibration of Timoshenko nanobeams. Not only the surface
ffect but also the shear deformation effect and the rotary inertia one
hould be included [26–28,42] . Comparison of theoretical predictions of
uler–Bernoulli nanobeams and Timoshenko ones as well as the classical
olutions of Timoshenko macro-beams will be carried out. Respective
nfluence ranges of the surface effect, the shear deformation and rotary
nertia effect on the resonant frequency of beams will be given, which
hould be helpful for the design of beam-based nano-devices, in especial,
he nanobeam resonators and sensors in NEMS. 

. A brief introduction of the surface energy density-based elastic 

heory for nanomaterials 

Based on the concept of surface energy density, an elastic theory was
eveloped by Chen and Yao [37] in order to study the surface effect in
anomaterials or nanostructures. With a similar idea, an interface en-
rgy density-based theory was also established in order to investigate
he interface effect in nanocomposites [43] . The elastic theory with sur-
ace effect is briefly introduced in this section [37] . 

The governing equation inside a nano-solid and the boundary con-
itions at the surface are written as 

 

 

 

 

 

𝝈 ⋅ ∇ + 𝒇 = 0 ( in 𝑉 − 𝑆 ) 
𝒏 ⋅ 𝝈 ⋅ 𝒏 = 𝒑 ⋅ 𝒏 − 𝛾𝑛 𝒏 ( on 𝑆 ) 
( 𝑰 − 𝒏 ⊗ 𝒏 ) ⋅ 𝝈 ⋅ 𝒏 = ( 𝑰 − 𝒏 ⊗ 𝒏 ) ⋅ 𝑝 − 𝜸𝑡 ( on 𝑆 ) 

(1)

here 𝝈 is the Cauchy stress tensor inside the nano-solid, ∇ denotes
 gradient operator. n is the unit normal vector perpendicular to the
oundary surface S of the nano-solid. I is a unit tensor; f and p denote
he body force and the external surface traction, respectively. V is the
olume of the nano-solid. 𝛾n is the normal component and 𝜸t is the tan-
ential one of an additionally surface-induced traction vector, respec-
ively, which amounts to a force disturbance at the boundary due to
he surface effect and can be obtained with the help of the virtual work
22 
ethod based on an infinitesimal element, 

𝑡 = ∇ 𝑠 𝜙, 𝛾𝑛 𝐧 = 𝜙

( 

1 
𝑅 1 

+ 

1 
𝑅 2 

) 

𝐧 = 𝜙
(
𝐧 ⋅ ∇ 𝑠 

)
𝐧 (2)

here ∇ s denotes a surface gradient operator. 𝜙 is the surface energy
ensity of the nano-solid in the current configuration, which is called
s Eulerian surface energy density (relative to the initial or reference
onfiguration as shown in Fig. 1 ). R 1 and R 2 are two principal curvature
adii of a curved surface. 

The relation between the Eulerian surface energy density 𝜙 in the
urrent configuration and the Lagrangian surface energy density 𝜙0 in
he reference configuration is 

= 

𝜙0 
𝐽 𝑠 

(3)

here J s is a Jacobean determinant characterizing the surface deforma-
ion from the reference configuration to the current one. 

Combining Eqs. (1) –(3) yields the final governing equation and
oundary conditions 

 

 

 

 

 

𝝈 ⋅ ∇ + 𝒇 = 0 ( in 𝑉 − 𝑆 ) 
𝒏 ⋅ 𝝈 ⋅ 𝒏 = 𝒑 ⋅ 𝒏 − 𝜙0 

(
𝒏 ⋅ ∇ 𝑠 

)
∕ 𝐽 𝑠 ( on 𝑆 ) 

( 𝑰 − 𝒏 ⊗ 𝒏 ) ⋅ 𝝈 ⋅ 𝒏 = ( 𝑰 − 𝒏 ⊗ 𝒏 ) ⋅ 𝒑 + 𝜙0 
(
∇ 𝑠 𝐽 𝑠 

)
∕ 𝐽 2 

𝑠 
− ∇ 𝑠 𝜙0 ∕ 𝐽 𝑠 ( on 𝑆 ) 

(4) 

𝜙0 consists of a structural part 𝜙𝑠𝑡𝑟𝑢 
0 and a chemical part 𝜙𝑐ℎ𝑒𝑚 

0 . The
ormer is related to the surface strain energy induced by the surface
elaxation and the external loading, while the latter originates from the
urface dangling-bond energy, i.e., 

0 = 𝜙𝑠𝑡𝑟𝑢 
0 + 𝜙𝑐ℎ𝑒𝑚 

0 

𝑠𝑡𝑟𝑢 
0 = 

𝐸 𝑏 

2 sin 𝛽

2 ∑
𝑖 =1 

𝑎 0 𝑖 𝜂𝑖 

⎧ ⎪ ⎨ ⎪ ⎩ 
[
3 + 

(
𝜆𝑖 + 𝜆𝑖 𝜀 𝑠𝑖 

)− 𝑚 − 3 
(
𝜆𝑖 + 𝜆𝑖 𝜀 𝑠𝑖 

)]
×[

𝜆2 
𝑖 
𝜀 2 
𝑠𝑖 
+ 

(
𝜆𝑖 − 1 

)2 + 2 𝜆𝑖 
(
𝜆𝑖 − 1 

)
𝜀 𝑠𝑖 

] ⎫ ⎪ ⎬ ⎪ ⎭ 
𝑐ℎ𝑒𝑚 
0 = 𝜙0 𝑏 

(
1 − 

𝐷 0 
𝑤 1 𝐷 

)
, 𝜂1 = 𝑎 01 ∕ 𝑎 02 , 𝜂2 = 𝑎 02 ∕ 𝑎 01 

(5) 

