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Aerodynamic measurement of a large aircraft model
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Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical sig-
nificance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack
theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are
especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the
draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation;
further, the solutions show that the signals of each rod are a combination of aerodynamic signals (with a constant value) and
sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation
techniques are also found to be achievable via the flat part of the signals.

Keywords: hypersonic, aerodynamic measurement, theoretical study, vibration

PACS: 47.40.Ki, 46.40.−f, 46.80.+j DOI: 10.1088/1674-1056/26/11/114702

1. Introduction
Accurate aerodynamic measurements in the hypersonic

flow of an in-tunnel full-scale aircraft model are important,[1]

but are challenging. The measurement of a full-scale aircraft
model requires a sufficiently large wind tunnel platform with
excellent free stream quality and an innovative support form
for the model.

The shock tunnel is an important piece of ground equip-
ment in the aerospace research field. The current tunnel limits
the size of the aircraft model,[2,3] but can be used to provide
a high total pressure and a high total temperature at relatively
low cost. The traditional shock tunnel is only capable of sat-
isfying the measurement of models several hundred millime-
ters in length, which renders experiments on full-scale models
impossible.[4–7] The long-test-duration hypersonic detonation-
driven shock tunnel[8] (JF12 shock tunnel) allows full-scale
model measurement; the exit diameter of its nozzle is 2.5 m
and the diameter of its test section is 3.5 m. It is capable of
reproducing pure air flow with Mach numbers from 5–9 at al-
titudes of 25–50 km.

An effective support form is also crucial for aerodynamic
measurements of a full-scale aircraft model in the shock tun-
nel. As a typical piece of impulse equipment, the running time
of the shock tunnel is very short, generally between approxi-
mately 2 and 100 ms,[4,5] which makes the accurate measure-
ment of the aerodynamic force of any model extremely dif-
ficult. A running time of several minutes was reported for
the conventional tunnel;[9] this duration was found to be far
longer than the vibration period of a force measurement struc-

ture. Further, the effects of damping were very apparent and
the initial vibrations of the force measurement system were
decayed. The whole structure can reach the force equilibrium
state resulting in quasi-static (and thus highly accurate) mea-
surements. In the shock tunnel, conversely, vibrations, bal-
ance, and support of the model are triggered by the impulse
force due to the strong primary shock[10–14] during nozzle
start-up. The damping effects can be neglected as the order
of the magnitude of the test time is identical to that of the
force measurement structure period. To this effect, aerody-
namic force balance usage is a dynamic measurement process.

Several periods of signals are essential for dynamic signal
processing and aerodynamics calculation. Individual signals
sensed by the balance form a combination of signals corre-
sponding to the aerodynamic force and vibration. Removal of
the vibrational signals represents an essential and critical step
processing force signals in the shock tunnel. Several periods
(typically more than three) of signals should be tested to en-
sure accuracy. However, the natural frequencies of a measure-
ment system rely heavily on the support form. More periods of
signals would enhance the accuracy of peeled-off vibrational
signals.[15,16] Thus, the support form of the model largely de-
termines the overall accuracy of force measurements.

Rear sting supports are the most commonly used support
forms in shock tunnels.[17–25] However, the cantilever-beam
type limits the frequency, so the mass of the model is limited to
a few hundred grams and the length magnitude within the mil-
limeter level. The mass of a full-scale aircraft model is close to
1000 kg. The vibrational frequencies markedly decrease as the
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model mass increases in these setups. The equation of the fre-
quency for the spring-vibrator model suggests that ω ∝ M−

1
2 ,

that is the frequency decreases by two orders of the magnitude
as the mass varies from 100 grams to 1000 kg. Side support
is another commonly used method,[26] which can supply suffi-
cient stiffness in the axial direction, which is typically applied
to measure the engine thrust. Again, with increasing model
mass (particularly for a full-scale aircraft model with an in-
tegrated engine), the side support introduces poor stiffness in
both side and normal directions.

Researchers have recently developed a novel aerody-
namic force measurement method for large aircraft models in
the JF12 shock tunnel.[25] The applicable model mass is about
300–1000 kg and its length is about 3–5 m. The aircraft model
used to explore this method was hung via the draw-rod sys-
tem (Fig. 1), which includes several slender rods (typically
more than six) connected to the model at different positions.
Force transducers were linked to both the rods and the rigid
base around the wall of the test section. In contrast to the
single-surface support form of the rear sting support, the draw-
rod system provides multipoint support and superior frequency
performance.

