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ABSTRACT

Di�erent from previous two-dimensional thermal weight function (TWF)
method, a three-dimensional (3D) TWF method is proposed for solving
elliptical interface crack problems in bimaterial structures under a transient
thermal loading. The present 3D TWF method based on the Betti’s reciprocal
theorem is apowerful tool for dealingwith the transient thermal loadingdue to
the stress intensity factors (SIFs) of whole transient process obtained through
the static �nite element computation. Several representative examples
demonstrate that the 3D TWF method can be used to predict the SIFs of
elliptical interface crack subjected to transient thermal loading with high
accuracy. Moreover, numerical results indicate that the computing e�ciency
can be enhanced when dealing with transient problems, especially for large
amount of time instants.
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Introduction

In recent years, composite materials that can cope with extreme thermal environmental conditions have
been given considerable attention in structural applications. Lots of composite materials and structures
used in combustion chambers, turbines, nuclear reactors, multilayer ceramic structures, and electronic
packaging structures are subjected to transient thermal loadings during their service life. Unfortunately,
the cracks at the interface between the dissimilar materials a�ect the strength of the composite structure
signi�cantly due to the high thermal stresses near the interface crack tips which arises from the thermal
mismatch. From the structural integrity of composite materials point of view, the accurate assessment
of interface fracture behavior is very important.

In the classical study of thermoelastic crack problems, a lot of studies have been conducted, both
analytically and numerically. The analytical solutions are available only for very limited cases [1–14],
wherein the cracked bodies are assumed to be in�nite and subjected to special thermal loading
conditions. It is di�cult to derive the exact solutions for cracked bodies of �nite dimension. On
numerical aspect, a lot of studies have been performed based on the �nite element method [15–25]
and the boundary element method [26–29] to solve the interface crack problems of �nite dimension.
The methods mentioned above may be categorized as the direct methods, which have a common
disadvantage. Repeated �nite element analysis or boundary element analysis will be needed for the same
cracked body subjected to di�erent thermal loadings, especially when dealing with transient thermal
problems wherein a large amount of computation works will be carried out for a great number of time
instants and for di�erent thermal shock conditions [30, 31].

CONTACT Guozhong Chai chaigz@zjut.edu.cn Room A706, College of Mechanical Engineering, Zhejiang University of
Technology, Road Chaowang No. 18, Hangzhou, Zhejiang Province, China.
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The thermal weight function (TWF) method proposed by Tsai and Ma [32] provides an alternative
e�cient method to deal with a homogeneous cracked body under transient thermal loadings. The TWF
method is extended from the weight function concept for mechanical loading. The weight function
concept was introduced by Bueckner [33] and Rice [34]. Subsequently, many contributors extended the
theory of weight function to amore generalized form. To distinguish from the TWF, the weight function
for mechanical loading could be named as mechanical weight function, which provides an e�cient
approach for calculating the stress intensity factors (SIFs) for a cracked body subjected to mechanical
loadings. The unique advantage of this method is that the weight function is a universal function for
a given crack con�guration and body geometry. Once the weight function is obtained from a speci�c
crack tip in a given body, the SIFs for that crack tip can be determined directly for any other complicated
mechanical loading by a simple integration [35]. However, the repeated stress analysis, to obtain the
tractions along the crack line for an uncracked body, is inevitable for dealing with the transient thermal
problems [36]. Distinguished from the direct methods and the mechanical weight function method, the
TWF method can be applied to solve the transient problems e�ciently. The TWF is also a universal
function which is dependent only on the crack con�guration and body geometry and independent of
thermal loading. Since the TWF is independent of time during thermal shock, the whole variation of
the transient SIFs can be directly determined through integration of the products of the TWF and the
transient temperature �elds. The amount of calculation can be greatly reduced because the repeated
determination of the distributions of stress or displacement �elds for individual time instants is avoided.

In view of these advantages and considering that most cracks in engineering practice are three-
dimensional (3D) cracks, this paper aims to propose a 3D TWF method to deal with thermal problems
in the elliptical interface crack system of bimaterial structures. The basic equation of the present 3D
TWF method for 3D interface crack problems is derived based on the Betti’s reciprocal theorem. The
multiple virtual crack extension technique is applied to calculate the SIF distributions along 3D interface
crack fronts subjected to thermal loading. The present method is validated through analyzing several
representative examples based on the assumption that the thermal–elastic problem is decoupled and
quasi-static, the thermoelastic constants are independent on the temperature, and the crack does not
a�ect the temperature distribution. In addition, the e�ect of the crack depth on the SIFs has been
analyzed, and some useful results for engineering application have been obtained.