here 𝜙0 b is the surface energy density of the corresponding bulk ma-
erial. D 0 is a critical size and we have D 0 = 3 d a for nanoparticles,
anowires and 2 d a for nano-films, where d a is the atomic diameter. D de-
otes a characteristic scale of nanomaterials (e.g., thickness, diameter,
tc.). w 1 is a parameter governing the size-dependent behavior of 𝜙𝑐ℎ𝑒𝑚 

0 .
 b is the Young’s modulus of the corresponding bulk material, which is
alled as the bulk Young’ modulus in the present paper. a 01 , a 02 repre-
ent the initial lattice lengths in the two principal directions on surface,
espectively, as shown in Fig. 1 . The lattice lengths become a r 1 and a r 2 
fter spontaneous surface relaxation, and subsequently become a 1 and
 2 in the current configuration when subjected to an external loading.

𝑖 = 𝑎 𝑟𝑖 ∕ 𝑎 0 𝑖 denotes the surface relaxation parameter, 𝜀 𝑠𝑖 = ( 𝑎 𝑖 − 𝑎 𝑟𝑖 ) ∕ 𝑎 𝑟𝑖 
s the surface strain induced only by the external loading; m is a param-
ter describing the dependence of bond lengths on the binding energy,
here m = 4 for alloys or compounds and m = 1 for pure metals. Details

an be found in Chen and Yao [37] . 
One can see that the surface effect of a nano-solid is characterized

y two independent parameters in the present theory, i.e., the surface
nergy density of bulk materials 𝜙0 b and the surface relaxation param-
ter 𝜆i , both of which have clearly physical meanings and are very easy
o find through Material Handbooks and simple MD simulations. 

. Flexural vibration of a Timoshenko nanobeam 

The resonant behavior of a Timoshenko nanobeam with a fixed–fixed
r a cantilevered boundary condition is investigated with the above sur-
ace energy density-based elastic theory [37] . The beam model is shown
n Fig. 2 . Consider the nano-sized characteristic length and the small as-
ect ratio of a Timoshenko beam. Not only the surface effect but also
he shear deformation and rotary inertia one on the resonant vibration
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Fig. 1. Schematics of a surface unit cell in the initial (reference), relaxed and current configurations, respectively. The lattice lengths in two principal directions will change from a 0 i to 
a ri and then to a i along with the relaxation process and the external load. 

Fig. 2. Vibration model of a nanobeam in a coordinate system ( x, y, z ) but with different 
boundary conditions. (a) A fixed–fixed nanobeam. (b) A cantilevered nanobeam. (c) Two 
kinds of cross-sections of the nanobeam. 
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ehavior should be included. The length of the nanobeam in the x -axis
irection is l and the vertical deflection in the y -axis direction is denoted
s v . The cross-section of the nanobeam can be a rectangular shape with
 height h and a width b ( b ≥ h ), or a circular one with a diameter d as
hown in Fig. 2 . 

According to the vibration theory of Timoshenko beam [44] , when
he aspect ratio of a beam is less than about 10, the cross-section is no
onger perpendicular to the longitudinal x -axis due to the shear deforma-
ion effect. The slope 𝜕 v / 𝜕 x of the deflection curve can be decomposed
nto a rotation angle 𝜃 due to the pure bending and an additional one 𝛼
ielded by the shear deformation, i.e., 

𝜕𝑣 

𝜕𝑥 
= 𝜃 + 𝛼 (6)

Then, the bending moment M and the shear force F s can be expressed
s 

 = − 𝐸 𝑏 𝐼 𝑧 
𝜕𝜃

𝜕𝑥 
, 𝐹 𝑠 = 𝑘𝐺 𝑏 𝐴𝛼 (7) 

here E b is the bulk Young’s modulus. 𝐺 𝑏 = 𝐸 𝑏 ∕ [ 2(1 + 𝜈) ] is the bulk
hear modulus and 𝜈 is the Poisson’s ratio. I z = ∫ A y 

2 dA represents the
nertia moment of the cross-section, where A is the area of the cross-
ection. k denotes a shear coefficient depending on the cross-section
hape, where we have 𝑘 = 5(1 + 𝜈) ∕ (6 + 5 𝜈) for a rectangular cross-
ection and 𝑘 = 6(1 + 𝜈) ∕ (7 + 12 𝜈 + 4 𝜈2 ) for a circular one. 
23 
.1. Kinetic equations of a Timoshenko nanobeam 

(a) Based on Eqs. (6) and (7) , variation of the bulk strain energy in
 vibrating Timoshenko nanobeam yields 