The preliminary study on this novel aerodynamic mea-
surement method merits some further clarification. The forms
of the force signals, for example, are unclear. Effective re-
moval of vibrational signals depends heavily on the signal
forms, which are closely related to the overall feasibility and
the accuracy of the method. The technique for obtaining the
aerodynamics from the force signals should also be further ex-
plored. Theoretical support still has these two essential prob-
lems. In this study, the theory of static force vectors was inves-
tigated in this regard as a series of basic dynamic measurement
concepts. Further assessment under the structural dynamics
theory was also conducted to investigate the working process
of the draw-rod system in the shock tunnel. A few relevant
theoretical solutions were proposed, as discussed below.

2. Superposition of forces and moments
The superposition of forces and moments is based on the

principle of equilibrium within three dimensional force sys-
tems i.e., the static theory. It is generally applied in low-speed
tunnels with a wire-support system.[27,28] In this study, we also
found that it is related to the dynamic aerodynamic measure-
ments.

Before testing the tunnel, the resultant forces and gravity
of the model were considered to be in equilibrium as shown in
Fig. 1(a) and expressed in Eq. (1). 𝐺 is the gravity vector and
𝑇i is the inner force vector of each rod. 𝑅G is the position vec-
tor from the original point to the acting position of gravity. 𝑅i

is the position vector from the original point to the acting po-
sition of the inner force of each rod. During testing, the forces

on each rod change and the resulting forces, gravity and aero-
dynamic forces are in equilibrium as shown in Fig. 1(b) and
expressed in Eq. (2). 𝐷 and 𝐿 are the aerodynamic drag and
lift of the aircraft model respectively, 𝑀 is the aerodynamic
moment of the aircraft model during the tunnel test.

𝐺+∑𝑇i = 0, (1a)

𝑅G×𝐺+∑𝑅i ×𝑇i = 0, (1b)

𝐺+𝐿+𝐷+∑
(
𝑇i +∆𝑇i

)
= 0, (2a)

𝑅G×𝐺+𝑀 +∑𝑅i ×
(
𝑇i +∆𝑇i

)
= 0. (2b)

Equations (1) and (2) express the aerodynamic forces and mo-
ments and combine to form Eq. (3). ∆Ti is the variation of the
force for each rod which can be output by force transducers via
a data acquisition instrument 𝑟i is the direction vector of the
corresponding rod, which can be extracted via the coordinate
system

𝐿+𝐷 =−∑∆𝑇i =−∑∆Ti𝑟i , (3a)

𝑀 =−∑𝑅i ×∆𝑇i =−∑∆Ti
(
𝑅i ×𝑟i

)
. (3b)
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Fig. 1. (color online) (a) Force analysis prior to tunnel testing. (b) Force
analysis during testing.

3. Investigation of dynamic measurement
The aerodynamic force measurements in the shock tun-

nel are a dynamic process. Thus, the force measurement the-
ory of the draw-rod system in a shock tunnel is characterized
by structural dynamics. The dynamic properties of the aircraft
model and rods can be investigated separately. The ultimate
objective of applying dynamic theory is to obtain the aerody-
namic force with the measured signals of each rod.

The vibration of the whole system can be roughly divided
into two stages corresponding to the test process: the forced
impulse stage and the steady vibration stage.Signals can be
efficiently acquired during steady vibration of the draw-rod
system. The following basic assumptions were applied:

i) The aircraft model can be idealized as a rigid body.
ii) The ring support can be considered a rigid base and a

motionless part due to its very strong structure and large mass.
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iii) The mass of all rods is below 2% of the mass of
the whole system (including aircraft model, rods and ring sup-
port), which can be neglected in forming the mass matrix.

iv) Small deformation assumption and linear elasticity
are valid during system vibration.

v) The forces during the steady vibration stage are con-
stant.

vi) The effects of damping can be neglected.
The vibration of the whole system can be simplified as a

multidegree-of-freedom structure as describedby[29]

[𝑀 ]{�̈�}+[𝐾]{𝑦}= {𝑃 (t)}, (4)

[𝑀 ] is the mass matrix of the system and it is composed of the
model mass and inertia moments

[𝑀 ] = diag[m m m Jx Jy Jz], (5)

{𝑦} is the displacement vector of the aircraft model

{𝑦}= [ux uy uz θx θy θz]
T, (6)

[𝐾] is the stiffness matrix[30] of the whole system

[K] =
NR

∑
r=1

[kr], (7a)