Formulation

The 3DTWF for an interface crack of bimaterial can be determined by a known solution of fundamental
reference loading system. Consider the geometrically equivalent con�gurations shown in Figures 1a
and 1b. These con�gurations are subjected to prescribed traction t∗ on boundary

∑

t, prescribed
displacement u∗ on boundary

∑

u, and body force f
∗ and thermal load2∗ are designated as case (r) and

(p), respectively. Here, the thermal load2∗ = T0 −T, T0 is a reference temperature and T is the current
temperature. The case (r) is the fundamental reference loading system wherein the SIFs variations of
Mode I, Mode II, and Mode III along the interface crack front are known. The case (p) is an unknown
loading system wherein the SIFs along the crack front are to be solved.

Using Betti’s reciprocal theorem for the geometry with interface crack face S, one obtains
∫

6t

t∗(r) · u(p)(S)d6 −
∫

6u

u∗(r) · t(p)(S)d6

+
∫

V
f ∗(r) · u(p)(S)dV +

2
∑

j=1

∫

Vj

αj2
∗(r) · σ

(p)
kk (S)dV

=
∫

6t

t
∗(p)(S) · u(r)(S)d6 −

∫

6u

u∗(p)(S) · t(r)(S)d6

+
∫

V
f ∗(p)(S) · u(r)(S)dV +

2
∑

j=1

∫

Vj

αj2
∗(p)(S) · σ

(r)
kk (S)dV (1)
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Figure 1. Con�gurations: (a) fundamental reference loading system (r) and (b) loading system (p) to be solved.

where αj is the thermal expansion coe�cient, Vj is the volume of the cracked body surrounded by
the surface

∑

, and the subscripts j = 1 or 2 refer to the material above or below the crack plane,
∑

=
∑

t

⋃∑

u. The repeated indices imply the summing over their range.
If the interface crack face has a virtual crack extension 1S, the original traction on 1S in system (r)

can be treated as a part of traction t∗(r) for the new system. The opposite traction is applied on the crack
face 1S to keep the crack opening displacements to be 0. Applying Betti’s reciprocal theorem for the
geometry with the current crack face S + 1S, we can get an equation in Taylor expansion as

∫

6t

t∗(r) ·

[

u(p)(S) +
∂u(p)

∂S
1S

]

d6 +
∫

61S

t∗(r) ·

[

u(p)(S) +
∂u(p)

∂S
1S

]

d6

−
∫

6u

u∗(r) ·

[

t(p)(S) +
∂t(p)

∂S
1S

]

d6

+
∫

V
f ∗(r) ·

[

u(p)(S) +
∂u(p)

∂S
1S

]

dV +
2
∑

j=1

∫

Vj

αj2
∗(r) ·

[

σ
(p)
kk (S) +

∂σ
(p)
kk

∂S
1S

]

dV

=
∫

6t

[

t∗(p)(S) +
∂t∗(p)

∂S
1S

]

· u(r)(S)d6 −
∫

6u

[

u∗(p)(S) +
∂u∗(p)

∂S
1S

]

· t(r)(S)d6

+
∫

V

[

f ∗(p)(S) +
∂f∗(p)

∂S
1S

]

· u(r)(S)dV

+
2
∑

j=1

∫

Vj

[

αj2
∗(p)(S) +

∂(αj2
∗(p))

∂S
1S

]

· σ
(r)
kk (S)dV (2)

Di�erentiating Eq. (1) with respect to S yields

1

1S

[

−
∫

61S

t∗(r) · u(p)d6

]

=
∫

6t

t∗(p) ·
∂u(r)

∂S
d6 −

∫

6u

u∗(p) ·
∂t(r)

∂S
d6

+
∫

V
f ∗(p) ·

∂u(r)

∂S
dV +

2
∑

j=1

∫

Vj

αj2
∗(p) ·

∂σ
(r)
kk

∂S
dV (3)

By considering thermal loading, Eq. (3) becomes

1

1S

[

−
∫

61S

t∗(r) · u(p)d6

]

=
2
∑

j=1

∫

Vj

αj2
∗(p) ·

∂σ
(r)
kk

∂S
dV (4)
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374 H. WU ET AL.