∫ 𝑇 

0 𝑈𝑑𝑡 = − ∫ 𝑇 

0 𝑑 𝑡 ∫ 𝑙 

0 𝑀𝛿

(
𝜕𝜃

𝜕𝑥 

)
𝑑 𝑥 + ∫ 𝑇 

0 𝑑 𝑡 ∫ 𝑙 

0 𝐹 𝑠 𝛿
(
𝜕𝑣 

𝜕𝑥 
− 𝜃

)
𝑑 𝑥 

= − ∫ 𝑇 

0 𝑑𝑡 ∫ 𝑙 

0 

[
𝐸 𝑏 𝐼 𝑧 

𝜕 2 𝜃
𝜕 𝑥 2 

+ 𝑘 𝐺 𝑏 𝐴 

(
𝜕𝑣 

𝜕𝑥 
− 𝜃

)]
𝛿𝜃𝑑𝑥 

− ∫ 𝑇 

0 𝑑 𝑡 ∫ 𝑙 

0 𝑘 𝐺 𝑏 𝐴 

(
𝜕 2 𝑣 
𝜕 𝑥 2 

− 

𝜕𝜃

𝜕𝑥 

)
𝛿𝑣𝑑 𝑥 

(8) 

(b) Variation of the surface energy for a vibrating Timoshenko
anobeam can be written as 

∫
𝑇 

0 
Φ𝑑𝑡 = ∫

𝑇 

0 
𝑑 𝑡 ∫𝑆 𝑛𝑤 𝜸 ⋅ 𝛿𝐮 𝑑 𝑆 = ∫

𝑇 

0 
𝑑 𝑡 ∫

𝑙 

0 
𝑑 𝑥 ∫𝐶 𝑛𝑤 

(
𝛾𝑥 𝛿𝑢 𝑥 + 𝛾𝑛 𝛿𝑢 𝑛 

)
𝑑 𝐶

(9) 

here S nw and C nw represent the surface area and the perimeter of the
anobeam, respectively. 𝛿u x = − y 𝛿𝜃 and 𝛿u n ≈ 𝛿v are the horizontal and
ertical displacement components of 𝛿u , respectively. 𝛾x and 𝛾n repre-
ent the tangential and normal components of the surface-induced trac-
ion at the nano-beam surface. According to Eq. (2) , we have 

 

 

 

 

 

𝛾𝑥 = 

𝜕𝜙

𝜕𝑥 
= 

𝜕 

𝜕𝑥 

(
𝜙0 
𝐽 𝑠 

)
= 

1 
𝐽 𝑠 

𝜕 𝜙0 
𝜕𝑥 

− 

𝜙0 
𝐽 2 𝑠 

𝜕 𝐽 𝑠 

𝜕𝑥 

𝛾𝑛 = 𝜙𝜅 ≈ 𝜕 2 𝑣 
𝜕 𝑥 2 

𝜙 = 

𝜙0 
𝐽 𝑠 

𝜕 2 𝑣 
𝜕 𝑥 2 

(10) 

here the curvature is 𝜅 = −( 𝐧 ⋅ ∇ 𝑠 ) = 𝜕 2 𝑣 ∕ 𝜕 𝑥 2 . 
The lateral surface of a nanobeam may consist of different crys-

al facets [4,12] . In order to simplify the theoretical analysis, a (100)
xially-oriented nanobeam with a symmetric lateral surface is consid-
red, which is similar to the existing literatures [14,45,46] . Thus, the
urface is perfect and isotropic with an equal atom spacing in both bond
irections, e.g., the (001) or (010) surface [13,30,46] . Consequently,
e have the relaxation parameter 𝜆1 = 𝜆2 = 𝜆 and the lattice length
 01 = a 02 = a 0 . The Lagrangian surface energy density of the nanobeam
an then be written as [38–40] 

0 = 𝜙0 𝑏 

(
1 − 

3 𝑑 𝑎 
4 𝐷 

)
+ 

√
2 𝐸 𝑏 𝑎 0 
2 

[
3 + 

1 
𝜆( 1+ 𝜀 𝑥 ∕2 ) − 3 

(
𝜆 + 

𝜆𝜀 𝑥 

2 

)]
×
[ 
𝜆2 𝜀 2 𝑥 
4 + 2 𝜆( 𝜆 − 1 ) 𝜀 𝑥 2 + ( 𝜆 − 1 ) 2 

] (11) 

Here, D denotes the diameter or height of the nanobeam depending
n the shape of the cross section. 



N. Jia et al. International Journal of Mechanical Sciences 133 (2017) 21–27 

 

t

𝛾

𝐶

𝐶

𝐶

𝜙

𝐴

 

a

𝛾

𝐷

𝐷

 

𝛿  

w
r  

p

R

C
 

 

a

𝛿
 

w
 

p

𝛿

 

w  

t⎧⎪⎨⎪⎩  

 

t⎧⎪⎨⎪⎩  

w  

𝐸

a  

n  

i  

(⎧⎪⎨⎪⎩
3

 

(⎧⎪⎪⎪⎨⎪⎪⎪⎩
w  

s

{
 

f

𝜉  

w

𝜂

𝜂

𝑉  

Θ  

i

 

(

⎧⎪⎪⎨⎪⎪⎩
w  

P

 

c  

t  

a⎧⎪⎨⎪
Substituting Eq. (11) into Eq. (10) and using 𝐽 𝑠 = 𝜆2 ( 1 + 𝜀 𝑥 ∕2 ) 2 yield
he tangential component 𝛾x of the surface-induced traction 