[𝑘r]6×6 =

[
[𝐸]3×3
[𝐶i]3×3

]
ErAr

Lr
[𝐵r]3×3[[𝐸]3×3− [𝐶r]3×3], (7b)

[𝐵r]3×3 =

 lrlr lrmr lrnr
mrlr mrmr mrnr
nrlr nrmr nrnr

 , (7c)

[𝐶r]3×3 =

 0 −zr yr
zr 0 −xr
−yr xr 0

 . (7d)

lr, mr, nr are the direction cosines of each rod. xr, yr, zr are the
coordinates of the connecting positions of each rod. [𝐵r] is the
orientation matrix; it is related solely to the orientations of the
rods. [𝐶r] is the action point matrix, which is comprised solely
of the connecting points of each rod and the aircraft model.

3.1. Theoretical solutions

The natural frequencies were determined via the proper-
ties of the force measurement structure, which can be solved
via the following free vibration equation:

[𝑀 ]{𝑦}+[𝐾]{𝑦}= {0}. (8)

Assuming that

{𝑦}= {𝑋}sin(ωt +φ), (9)

and substituting Eq. (9) into Eq. (8)

([𝐾]−ω
2[𝑀 ]){𝑋}= {0}, (10)

∣∣[𝐾]−ω
2[𝑀 ]

∣∣= 0. (11)

Let the determinant of the coefficient matrix
∣∣[𝐾]−ω2[𝑀 ]

∣∣
be zero; the eigenvalues ωi of the matrix are natural frequen-
cies. The characteristic vectors consist of the modal matrix
{𝑋}.

Let [𝑋]T act on Eq. (4) by left multiplication; then the
regular coordinate transformation is applied in Eq. (12)

{𝑦(t)}= [𝑋]{𝜂(t)}, (12)

so that the forced vibration equation can be written as follows:

[𝑋]T[𝑀 ][𝑋]{𝜂(t)}+[𝑋]T[𝐾][𝑋]{𝜂(t)}= [𝑋]T{𝑃 (t)}.
(13)

The following also holds:

{𝐹p(t)}= [𝑋]T{𝑃 (t)}, (14a)

[𝑀p] = [𝑋]T[𝑀 ][𝑋], (14b)

[𝐾p] = [𝑋]T[𝐾][𝑋], (14c)

where {𝐹 (t)} is the generalized force vector. [𝑀p] and [𝐾p]

are the generalized mass matrix and the stiffness matrix, re-
spectively. Both [𝑀p] and [𝐾p] are diagonal matrices, so
equation (13) can be decoupled as follows:

[𝑀p]{𝜂(t)}+[𝐾p]{𝜂(t)}= {𝐹p(t)}. (15)

The decoupled form of Eq. (15) for generalized displacements
can be written as follows:

η̈i(t)+ω
2
i ηi(t) =

1
Mp(i, i)

Fpi(t), (16)

ω
2
i =

Kp(i,i)

Mp(i,i)
. (17)

The solution of Eq. (16) is given by

ηi(t) =
1

Mp(i,i)ωi

∫
τ

0
Fi(τ)sin[ωi(t− τ)]dτ. (18)

For the actual condition in the shock tunnel, the form of Fi(τ)

is a step load with the amplitude denoted as Fi

ηi(t) =
Fi

Mp(i,i)ω
2
i
(1− cosωit). (19)

The displacement vector of model {𝑦(t)} can be solved via
Eqs. (12) and (19).

3.2. Order analysis and rodsignals

The rods used in the tests are uniform and have equal
cross sections. The dynamic process belongs to one-
dimensional and longitudinal vibration and can be expressed
as follows:[29]

ρA
∂ 2u
∂ 2t

= EA
∂ 2u
∂ 2x

+P0δ (x−l). (20)
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The symbol u(xt) is the axial displacement and x is the axial
direction of the rod. Symbol t denotes the physical time and A
is the cross-sectional area of the rod. E is the elasticity mod-
ulus of the rod and P0 is its exciting force. The term ρA ∂ 2u

∂ 2t

corresponds to the inertia force of the unit length EA ∂ 2u
∂ 2x cor-

responds to the unit length inertia force, and P0δ (x−l) is the
outer excitation force.