The stresses, σyy, σxy, and σyz, in the vicinity of the crack front can be expressed in local crack tip
coordinate system as [37]:

(

σyy + iσxy
)

θ=0
=

K1 + iK2√
2πρ

(

ρ

l0

)iε

σyz(ρ, 0
+) =

(

0,
−KIII√
2πρ

)

(5)

σyz(ρ, 0
−) =

(

0,
KIII√
2πρ

)

where i =
√

−1, ρ and θ are the polar coordinates, and the values 0+ and 0− of θ denote the upper and
lower crack faces, respectively. The bimaterial constant ǫ is de�ned as

ε =
1

2π
ln

(

κ1µ2 + µ1

κ2µ1 + µ2

)

(6)

where κj = 3− 4νj for plane strain and
(

3 − νj
)

/
(

1 + νj
)

for generalized plane stress, and µj and vj are
the shear modulus and Poisson’s ratio.

The displacements, ux, uy, and uz, in the vicinity of the crack front are [37]:

δuy + iδux =
K1 + iK2

2 (1 + 2iε) cos h (επ)

(

κ1 + 1

µ1
+

κ2 + 1

µ2

)
√

ρ

2π

(

ρ

l0

)iε

uz(ρ, 0
+) =

(

0,
KIII

µ1

√

2ρ

π

)

(7)

uz(ρ, 0
−) =

(

0,
−KIII

µ2

√

2ρ

π

)

By substituting Eqs. (5) and (7) into Eq. (4), the le� side of Eq. (4) reduces to

1

1S

[

−
∫

61S

t∗(r) · u(p)d6

]

=
1

1S















ℜ
[∫

61S

(σyy + iσxy)
∗(r)(ρ) · (uy − iux)

(p)(1a − ρ)d6

]

−
∫

61S

(

σyz
)∗(r)

(ρ) · u(p)
z (1a − ρ) d6















=
1

1S



























ℜ





∫

1S

4
[(

K
(r)
1 K

(p)
1 + K

(r)
2 K

(p)
2

)

+ i
(

K
(r)
2 K

(p)
1 − K

(r)
1 K

(p)
2

)]

H∗π cos h (επ) (1 − 2iε)

(

1a − ρ

ρ

)1/2−iε

dS





+
∫

1S

4K
(r)
III K

(p)
III

µ∗π

√

(1a − ρ)

ρ
dS



























(8)

Equation (8) is the integral only along one side of the crack face, where dS is the increment of the
integration over 1S, and µ∗ and H∗ are e�ective shear modulus and Young’s modulus given by

1

µ∗ =
1

2

(

1

µ1
+

1

µ2

)

(9)
1

H∗ =
1

2

(

1

H1
+

1

H2

)
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Since σkk is sensitive to the crack size, the partial derivative in the equation is di�cult to be evaluated.
For 3D elastic problems,

σkk =
E

1 − 2ν
εkk =

E

1 − 2ν

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

(10)

By applying Eq. (10), the Green’s theorem and the Gauss’s theorem (Eq. (4)) can be expressed as

1

1S

[

−
∫

61S

t∗(r) · u(p)d6

]

=
2
∑

j=1

Ej

1 − 2νj

[

∮ ∫

∑

j

αj2
∗(p)

(

∂u(r)

∂S
cosα +

∂v(r)

∂S
cosβ +

∂w(r)

∂S
cos γ

)

d
∑

−
∫ ∫ ∫

Vj

(

∂(αj2
∗(p))

∂x

∂u(r)

∂S
+

∂(αj2
∗(p))

∂y

∂v(r)

∂S
+

∂(αj2
∗(p))

∂z

∂w(r)

∂S

)

dV

]

(11)

where cosα, cosβ , and cosγ are direction cosines of the normal vector of the boundary surface.
Substituting Eq. (8) into Eq. (11) yields

1

1S















ℜ

[

∫

1S

4
[(

K
(r)
1 K

(p)
1 +K

(r)
2 K

(p)
2

)