𝑥 = 

1 
𝐽 𝑠 

𝜕 𝜙0 
𝜕𝑥 

− 

𝜙0 
𝐽 2 𝑠 

𝜕 𝐽 𝑠 

𝜕𝑥 
= 

[ 
𝐶 0 𝑦 + 𝐶 1 𝑦 

2 𝜕𝜃
𝜕𝑥 

+ 𝐶 2 𝑦 
3 
(
𝜕𝜃

𝜕𝑥 

)2 
] 
𝜕 2 𝜃
𝜕 𝑥 2 

 0 = 𝜙∗ 
0 ( 5 − 4 𝜆) − 

√
2 𝐸 𝑏 𝑎 0 𝐴 2 ( 3−2 𝜆) 

2 

 1 = 2 𝜙∗ 
0 + 

√
2 𝐸 𝑏 𝑎 0 𝐴 1 ( 3 − 2 𝜆) − 

√
2 𝐸 𝑏 𝑎 0 𝐴 2 ( 3 − 2 𝜆) 

 2 = 

√
2 𝐸 𝑏 𝑎 0 𝐴 1 ( 7−4 𝜆) 

2 − 

√
2 𝐸 𝑏 𝑎 0 𝐴 2 

∗ 
0 = 𝜙0 𝑏 

(
1 − 

3 𝑑 𝑎 
4 𝐷 

)
+ 

√
2 𝐸 𝑏 𝑎 0 
2 ( 𝜆 − 1 ) 2 

 1 = 

1−10 ( 𝜆−1 ) −17 ( 𝜆−1 ) 2 
4 , 𝐴 2 = ( 𝜆 − 1 ) − 5 ( 𝜆 − 1 ) 2 

(12)

nd the normal one 𝛾n 

𝑛 = 

𝜙0 
𝐽 𝑠 

𝜕 2 𝑣 
𝜕 𝑥 2 

= 

[ 
𝐷 0 + 𝐷 1 𝑦 

𝜕𝜃

𝜕𝑥 
+ 𝐷 2 𝑦 

2 
(
𝜕𝜃

𝜕𝑥 

)2 
] 
𝜕 2 𝑣 
𝜕 𝑥 2 

 0 = 𝜙∗ 
0 ( 3 − 2 𝜆) , 𝐷 1 = 𝜙∗ 

0 − 

√
2 𝐸 𝑏 𝑎 0 𝐴 2 ( 3−2 𝜆) 

2 

 2 = 

√
2 𝐸 𝑏 𝑎 0 𝐴 1 ( 3−2 𝜆) − 

√
2 𝐸 𝑏 𝑎 0 𝐴 2 

2 

(13)

Then, Eq. (9) can be written as 

∫
𝑇 

0 
Φ𝑑𝑡 = − ∫

𝑇 

0 
𝑑 𝑡 ∫

𝑙 

0 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 
𝐶 0 𝐼 𝑆1 + 𝐶 2 𝐼 𝑆2 

(
𝜕𝜃

𝜕𝑥 

)2 
] 
𝜕 2 𝜃
𝜕 𝑥 2 

𝛿𝜃

+ 

[ 
𝐷 0 𝐼 𝐶 1 + 𝐷 2 𝐼 𝑆1 

(
𝜕𝜃

𝜕𝑥 

)2 
] 
𝜕 2 𝑣 
𝜕 𝑥 2 

𝛿𝑣 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
𝑑 𝑥 (14)

here we have 𝐼 𝑆1 = ∫
𝐶 𝑛𝑤 

𝑦 2 𝑑𝐶, 𝐼 𝑆2 = ∫
𝐶 𝑛𝑤 

𝑦 4 𝑑 𝐶 , 𝐼 𝐶 1 = − ∫
𝐶 𝑛𝑤 

𝑛 2 
𝑤 
𝑑 𝐶 . n w 

epresents the vertical component of the unit normal vector n , which is
arallel to the deflection v . 

For different cross-section shapes, we have 

ectangular ∶ 𝐼 𝑧 = 

𝑏 ℎ 3 

12 , 𝐼 𝑆1 = 

𝑏 ℎ 2 

2 + 

ℎ 3 

6 , 𝐼 𝑆2 = 

𝑏 ℎ 4 

8 + 

ℎ 5 

40 , 𝐼 𝐶1 = 2 𝑏, 𝐴 = 𝑏ℎ 

ircular ∶ 𝐼 𝑧 = 

𝜋𝑑 4 

64 , 𝐼 𝑆1 = 

𝜋𝑑 3 

8 , 𝐼 𝑆2 = 

3 𝜋𝑑 5 
128 , 𝐼 𝐶1 = 

𝜋𝑑 

2 , 𝐴 = 

𝜋𝑑 2 

4 
(15)

(c) Variation of the kinetic energy of the nanobeam can be written
s 

∫ 𝑇 

0 𝐾𝑑𝑡 = 𝛿 ∫ 𝑇 

0 𝑑 𝑡 ∫𝑉 1 2 𝜌
(
𝜕𝑣 

𝜕𝑡 

)2 
𝑑 𝑉 + 𝛿 ∫ 𝑇 

0 𝑑 𝑡 ∫𝑉 1 2 𝑦 2 𝜌
(
𝜕𝜃

𝜕𝑡 

)2 
𝑑 𝑉 

= − ∫ 𝑇 

0 𝑑 𝑡 ∫ 𝑙 

0 𝜌𝐴 

𝜕 2 𝑣 
𝜕 𝑡 2 

𝛿𝑣𝑑 𝑥 − ∫ 𝑇 

0 𝑑𝑡 ∫ 𝑙 

0 𝜌𝐼 𝑧 
𝜕 2 𝜃
𝜕 𝑡 2 

𝛿𝜃𝑑𝑥 

(16)