Natural frequencies:[29]

ωi =
(2i−1)π

2l

√
E
ρ
, i = 1,2,3, . . . (21a)

Normal modes:

Ui(x) =

√
2

ρAl
sin

(2i−1)πx
2l

, i = 1,2,3, . . . (21b)

Generalized force:

qi(t) =
∫ l

0
P(x, t)Ui(x)dx. (21c)

Normal coordinate:

ηi(t) =
1
ωi

∫ t

o
qi(τ)sin[ωi(t− τ)]dτ. (21d)

Displacement solution:

u(x, t) =
∞

∑
i=1

√
2

ρAl
sin
(
(2i−1)πx

2l

)
ηi(t). (21e)

Based on Eqs. (21a)–(21e), the detailed form of u(xt) is given
by

u(x, t) =
N

∑
i=1

2
ρAl

P0

ω2
i

sin
(2i−1)π

2
sin

(2i−1)πx
2l

× [1− cos(ωit)]. (21f)

The magnitude analysis was conducted for each term in
Eq. (20). The orders or the values of each term were evaluated
according to the results of the previous tests. Generally, the
sum of the first ten modes is sufficient to replace the whole
vibration.

ρ = 7850 kg/m3, (22a)

d = 0.03 m, A =
π

4
d2 = 7.06×10−4 m2, (22b)

l ∼ 1 m, (22c)

f ∼ 30 Hz, ω = 2π f ∼ 189 rad/s,

P0 ∼ 10000 N, (22d)

N ∼ 10,

sin
(2i−1)π

2
sin
(
(2i−1)πx

2l

)
[1− cos(ωit)]∼ 1. (22e)

Per Eqs. (22a)–(22e), the displacement of the origin is

u∼ 10−7 m. (23)

The extension length ∆Lr of each rod is close to the displace-
ment of connecting the position of the rods and aircraft model
and is expressed as follows:

∆Lr ∼ u∼ 10−7 m. (24)

The characteristic time equal to the vibrational period is

tc ∼
1
f
∼ 1

30
s. (25)

The order of the acceleration is

ac ∼
∆Lr

tc
∼ 10−4 m/s2. (26)

The order of the inertia force is

mac ∼ 10−3 N. (27)

The ratio of the inertia force and the outer excitation force is

mac/P0 ∼ 10−7. (28)

Thus, the inertial force of the rods can be neglected because it
is much smaller than the outer excitation forces. Equation (21)
can be simplified as follows:

ErAr
∆Lr

Lr
= P0. (29)

The extension lengths can be calculated from the displacement
vector {𝑦(t)}

∆Lr = [−lr−mr−nr][𝐸3×3−𝐶3×3]{𝑦(t)}. (30)

The inner forces of each rod are

Nr =
ErAr

Lr
[−lr−mr−nr][𝐸3×3−𝐶3×3][𝑋]6×6{𝜂(t)}6×1,

(31)
and the composition of Nr is

Nr =
ErAr

Lr
[𝑆]1×6{𝜂(t)}6×1, (32a)

[𝑆]1×6 = [−lr−mr−nr][𝐸3×3−𝐶3×3][𝑋]6×6. (32b)

The inner force Nr is a combination of a constant value (flat
signals) and some sine functions as per the detailed form of
{𝜂(t)}6×1 given in Eq. (19), so the form of the signals of each
rod has been identified.

3.3. Methods of dynamic signals processing

Signal processing is a crucial issue[19–21] inherent to the
force measurement in shock tunnels. The signal compositions
for each rod in the draw-rod system were determined as de-
scribed above; the methods of dynamic signals in rod process-
ing were then established to calculate the aerodynamics.

The sinusoidal signals can be removed via signal process-
ing (e.g., the LDSE method). The generalized displacement
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given in Eq. (19) is a constant (independent of time), as in-
dicated by Eq. (33). The relationship between the displace-
ment and the generalized displacement is shown in Eq. (34).
It should be noted that η ′i and {𝑦′} are independent of t.

η
′
i =

Fi

Mp(i, i)ω2
i
=

Fi

Kp(i, i)
, (33a)

{𝜂′}= [𝐾p]
−1{𝐹 }, (33b)

{𝑦′}= [𝑋]{𝜂′}. (34)

The extension length form of each rod corresponding to the
processed signals is similarly given in Eq. (35). The internal
force of each rod can be obtained as

∆lr
Eq. (30)
====== −[lr mr nr][𝐸3×3−𝐶3×3]{𝑦′}
Eq. (12)
====== −[lr mr nr][𝐸3×3−𝐶3×3][𝑋]{𝜂′}
Eq. (33b)
====== −[lr mr nr][𝐸3×3−𝐶3×3][𝑋][𝐾p]

