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Abstract In this study, the intrinsic mechanism of aerody-
namic effects on the motion stability of a high-speed maglev
system was investigated. The concept of a critical speed for
maglev vehicles considering the aerodynamic effect is pro-
posed. The study was carried out based on a single magnetic
suspension system, which is convenient for proposing rele-
vant concepts and obtaining explicit expressions. This study
shows that the motion stability of the suspension system is
closely related to the vehicle speedwhen aerodynamic effects
are considered.With increases of the vehicle speed, the stabil-
ity behavior of the systemchanges.At a certain vehicle speed,
the stability of the system reaches a critical state, followed
by instability. The speed corresponding to the critical state
is the critical speed. Analysis reveals that when the system
reaches the critical state, it takes two forms, with two criti-
cal speeds, and thus two expressions for the critical speed are
obtained. The conditions of the existence of the critical speed
were determined, and the effects of the control parameters
and the lift coefficient on the critical speed were analyzed
by numerical analysis. The results show that the first crit-
ical speed appears when the aerodynamic force is upward,
and the second critical speed appears when the aerodynamic
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force is downward. Moreover, both critical speeds decrease
with the increase of the lift coefficient.
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1 Introduction

In contrast to traditional wheel-rail trains, the electromag-
netic suspension (EMS)maglev train does not make physical
contact with the rail. EMS has attracted increasing atten-
tion due to its many advantages, such as a lower energy
consumption, a smaller environmental impact, less noise,
less maintenance, strong climbing ability, and small curve
negotiation [1]. In China, efforts have been made toward
the development of a high-speed maglev train with a speed
of 600km/h [2]. Ensuring the suspension dynamic stabil-
ity of EMS maglev trains is one of the key challenges in
the safety of maglev transportation. In recent years, research
has focused on the effects of vehicle, guideway, and control
parameters on the stability of the maglev vehicle system, as
well as methods for improving the dynamic stability of the
system. Conditions leading to Hopf bifurcation were ana-
lyzed by Wu et al. [3] for a maglev control system using the
test function for Hopf bifurcation. Extensive eigenvalue cal-
culations can be avoidedwhen analyzing the system stability.
The influenceof the vehicle speed and themainparameters on
the dynamic stability were studied by Li et al. [4], according
to the simplified kinetic model of a vehicle-guideway vibra-
tion system. The self-excited vibration mechanism of the
vehicle-guideway system was explained by Li et al. [5]
according to the energy transferred from the suspension
system to the bridge, who also analyzed the influence of
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the proportional–differential (PD) controller parameters and
signal delay on the stability. Numerical and experimental
analysis of the influence of the natural frequency and damp-
ing of the guideway on the dynamic performance of amaglev
vehicle was performed by Han et al. [6]. The effects of vehi-
cle speed, system control parameters, and disturbance on the
dynamic stability of maglev vehicles were studied by Wu
et al. [7], who also studied the problem of the attracting
domain and the chaotic dynamic characteristics of the sta-
bility control [8,9]. The Hopf bifurcation and resonance of a
maglev system with time-delay feedback control were stud-
ied by Wang et al. [10–12] using the central manifold and
the Poincaré normal form. The time delay was used as the
Hopf-bifurcation condition. It was found that when the time
delay exceeds a certain value, Hopf bifurcation occurs. The
relationship between the periodic solution and the excita-
tion and control parameters was also examined. The stability
and the Hopf bifurcation of a rigid guideway maglev train
with position-delay and speed-delay feedback and an elastic-
guaideway maglev train with position-delay feedback were
discussed by Zhang et al. [13–15] using center manifold and
normal form theory. The normal equation was obtained, and
the stability of the limit cyclewas determined. The stability of
the three-delay state feedback control system was analyzed,
and the influence of the delay and the gain of the speed feed-
back control on the system stability was obtained.