here 𝜌 denote the material density of the nanobeam. 
Combining Eqs. (8) , (14) and (16) leads to the variation of the total

otential energy, 

∫ 𝑇 

0 ( 𝐾 − 𝑈 − Φ) 𝑑𝑡 

= ∫ 𝑇 

0 𝑑𝑡 ∫ 𝑙 

0 

[(
𝐸 𝑏 𝐼 𝑧 + 𝐶 0 𝐼 𝑆1 

) 𝜕 2 𝜃
𝜕 𝑥 2 

+ 𝑘 𝐺 𝑏 𝐴 

(
𝜕𝑣 

𝜕𝑥 
− 𝜃

)
− 𝜌𝐼 𝑧 

𝜕 2 𝜃
𝜕 𝑡 2 

]
𝛿𝜃𝑑𝑥 

+ ∫ 𝑇 

0 𝑑𝑡 ∫ 𝑙 

0 

[(
𝑘 𝐺 𝑏 𝐴 + 𝐷 0 𝐼 𝐶1 

) 𝜕 2 𝑣 
𝜕 𝑥 2 

− 𝑘 𝐺 𝑏 𝐴 

𝜕𝜃

𝜕𝑥 
− 𝜌𝐴 

𝜕 2 𝑣 
𝜕 𝑡 2 

]
𝛿𝑣𝑑𝑥 = 0 

(17)

ith which the kinetic equations of a Timoshenko nanobeam are ob-
ained as 

 

 

 

 

 

𝜌𝐼 𝑧 
𝜕 2 𝜃
𝜕 𝑡 2 

= 

(
𝐸 𝑏 𝐼 𝑧 + 𝐶 0 𝐼 𝑆1 

) 𝜕 2 𝜃
𝜕 𝑥 2 

+ 𝑘 𝐺 𝑏 𝐴 

(
𝜕𝑣 

𝜕𝑥 
− 𝜃

)
𝜌𝐴 

𝜕 2 𝑣 
𝜕 𝑡 2 

= 

(
𝑘 𝐺 𝑏 𝐴 + 𝐷 0 𝐼 𝐶1 

) 𝜕 2 𝑣 
𝜕 𝑥 2 

− 𝑘 𝐺 𝑏 𝐴 

𝜕𝜃

𝜕𝑥 

(18)

Let 𝑥 = 𝑙 ̂𝑥 , 𝑣 ( 𝑥, 𝑡 ) = 𝑙 ̂𝑣 ( ̂𝑥 , 𝑡 ) and 𝜃( 𝑥, 𝑡 ) = �̂�( ̂𝑥 , 𝑡 ) , Eq. (18) can be rewrit-
en as 

 

 

 

 

 

𝜒3 𝜒4 
𝜕 2 �̂�
𝜕 𝑡 2 

= 

(
1 + 𝜒1 

)
𝜒3 

𝜕 2 �̂�
𝜕 ̂𝑥 2 

+ 

(
𝜕 ̂𝑣 

𝜕 ̂𝑥 
− �̂�

)
𝜒3 𝜒5 

𝜕 2 �̂� 
𝜕 𝑡 2 

= 

(
1 + 𝜒2 𝜒3 

) 𝜕 2 �̂� 
𝜕 ̂𝑥 2 

− 

𝜕 ̂𝜃

𝜕 ̂𝑥 

(19)

here we have 𝜒1 = 𝐶 0 𝐼 𝑆1 ∕ ( 𝐸 𝑏 𝐼 𝑧 ) , 𝜒2 = 𝐷 0 𝐼 𝐶1 𝑙 
2 ∕ ( 𝐸 𝑏 𝐼 𝑧 ) , 𝜒3 =

 𝐼 ∕ ( 𝑘 𝐺 𝐴 𝑙 2 ) , 𝜒 = 𝜌𝐼 𝑙 2 ∕ ( 𝐸 𝐼 ) and 𝜒 = 𝜌𝐴 𝑙 4 ∕ ( 𝐸 𝐼 ) . 𝜒 and 𝜒
𝑏 𝑧 𝑏 4 𝑧 𝑏 𝑧 5 𝑏 𝑧 1 2 ⎩
24 
re two dimensionless parameters characterizing the surface effect of
anobeams. A large enough characteristic size of a nanobeam would
nduce 𝜒1 and 𝜒2 to approach zero, which can subsequently reduce Eq.
19) to be the classical kinetic equations 

 

 

 

 

 

𝜒3 𝜒4 
𝜕 2 �̂�
𝜕 𝑡 2 

= 𝜒3 
𝜕 2 �̂�
𝜕 ̂𝑥 2 

+ 

(
𝜕 ̂𝑣 

𝜕 ̂𝑥 
− �̂�

)
𝜒3 𝜒5 

𝜕 2 �̂� 
𝜕 𝑡 2 

= 

𝜕 2 �̂� 
𝜕 ̂𝑥 2 

− 

𝜕 ̂𝜃

𝜕 ̂𝑥 

(20) 

.2. Solution of the resonant frequency 

Let �̂� ( ̂𝑥 , 𝑡 ) = 𝑉 ( ̂𝑥 ) cos 𝜔 𝑛 𝑡 , �̂�( ̂𝑥 , 𝑡 ) = Θ̂( ̂𝑥 ) cos 𝜔 𝑛 𝑡 and eliminate �̂� in Eq.
19) . We have 