+i
(

K
(r)
2 K

(p)
1 −K

(r)
1 K

(p)
2

)]

H∗π cos h(επ)(1−2iε)

(

1a−ρ
ρ

)1/2−iε
dS

]

+
∫

1S
4K

(r)
III K

(p)
III

µ∗π

√

(1a−ρ)
ρ

dS















=
2
∑

j=1

Ej

1 − 2νj

[

∮ ∫

∑

j

αj2
∗(p)

(

∂u(r)

∂S
cosα +

∂v(r)

∂S
cosβ +

∂w(r)

∂S
cos γ

)

d
∑

−
∫ ∫ ∫

Vj

(

∂(αj2
∗(p))

∂x

∂u(r)

∂S
+

∂(αj2
∗(p))

∂y

∂v(r)

∂S
+

∂(αj2
∗(p))

∂z

∂w(r)

∂S

)

dV

]

(12)

Equation (12) is the basic equation of TWFmethod for a 3D crack of bimaterial interface. As the SIFs
of di�erent crack opening modes for a 3D crack cannot be simply separated from the integral since they
vary along the interface crack front, the following research will be focused on how to separate the SIFs
of di�erent modes.

Finite element implementation of the 3D TWFmethod

To separate SIFs from the integral in Eq. (12), the multiple virtual crack extension technique will be
applied. For elliptical cracks, an e�ective crack length aφ is adopted along the interface crack front (cf.
Figure 2),

aϕ =
√

sin2 ϕ + (a/c)2 cos2 ϕ · a (13)

where a and c represent the length of semiminor axis and semimajor axis, respectively, and φ is the
e�ective angle of the elliptical crack. A basic virtual crack extension mode 1a0ϕ is de�ned based on the
Eq. (13) as

1a0ϕ =
√

sin2 ϕ + (a/c)2 cos2 ϕ · 1a (14)

Several linearly independent virtual crack extension modes 1a
j
φ are introduced, i.e.,

1a
j
ϕ = ωj(ϕ)1a0ϕ

(

j = 1, 2, . . . ,N
)

(15)
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376 H. WU ET AL.

Figure 2. Schematic diagram of elliptical crack.

where N is the number of the points on the interface crack front, ωj(φ) is the extension function
satisfying the basic nature of shape function,

ωj(ϕi) = δij =
{

1 (i = j)
0 (i 6= j)

N
∑

j=1

ωj(ϕ) = 1 (16)

Thus, the SIFs can be directly written as

K
(p)
1 =

n
∑

i=1

AIiωi(ϕ)K
(0)
1

K
(p)
2 =

n
∑

i=1

AIIiωi(ϕ)K
(0)
2 (17)

K
(p)
III =

n
∑

i=1

AIIIiωi(ϕ)K
(0)
III

where AIi, AIIi, and AIIIi are the coe�cients to be determined, and K
(0)
1 , K

(0)
2 , and K

(0)
III are arbitrary

distribution functions.
It should be noted that

dS = dρdl dl = c

√

sin2 ϕ + (a/c)2 cos2 ϕdϕ

∫ 1aϕ

0

√

(1aϕ − ρ)

ρ
dρ =

π

2
1aϕ

ℜ





1

1aϕ

∫ 1aϕ

0

4
[(

K
(r)
1 K

(p)
1 + K

(r)
2 K

(p)
2

)

+ i
(

K
(r)
2 K

(p)
1 − K

(r)
1 K

(p)
2

)]

H∗π cos h (επ) (1 − 2iε)

(

1aϕ − ρ

ρ

)1/2−iε

dρ





=
2
(

K
(r)
1 K

(p)
1 + K

(r)
2 K

(p)
2

)

H∗ cos h2 (πε)
(18)

where the last integral is recognized as the complex beta function B(1/2 + iε, 3/2 − iε), l is the arc
length along the interface crack front. And in view of Eqs. (14), (15), and (17), we can simplify the le�
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side of Eq. (12) (denoted as Ile�) as

Ile� =
1a

1Sj

∫ ϕN

ϕ1

2cωi(ϕ)













(

∑N
i=1 AIiK

(r)
1 K

(0)
1 +

∑N
i=1 AIIiK

(r)
2 K

(0)
2

)

H∗ cosh2 (πε)