−1{𝐹 }
Eq. (14c)
====== −[lr mr nr][𝐸3×3−𝐶3×3][𝑋]([𝑋]−1[𝐾]−1

×([𝑋]𝑇 )−1)[𝑋]𝑇 {𝑃 }
= −[lr mr nr][𝐸3×3−𝐶3×3][𝐾]−1{𝑃 }, (35)

Nr =−
ErAr

Lr
[lr mr nr][𝐸3×3−𝐶3×3][𝐾]−1{𝑃 }. (36)

The resulting force can be written as follows:

[FN ] = [FNx FNy FNz MNx MNy MNz]
T

=
nR

∑
r=1

[[𝐸][𝐶]]TNr[lr mr nr]
T. (37)

Further,

[𝐹N ] = −
nR

∑
r=1

ErAr

Lr
[[𝐸][𝐶]]T

[
lr mr nr

]T [ lr mr nr
]

× [[𝐸]− [𝐶]][𝐾]−1{𝑃 }
Eq. (7b)
====== −

nR

∑
r=1

[kr][𝐾
−1]T{𝑃 }

Eq. (7a)
====== −[𝐾][𝐾]−1{𝑃 (t)}

= −{𝑃 (t)}. (38)

Thus, the method to obtain the aerodynamics is com-
plete. Each experimental signal contains a flat signal and some
sine signals. Numerical methods such as LDSE, as mentioned
above, can be applied to extract sine signals as vibrational sig-
nals. The frequencies of sine signals are equal to the natural
frequencies of the structure. The remaining parts of signals
are the flat signals which correspond to a constant force as the
inner forces of the rods. The superposition of forces and mo-
ments can then be applied, where the constant forces of each
rod are similar to the static force ∆Ti in Eqs. (3a) and (3b).
The resultant ∆Ti value obtained in Eqs. (3a) and (3b) equals
the excitation force, i.e., the aerodynamic force.

3.4. Verification by shock tunnelexperiments

The signals of the inner forces are a combination of a con-
stant value (flat signals) and some sine signals. Figure 2(a)
presents the signals measured by experiments in a shock tun-
nel. The signals numbered CH9 and CH10 represent the inner
forces of the rods along the axial direction. The signal compo-
sitionswere analyzed by LDSE.[15,16] The compositions of sig-
nals CH9 contain flat signals (with an average value of about
1.2) and two sinusoidal signals with frequencies of 23.8 Hz
and 80.2 Hz, as shown in Fig. 2(b). These signal compositions
validate the theoretical predictions provided above.
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Compensated signal and its average

Vibration signal 1, Frequency is: 23.8

Vibration signal 2, Frequency is: 80.2
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(b)

Fig. 2. (color online) (a) Experimental signals of the rods at tail;
(b) compositions of CH9 signals (corresponding to the rod at tail).

The theory that sine signal frequencies equal the natural
frequencies of the structure was also validated by experiments.
The natural frequencies were measured by knocking experi-
ments. The signals were acquired by accelerometers. The
Fourier analysis was applied to measure the natural frequen-
cies. Figure 3 presents the signals of accelerometers along the
axial direction with a frequency of 26 Hz. The compositional
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analysis suggests that 23.8 Hz is the main frequency of the in-
ner force signals, which is very close to 26 Hz. The differences
in the frequency values may be due to the signal range selected
for LDSE and the position differences of the accelerometers
and a force transducer.

0
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Fig. 3. Signals of accelerometers in the axial directions and Fourier
analysis.

4. Conclusion
In this study, theoretical support was established for a

novel aerodynamic force measurement method applicable to
large aircraft models for JF12 shock tunnel tests. The draw-
rod system and slender rods were modeled and verified nu-
merically.

A physical model was set up for the draw-rod system,
and its dynamic properties were analyzed via structural dy-
namics. A detailed order analysis was also conducted to sim-
plify the vibrational equation of the rods. We found that the
inertia force of the rods is much smaller than the outer excita-
tion force. The signals of each rod were identified as a com-
bination of a constant value (flat signal) and sine signals. The
experimental results also support this theoretical conclusion.

A method for signal processing and aerodynamics calcu-
lation was also proposed here, in which each experimental sig-
nal contains a flat signal and some sinusoidal signals. The sine
signal frequencies are equal to the natural frequencies of the
structure. Vibrational signals can be removed; the remainders
are flat signals, which can be converted to a constant force as
the inner forces of the rods. The resultant inner constant forces
based on the superposition of forces and moments are equal to
the aerodynamic forces. These theoretical predictions were
validated by experimental tests in an actual shock tunnel.

In the future, we plan to further investigate the interfer-
ence induced by the rods on aerodynamic measurements.
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