 

 

 

 

 

 

 

 

 

(
1 + 𝜒1 

)(
1 + 𝜒2 𝜒3 

) 𝑑 4 𝑉 
𝑑 ̂𝑥 4 

+ 

[(
1 + 𝜒1 

)
𝜒3 𝜒5 𝜔 

2 
𝑛 
+ 𝜒4 

(
1 + 𝜒2 𝜒3 

)
𝜔 

2 
𝑛 
− 𝜒2 

] 𝑑 2 𝑉 
𝑑 ̂𝑥 2 

− 𝜒5 𝜔 

2 
𝑛 
+ 𝜒3 𝜒4 𝜒5 𝜔 

4 
𝑛 
= 0 

𝑑 ̂Θ
𝑑 ̂𝑥 

= 

(
1 + 𝜒2 𝜒3 

) 𝑑 2 𝑉 
𝑑 ̂𝑥 2 

+ 𝜒3 𝜒5 𝜔 

2 
𝑛 

(21) 

here 𝑉 ( ̂𝑥 ) and Θ̂( ̂𝑥 ) are the dimensionless time-independent mode
hape and 𝜔 n is the n th angular resonant frequency of the nanobeam. 

The general solution of 𝑉 ( ̂𝑥 ) and Θ̂( ̂𝑥 ) can be expressed as, 
 

𝑉 ( ̂𝑥 ) = 𝑃 0 𝑒 
𝜉�̂� 

Θ̂( ̂𝑥 ) = 𝑄 0 𝑒 
𝜉�̂� 

(22) 

Substituting Eq. (22) into the first equation in Eq. (21) leads to the
ollowing equation 

4 + 𝜂1 𝜉
2 + 𝜂2 = 0 (23)

here 

1 = − 

𝜒2 
( 1+ 𝜒2 𝜒3 ) ( 1+ 𝜒1 ) + 

[
𝜒4 

( 1+ 𝜒1 ) + 

𝜒3 𝜒5 
( 1+ 𝜒2 𝜒3 ) 

]
𝜔 

2 
𝑛 

2 = 

𝜒3 𝜒4 𝜒5 
( 1+ 𝜒2 𝜒3 ) ( 1+ 𝜒1 ) 𝜔 

4 
𝑛 
− 

𝜒5 
( 1+ 𝜒2 𝜒3 ) ( 1+ 𝜒1 ) 𝜔 

2 
𝑛 

(24) 

Then, the solution of 𝑉 ( ̂𝑥 ) and Θ̂( ̂𝑥 ) can be written as, 

̂
 ( ̂𝑥 ) = 𝑃 1 sinh ( 𝜉1 ̂𝑥 ) + 𝑃 2 cosh ( 𝜉1 ̂𝑥 ) + 𝑃 3 sin ( 𝜉2 ̂𝑥 ) + 𝑃 4 cos ( 𝜉2 ̂𝑥 ) (25)

̂ ( ̂𝑥 ) = 𝑄 1 sinh ( 𝜉1 ̂𝑥 ) + 𝑄 2 cosh ( 𝜉1 ̂𝑥 ) + 𝑄 3 sin ( 𝜉2 ̂𝑥 ) + 𝑄 4 cos ( 𝜉2 ̂𝑥 ) (26)

n which 

𝜉1 = 

√ √ ( 𝜂1 
2 

)2 
− 𝜂2 − 

𝜂1 
2 
, 𝜉2 = 

√ √ ( 𝜂1 
2 

)2 
− 𝜂2 + 

𝜂1 
2 

𝑤ℎ𝑒𝑛 𝜔 𝑛 ≤ 

√ 

1∕ 
(
𝜒3 𝜒4 

)
(27) 

Substituting Eqs. (25) and (26) into the second equation in Eq.
21) leads to 

 

 

 

 

 

 

 

𝑄 1 = 𝜁1 𝑃 2 

𝑄 2 = 𝜁1 𝑃 1 

𝑄 3 = − 𝜁2 𝑃 4 

𝑄 4 = 𝜁2 𝑃 3 

(28) 

here 𝜁1 = [ ( 1 + 𝜒2 𝜒3 ) 𝜉2 1 + 𝜒3 𝜒5 𝜔 

2 
𝑛 
] ∕ 𝜉1 , 𝜁2 = [ ( 1 + 𝜒2 𝜒3 ) 𝜉2 2 − 𝜒3 𝜒5 𝜔 

2 
𝑛 
] ∕ 𝜉2 .