+
∑N

i=1 AIIIiK
(r)
III K

(0)
III

µ∗













ωj(ϕ)

×
[

sin2 ϕ + (a/c)2 cos2 ϕ
]

dϕ (19)

Here, ϕj (j = 1, 2, . . . ,N) denotes the parametric angle of the elliptical crack.
The following expression of the partial derivatives is valid for a particular virtual crack extension1Sj,

∂u

∂Sj
=

∂u

∂a

1a

1Sj
(20)

Using the above expression of the partial derivatives in Eq. (12) and Eq. (20), we have

∫ ϕN

ϕ1

2cωi(ϕ)







(

∑N
i=1 AIiK

(r)
1 K

(0)
1 +

∑N
i=1 AIIiK

(r)
2 K

(0)
2

)

H∗ cosh2(πε)
+

∑N
i=1 AIIIiK

(r)
III K

(0)
III

µ∗






ωj(ϕ)[sin2 ϕ + (a/c)2 cos2 ϕ]dϕ

=
2
∑

j=1

Ej

1 − 2νj

[

∮ ∫

∑

j

αj2
∗(p)

(

∂u(r)

∂a
cosα +

∂v(r)

∂a
cosβ +

∂w(r)

∂a
cos γ

)

d
∑

−
∫ ∫ ∫

Vj

(

∂(αj2
∗(p))

∂x

∂u(r)

∂a
+

∂(αj2
∗(p))

∂y

∂v(r)

∂a
+

∂(αj2
∗(p))

∂z

∂w(r)

∂a

)

dV

]

1Sj

=
2
∑

j=1

Ej

1 − 2νj

[

∮ ∫

∑

j

αj2
∗(p) ∂u

(r)

∂a
· nd

∑

−
∫ ∫ ∫

Vj

∇(αj2
∗(p)) ·

∂u(r)

∂a
dV

]

1Sj

(j = 1, 2, . . . ,N) (21)

where u(r) = [u(r) v(r) w(r)]T is the displacement vector of the fundamental reference loading
system (r), n = [cosα cosβ cos γ ]T is the normal vector of the surface d

∑

. It can be found
that, distinguished from the mechanical weight function method, if the temperature distribution is
known, the whole variation of transient SIFs can be directly determined by the simple integration and
the expensive time consumed for the numerical calculation of the thermal stress or displacement �elds
can be avoided at every transient time step.

Equation (21) is linear equations of the unknown coe�cients. To obtain the solution of Eq. (21), three
fundamental reference loading systems are required, that is, r = 1, 2, 3. Then, Eq. (21) can be rewritten as

3
∑

k=1

3N
∑

i=1

CijAki = Dj (j = 1, 2, · · · , 3N) (22)

Once the unknown coe�cients, AIi, AIIi, and AIIIi, are solved using Eq. (22), the distribution of the

K
(p)
1 , K

(p)
2 , and K

(p)
III along the interface crack front can be obtained according to Eq. (17).

The partial derivatives of displacements and temperature with respect to coordinates can be obtained
using the isoparametric elements and shape functions. The total derivatives of coordinates and dis-
placements with respect to the characteristic crack length a mentioned above can be obtained by the
interpolation of nodal values. The sti�ness derivative technique and virtual crack extension can be used
to calculate the partial derivatives of the displacement with respect to a.
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Veri�cation and analyses

In this section, several 3D bimaterial bodies with an elliptical interface crack under thermal load will be
analyzed to demonstrate the practicability and accuracy of the 3D TWF method.

The thermoelastic problem is assumed to be decoupled and quasi-static, and the thermoelastic
constants are independent of the temperature during the analysis procedure. Although the derivatives
of displacement are strongly dependent on the reference loading system, the weight function is load
independent for a given crack con�guration with prespeci�ed constrained conditions. It should be kept
in mind that the fundamental reference loading systems must be linearly independent.

Preprocessing data for the 3D TWF method can be obtained using �nite element computations. For
the mechanical analysis, the 20-node isoparametric element (SOLID95 in ANSYS and in ABAQUS)
is used over most of mesh and 1/4 node singular triangular prism-shaped element is used around the
crack tip to get the reference SIFs accurately. Further, the 20-node C3D20T element in ABAQUS was
used when dealing with the thermal analysis. The material properties used in these examples are shown
in Table 1.