Many scholars have proposed novel strategies to control
the coupled vibration of the vehicle and its guideway and
thus improve the stability.A neuro-proportional–integral (PI)
controller was developed by Yau [16] to control the dynamic
response of a maglev vehicle near the permissive acceler-
ation. The concept of a virtual-tuning mass damper was
proposed by Zhou et al. [17]. An electromagnetic force was
employed to simulate the force acting on the track by using a
real tuned mass damper to suppress the self-excited vibra-
tion of vehicle-track system. A modified minimum mean
square elimination algorithmwith phase correction (C-LMS)
was proposed for eliminating the self-excited vibration [18].
A method for controlling the amplitude of the vibration by
adjusting the voltagewas also proposed [19]. The use of a vir-
tual electromagnet energy collector was proposed by Li et al.
[20] to control the self-excited vibration of a vehicle-bridge
system. Electromagnetic forces were employed to simulate
the forces acting on a bridge by using a real energy har-
vester. Magnetic-flux feedback control was used by Li et al.
[21] instead of traditional current feedback control, which
simplified the interaction system. The suppression of the self-
excited vibration by adding a feedback electrical damping
increment of the bridge vertical velocity was also proposed.

Previous studies on the stability of the maglev vehicle
system have focused on the dynamic stability, the parameter
influence, and the control of the vehicle-guideway coupling
system under low- and medium-speed situations. Studies on

the dynamics of high-speedmaglev vehicles with the aerody-
namic load effect are rare. The speed of the train operating on
the Shanghai Maglev Test Line in China can reach 430km/h,
and China recently launched the research on a 600km/h
speed maglev train. The aerodynamic load is proportional
to the square of the relative velocity between vehicle and
the wind [22]. An increase in the speed of the maglev train
inevitably leads to the rapid increase of the aerodynamic load.
The maglev vehicle does not make contact with the track
during operation. Hence, the external loads of the vehicle
structure are only electromagnetic and aerodynamic forces.
The interaction of these two forces determines the motion
characteristics of the maglev vehicle. The aerodynamic load
of a maglev train at high speeds has an important effect on its
dynamic stability. The aerodynamic load was found by Zeng
et al. [22,23] and Li et al. [24] to have a significant impact on
the dynamic characteristics of high-speed wheel-rail trains,
which prompted us to study the effects of the aerodynamic
load on the motion stability of high-speed maglev trains.

Some research has focused on the influence of the aero-
dynamic load on the forced vibration of maglev vehicles.
The response of a gust-levitated maglev vehicle passing over
a guide suspension bridge was simulated by Kwon et al.
[25]. Their results showed that the vibration of the vehi-
cle is sensitive to vehicle speed and wind load because of
the interaction of vehicle and bridge, and that the ride com-
fort is reduced by the low-frequency vibration of the vehicle
owing towind turbulence.An analysismodelwas established
by Yau [26] by simulating the guideway as a series of sim-
ply supported beams of equal length and the maglev vehicle
as a rigid body. Pneumatic loads owing to unsteady airflow
were considered. The response of the vehicle–guideway cou-
pling system under a wind load was calculated. Studies show
that the aerodynamic load can cause significant amplifica-
tion of the acceleration of a high-speed maglev vehicle. Yau
proposed a proportional–integral–differential (PID)+ linear
quadratic regulator (LQR) controller for reducing the accel-
eration response of vehicle. A 5-degree-of-freedom maglev
vehicle–elastic guideway coupling model was established by
Wu and Shi [27]considering the effects of the wind field. The
aerodynamic characteristics of the maglev-guideway system
were analyzed using a finite-element software. The Runge–
Kutta–Merson method was used to analyze the dynamic
response of themaglev vehicle under awind field. The effects
of wind speed, vehicle speed, and feedback gain coefficient
were examined.

These studies contribute to our understanding of the
impact of aerodynamic loads on the dynamic response of
maglev trains and the stability of medium- and low-speed
maglev vehicles. However, the following points areworthy of
attention. (1) In the existing research, the aerodynamic load
was considered as the forcing force, and attention was paid to
the influence of the aerodynamic load on the forced vibration
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response of themaglev vehicle. However, the dynamic stabil-
ity of the maglev system considering the aerodynamic load is
a self-excited vibration problem, and the self-excited vibra-
tion stability characteristic cannot be determined by solving
the forced vibration. (2) Previous studies on the dynamic
stability of the maglev system focused on medium- and low-
speed vehicles, and the aerodynamic load effect was not
considered. (3) The influence of the aerodynamic load on the
dynamic stability of the maglev vehicle has not been studied
so far.Researchon the effects of the aerodynamic load and the
system parameters on the dynamic stability remains insuffi-
cient. None of the previous studies considered the following
problem: when the maglev train operates at a high speed, the
aerodynamic load increases sharply, and the aerodynamic
load changes the equilibrium position of the maglev system.
This alters the inherent parameters of the magnetic levitation
system, affecting its stability.When a certain vehicle speed is
reached, the suspension system may become unstable. This
speed is the critical speed of the high-speed maglev system
and depends on the aerodynamic load.