 1 , P 2 , P 3 and P 4 can be determined by the boundary conditions. 
Timoshenko nanobeams with two kinds of boundary conditions are

onsidered. One is a fixed–fixed nanobeam (FF) and the other is a can-
ilevered one (CA). The respective boundary conditions can be written
s 

 

 

 

 

 

𝑉 (0) = Θ̂(0) = 𝑉 (1) = Θ̂(1) = 0 ( 𝐹 𝐹 ) 

𝑉 (0) = Θ̂(0) = 

𝑑 ̂Θ(1) 
𝑑 ̂𝑥 

= 

𝑑 2 Θ̂(1) 
𝑑 ̂𝑥 2 

= 0 ( 𝐶𝐴 ) 
(29) 
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Table 1 

Different material parameters involved or used in this paper [10,49,50] . 

d a (nm) a 0 (nm) E b (GPa) 𝜈 𝜌(kg/m 

3 ) 𝜙b (100) (N/m) c 1(100) (nm) 

Au 0.2884 0.42 79 0.44 19,300 1.63 0.025 
Si 0.22 0.54 169 0.25 2330 2.2 –
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Fig. 3. The normalized 1st resonance frequency predicted by different beam models as 
a function of the height of a rectangular fixed–fixed gold nanobeam. The corresponding 
numerical results obtained by Park and Klein [15] is also given for comparison. 
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Substituting Eqs. (25) and (26) into Eq. (29) and combining with
q. (28) lead to the following frequency equations for two kinds of
anobeams, respectively, 

0 1 0 1 

𝜁1 0 𝜁2 0 

sinh ( 𝜉1 ) cosh ( 𝜉1 ) sin ( 𝜉2 ) cos ( 𝜉2 ) 

𝜁1 cosh ( 𝜉1 ) 𝜁1 sinh ( 𝜉1 ) 𝜁2 cos ( 𝜉2 ) − 𝜁2 sin ( 𝜉2 ) 

||||||||||||
= 0 ( 𝐹 𝐹 ) (30) 

nd 

0 1 0 1 

𝜁1 0 𝜁2 0 

𝜁1 𝜉1 sinh ( 𝜉1 ) 𝜁1 𝜉1 cosh ( 𝜉1 ) − 𝜁2 𝜉2 sin ( 𝜉2 ) − 𝜁2 𝜉2 cos ( 𝜉2 ) 

𝜁1 𝜉
2 
1 cosh ( 𝜉1 ) 𝜁1 𝜉

2 
1 sinh ( 𝜉1 ) − 𝜁2 𝜉

2 
2 cos ( 𝜉2 ) 𝜁2 𝜉

2 
2 sin ( 𝜉2 ) 

||||||||||||
= 0 ( 𝐶𝐴 ) 

(31) 

Solving Eqs. (30) and (31) numerically yield the angular resonant
requency 𝜔 n for the two kinds of nanobeams, which results in the n th
esonant frequency 𝑓 𝑛 = 𝜔 𝑛 ∕ 2 𝜋. 

. Results and discussions 

As mentioned earlier, for a Timoshenko nanobeam, not only the sur-
ace effect but also the shear deformation effect and the rotary inertia
ne on the flexural vibration behavior should be included. As a typi-
al example, golden and silicon nanobeams with (100) lateral surfaces
re investigated in this paper. According to Diao et al. [47] and Ols-
on and Park [48] , the isotropic surface relaxation parameter 𝜆 can be
mpirically expressed as 𝜆 = 1 − 𝑐 1 ∕ 𝐷 ( c 1 > 0, D = h or d ). When the char-
cteristic length D is large enough, 𝜆 tends to be unity. The value of c 1 
nd the other material parameters involved in the following theoretical
nalysis are listed in Table 1 [10,49,50] . 

.1. The case of a fixed–fixed nanobeam 

The normalized 1st resonant frequency 𝑓 1 ∕ 𝑓 𝑐 1 as a function of the
eight h of a fixed-fixed gold (Au) nanobeam is predicted by different
lastic models as shown in Fig. 3 , including the classical Timoshenko
eam model, the Euler–Bernoulli nano-beam model and the Timoshenko
ano-beam model. 𝑓 𝑐 1 = 4 . 73 2 ∕ ( 2 𝜋

√
𝜒5 ) denotes the 1st resonant fre-

uency predicted by the classical Euler–Bernoulli beam theory. The nu-
erical results given by Park and Klein [15] are also given for com-
arison. The length of the rectangular cross-section nanobeam is fixed
 = 232 nm and the width of the cross-section equals the height i.e., b = h .
he other material parameters of Au are listed in Table 1 . It is clearly
hown that the theoretical results predicted by both models with surface
ffect are qualitatively consistent with the numerical ones. The normal-
zed 1st resonant frequency increases with a decreasing height h not only
or an Euler–Bernoulli nanobeam but also for a Timoshenko one. When
he height of the nanobeam is relatively small, less than 12 nm in this
ase, the results predicted by both the Euler–Bernoulli nanobeam model
nd the Timoshenko one agree well with each other but deviates signif-
cantly from the classical Timoshenko result. It demonstrates that only
he surface effect is obvious while the shear deformation effect and the
otary inertia one can be neglected for nanobeams with a relatively small
eight and a large aspect ratio, i.e., l / h ≥ 19.3 in this case. When the
eight of the Au nanobeam is larger than 12 nm, the Timoshenko result
25 
ith surface effect deviates obviously from the Euler–Bernoulli one and
he classical Timoshenko result. It means that not only the surface ef-
ect but also the shear deformation one and the rotary inertia one would
how significant influence on the vibration behavior of a beam in this re-
ion, i.e., an intermediate nano-height and an intermediate aspect ratio,
.e., 7.7 ≤ l / h ≤ 19.3 in this case. When the height of the Au nanobeam
s beyond about 30 nm, the Timoshenko result including surface effect
pproaches to the result predicted by the classical Timoshenko beam
heory but deviate more significantly from the Euler–Bernoulli result
ncluding surface effect. It denotes that the surface effect in this region
an be neglected while the shear deformation effect and the rotary in-
rtia one should be considered for nanobeams with a relatively large
eight and a small aspect ratio, i.e., l / h ≤ 7.7 in this case. 