Semi-in�nite plate with an elliptical surface crack

A semi-in�nite plate with an elliptical surface crack subjected to a thermal load is analyzed initially
(Figure 3). Three di�erent boundary conditions are examined, i.e., the uniform heating, the cooling
shock, and the instantaneous heat source. To simulate a semi-in�nite plate, the following initial
geometric conditions are adopted: L = H = 2W = 100c and a/c = 0.5. Due to the symmetry of
the structure and boundary conditions, only the right half is modeled.

The �nite element model contains 49428 20-node isoparametric elements with 211060 nodes. The
�nite element model is used for the displacement analysis of the fundamental reference loading systems
to get the reference SIFs and to calculate TWFs. Themodel is also used for the thermal analysis to obtain
the temperature distribution and the thermal SIFs which are adopted as the reference values to compare
with the values of the SIFs obtained using the TWF method.

Uniform heating

The semi-in�nite plate is subjected to uniform heating of 100◦C on its front face, and the other free faces
are insulated.

Figure 4 shows the SIFs calculated using the 3D TWF method and those obtained by the interaction
integral method [38, 39]. KN(I) and KN(T) denote the SIFs calculated by interaction integral method
and TWF method, respectively. Here, N = 1, 2, and 3. The SIFs will be normalized by K0 which is
de�ned as

K0 =
E1α12

∗

1 − ν1

√
πW (23)

It can be seen that the results obtained by the 3D TWF method and interaction integral method are
in close agreement. The di�erences between two methods at most locations on the crack front are less
than or about 1.5%.

Table 1. Material properties used in these examples.

Materials parameter Material 1 Material 2

Young’s modulus (MPa) 2.0e5 1.68e5
Poisson’s ratio 0.23 0.31
Thermal expansion coe�cient (1/◦C) 0.102e-4 0.137e-4

Material density (kg/mm3) 5.9e-6 7.289e-6
Coe�cient of heat conduction (W/mm◦C) 2.2 48.9
Speci�c heat (J/(◦C kg)) 460.6 418.4
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Cooling shock

A transient fracture problem is considered in this part, the semi-in�nite plate is under cooling shock
T = −100◦C on its front face, and the other free faces are insulated.

To verify the accuracy of the results obtained from the 3D TWF method, the results for several time
instants during the procedure of cooling shock are extracted for comparison (Figure 5). The SIFs are also
normalized by K0. It has been found that all the SIFs determined by the proposed TWF method agree
well with those from interaction integral method, with the maximum relative errors of 3.6%.

Instantaneous heat source

The third example is a semi-in�nite plate in which an instantaneous heat source of strength Q existent
as shown in Figure 3. All free surfaces are insulated.

Figure 6 shows a comparison of the normalized SIFs obtained by the proposed method and interac-
tion integral method for di�erent time instants. The2∗ in Eq. (23) is equal to the strengthQ. The results

Figure 3. A semi-in�nite plate with an elliptical surface crack under thermal load.

Figure 4. Comparison of stress intensity factors obtained from interaction integral method and TWF method for the case of uniform
heating. TWF: thermal weight function.
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380 H. WU ET AL.

Figure 5. Comparison of stress intensity factors obtained from interaction integral method and TWF method for the case of cooling
shock. TWF: thermal weight function.

obtained by these two methods show excellent agreement with each other. The relative errors between
the SIFs obtained by these two methods are generally not excess 2.0% with the maximum of 3.7%.

Finite thermal barrier coatingplatewith a quarter-elliptical interface crack under cooling
shock

We next analyze a �nite thermal barrier coating plate with a quarter-elliptical interface crack as shown
in Figure 7. The bimaterial plate with a quarter-elliptical interface crack is �xed at the bottom end and
subjected to cooling shock T = −100◦C on its top face. The other faces are insulated. The initial
geometric boundary conditions are

a/W = 0.3, a/c = 0.5, L/c = 5, HC = L, HC/HS = 0.1 (24)

The �nite element model contains 3976 20-node isoparametric elements and 17942 nodes.
The comparison of the results computed by these two methods is shown in Figure 8. The results

obtained by the 3D TWF method agree well with those computed by the interaction integral method.
The maximum relative errors are 4.79, 3.75, and 4.3% for the Mode I, Mode II, and Mode III SIFs,
respectively. In general, the above relative errors are satisfactory and encouraging, and thus the validation
and accuracy of the proposed method can be con�rmed.

Then the e�ect of the quantity a/W on the SIFs has been analyzed in detail based on the model of
�nite thermal barrier coating plate discussed above. It is of interest to �nd from Figure 9 that the location
at which the maximum values of the SIFs occur is basically the surface point or the deepest point during
the cooling shock process. It can be observed that as a/W increases, the maximum values of the SIFs
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Figure 6. Comparison of stress intensity factors obtained from interaction integral and TWFmethods for the case of instantaneous heat
source. TWF: thermal weight function.

Figure 7. A bimaterial plate with a quarter-elliptical surface crack.

are also increased. That means the crack is more likely to propagate at the surface point or the deepest
point. Meanwhile, the distributions of the normalized SIFs along the crack front vary with the increasing
of a/W, which will alter the failure mode. The SIFs along 3D interface crack fronts vary complicated.
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382 H. WU ET AL.

Figure 8. Comparison of stress intensity factors obtained from interaction integral and TWF methods for the case of thermal barrier
coating system. TWF: thermal weight function.

Without analysis, it is almost impossible to predict the time and the location of themaximumSIFs, which
requires to investigate the distributions of SIFs along the interface crack fronts in detail to accurately
evaluate the safety of a 3D cracked body subjected to thermal load.

Actually, the proposed 3D TWF method is convenient and e�ective to deal with transient thermal
problems, especially for lots of time instants. If such a problem is solved by the interaction integral
method, a large amount of computation work will usually be needed. Most of the computation time will
be spent on the repeated analyses of stress or displacement �elds. However, little calculation amount
will be involved if the 3D TWF method is employed. Taking the case of semi-in�nite plate system
presented above, for example, there are 100 time instants during the procedure of cooling shock, if the
interaction integral method is applied to calculate all SIFs, 100 times of repeated stress computations
must be performed, and the total time spent on stress analyses is about 2600 × 100 s which is about
72 h on a microcomputer (Intel (R) Core (TM) i7 CPU 870 @ 2.93 GHz). However, only four times
of computations will be needed using the 3D TWF method (thrice for displacement analyses for the
reference loading system (r), one time for TWF calculation), and the total time is about 2600× 3+ 450
s which is about 2.3 h. When compared with the interaction integral method, the 3D TWF method
improves the computational e�ciency by 31.3 times for achieving the same level of numerical accuracy.
As can be seen, though the integration should be carried out over the whole volume of the cracked body
and the whole boundary during the TWF calculation, by means of a series of integrated programs, the
proposed TWF method is suitable for dealing with transient thermal problem. The high computational
e�ciency of the TWF method will be more obvious with increasing the number of elements, time
instants, and shock loads. It should be noted that for steady state analysis, the advantage of high
computational e�ciency will vanish because the fundamental reference loading systems are needed to
calculate thrice.
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Figure 9. Variation of Mode I, Mode II, and Mode III stress intensity factors for di�erent ratios of a/W with respect to time.

Conclusion

In the present study, a 3D TWF method is proposed to analyze elliptical interface crack problems of
bimaterial structures under transient thermal loadings. As the partial derivatives of the �rst invariants
of the stress tensor with respect to the crack length are di�cult to evaluate directly, the �nite element
implementation of the 3D TWF method is presented. As a part of �nite element implementation of
the 3D TWF method, the multiple virtual crack extension technique is applied to solve the basic
equation. Several representative examples are investigated to demonstrate the accuracy of the 3D TWF
method. In addition, the e�ect of the crack depth on the SIFs has been analyzed in detail using this
method.
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384 H. WU ET AL.

The present investigation shows that
(1) The maximum values of the SIFs occur at the surface point or the deepest point during the whole

cooling process, and they increase with crack depth.
(2) The failure mode may be altered due to the distribution change of transient SIFs along 3D interface

crack fronts. Using 3D TWF method, expensive time consumed for the repeated determinations of
the distributions of stress or displacement �elds for individual time instants can be avoided.

(3) The proposed 3D TWF method is of good accuracy and of high computational e�ciency in
prediction of SIFs for an elliptical interface crack subjected to transient thermal loading, especially
for large amount of time instants.
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