Comparing the Euler–Bernoulli nanobeam result with the Timo-
henko one demonstrates that the shear deformation effect and the ro-
ary inertia one would decrease the resonant frequency of a stubby
anobeam. The 1st resonant frequency predicted by the Timoshenko
anobeam model is reduced in contrast to the resonant frequency 𝑓 𝑐 1 
redicted by the classical Euler–Bernoulli beam when the aspect ratio
s relatively small. However, when the aspect ratio becomes large, i.e.,
he case with a decreasing height, the 1st resonant frequency of a Tim-
shenko nanobeam is larger than 𝑓 𝑐 1 . An interesting fact is that fixed–
xed nanobeams would experience a transition from a high frequency
o a low one in contrast to the classical Euler–Bernoulli beam result,
hich is essential a competition result between the surface effect and

he shear deformation one and rotary inertia one. The transition point
n this case is h = 19.5 nm or 𝑙∕ ℎ = 11 . 9 , where the resonant frequency
redicted by the Timoshenko nanobeam model equals to that given by
he classical Euler-Bernoulli beam model. 

.2. The case of a cantilevered nanobeam 

The resonant frequency of cantilevered silicon (Si) nanobeams as a
unction of the nanobeam height is analyzed in this sub-section with
hree kinds of different models, i.e., the classical Timoshenko beam
odel, the Euler–Bernoulli nano-beam model and the Timoshenko nano-
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Fig. 4. The normalized 1st resonance frequency predicted by different beam models as a 
function of the height of a rectangular cantilevered silicon nanobeam. The finite element 
results obtained by Feng et al. [51] is also given for comparison. 
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eam model, as shown in Fig. 4 , where the finite element result calcu-
ated by Feng et al. [51] is also given for comparison. The cross section
f the analyzed nanobeam is rectangular with a fixed length l = 1000
m and the height of the nanobeam h varying from 30 nm to 240 nm.
 

𝑐 
1 = 1 . 875 2 ∕ ( 2 𝜋

√
𝜒5 ) denotes the 1st resonant frequency obtained by

he classical Euler–Bernoulli cantilevered beam, which is adopted as
 normalized parameter in Fig. 4 . Generally speaking, the results pre-
icted by the Euler–Bernoulli nano-beam model and the Timoshenko
ne agree qualitatively with the numerical ones [51] . Comparing with
he result predicted by the classical Timoshenko beam model, it is clearly
hown that the surface effect would dominate when the height of the
antilevered nanobeam is relatively small (corresponding to a relatively
arge aspect ratio), i.e., h ≤ 90 nm or l / h ≥ 11.1 in this case. While the
hear deformation effect and the rotary inertia one would play a dom-
nant role when the height of the cantilevered nanobeam is relatively
arge (corresponding to a relatively small aspect ratio), i.e., h ≥ 150 nm
r l / h ≤ 6.7 in this case. In between, not only the surface effect but also
he shear deformation effect and the rotary inertia one should be con-
idered, which can be concluded from the comparison among the three
inds of theoretical predictions. 

Comparing the normalized resonant frequency of fixed–fixed
anobeams shown in Fig. 3 with that of cantilevered ones shown in
ig. 4 yields that the surface effect would increase the resonant fre-
uency of a fixed–fixed nanobeam while it would decrease the resonant
requency of a cantilever one, in contrast to the results predicted by
he classical Timoshenko beam model. It is mainly because the forces in
he same direction would cause different directions of curvature in the
wo structures with different boundary conditions, similar to the phe-
omenon happening for the effective Young’s modulus of nanobeams
ith different boundary conditions [13–15] . 

. Conclusions 

The dynamic behavior of Timoshenko nanobeams is analyzed by a
ecently developed elastic theory for nanomaterials. In contrast to the
uler–Bernoulli nanobeams, not only the surface effect induced by the
ano-scale characteristic length but also the shear deformation effect as
ell as the rotary inertia one yielded by in-plane shear stress is con-

idered. The effect of different boundary conditions on the dynamic be-
aviors of nanobeams is also investigated, including a fixed–fixed case
nd a cantilevered one. It is found that for nanobeams with a fixed ax-
al length, the surface effect will significantly influence the resonant
requency when the height of the nanobeam is relatively small, i.e., a
26 
elatively large aspect ratio; The shear deformation effect as well as the
otary inertia one would show obvious influence on the resonant fre-
uency in contrast to the case of Euler–Bernoulli beam when the height
f the nanobeam is relatively larger, i.e., a relatively small aspect ratio;
etween the two cases, not only the surface effect but also the shear
eformation effect as well as the rotary inertia one would influence the
esonant frequency of nanobeams. Furthermore, surface effect would
ead to opposite varying trends of resonant frequency for nanobeams
ith different boundary conditions. In the case of nanobeams with a
xed–fixed boundary condition, surface effect would improve the res-
nant frequency; while for cantilevered nanobeams, the resonant fre-
uency would be reduced by the surface effect. The main reason is due
o the different curvature directions leaded by forces of the same di-
ection. The shear deformation effect and the rotary inertia one would
onsistently lower the resonant frequency for both fixed-fixed and can-
ilevered nanobeams. The present results should be helpful for precise
esign of nanobeam-based nano-devices and useful for accurate evalu-
tion of measured results of nano-instruments. 
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