According to the aforementioned considerations, we
established a single-magnet suspension model considering
the aerodynamic lift. Using this model, we analyzed the
inherent effect of the aerodynamic load on the motion sta-
bility of the suspension system. The results show that the
motion stability of the system changes with the increase of
the vehicle speed. At a certain speed, the system reaches
the critical state and becomes unstable. Thus, we pro-
pose, for the first time, the concept of the critical velocity
of maglev vehicles considering aerodynamic load effects.
This concept is used to analyze the motion stability of
maglev trains. The two forms of the critical state are deter-
mined by using the single-magnet model, and the formula
for calculating the corresponding critical speeds for two
kinds of instability is derived. The conditions giving rise
to the two types of instability are determined. Finally, the

effects of the control parameters and the lift coefficient
on the critical speed are analyzed by numerical analy-
sis.

2 System model

Assume that the maglev vehicle is running on a flat and
straight guideway at a constant speed. The aerodynamic load
is steady and the unsteady aerodynamic load is not considered
in this paper. The single-magnet suspension control model is
the basic unit of the maglev vehicle and reflects the dynamic
basic characteristics of the whole maglev system. To clarify
the influence of the aerodynamic load on the motion stability
of the maglev system, to propose relevant concepts, and to
obtain explicit analytical expressions, this paper simplifies
the maglev vehicle system into a single-magnet suspension
model as shown in Fig. 1, and analyzes the stability mecha-
nism of themaglev vehicle considering the aerodynamic load
effect. In Fig. 1, the guideway is considered as rigid.m is the
mass of the electromagnet, F is the electromagnetic force,
Flift is the pneumatic lift, Z is the electromagnet suspension
clearance, R is the electromagnet resistance, I is the mag-
net current, V is the electromagnet control voltage, v is the
vehicle speed, and U is the oncoming wind speed.

The equation for the vertical motion of the electromagnet
is

mZ̈ = mg − F + Flift. (1)

The levitation force between the electromagnet and the
guideway is calculated using the classical electromagnetic-
force formula [28]

F (I, Z) = μ0AN 2 I 2

4Z2 , (2)

Fig. 1 Schematic of the single-magnet suspension system
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where μ0 is the magnetic permeability of vacuum, Z is the
electromagnet suspension clearance, A is the effective area
of the electromagnet, and N is the number of coil turns. Two
preconditions for using the classical electromagnetic-force
formula are: (1) the suspension gap is small and uniformly
distributed; (2) the magnetic reluctance and flux saturation
are neglected. Because the magnetic permeability of air is
equal to themagnetic permeability of a vacuum, themagnetic
permeability of vacuum is adopted in Eq. (2) in place of the
magnetic permeability of air.

Considering the oncoming steady air flow of the maglev
train, the aerodynamic lift is constant at a certain vehicle
speed and wind speed. The aerodynamic lift force can be
expressed as [22,29]

Flift = 1

2
CLρAv (U + v)2 , (3)

where ρ is the air density, Av is the reference area of the
vehicle,CL is the aerodynamic-lift coefficient,v is the vehicle
speed, and U is the oncoming wind speed.

According to the Faraday theorem, the governing equation
of the magnetic-levitation control system is

N
dφ

dt
= −RI + V . (4)

Equations (1)–(4) constitute the dynamicmodel of the single-
magnet–rigid guideway suspension system considering the
aerodynamic lift.

Suppose that the equilibriumposition of the stable suspen-
sion is (I0, δ0), where I0 is the stable current, and δ0 is the
stable suspension clearance. The stable voltage at the equilib-
rium position is V0. Suppose that i is the current disturbance
at the equilibrium position, u is the voltage disturbance, and
z is the disturbance of the vertical position of the electro-
magnet. To analyze the stability of a single-magnet rigid
suspension system with aerodynamic lift at the equilibrium
position (I0, δ0), the nonlinear system dynamics model was
linearized at the equilibriumposition. The stability of the sus-
pension system at the equilibrium position was analyzed by
evaluating the stability of the trivial solution of the linearized
model. The linearization model is expressed as

m · z̈ (t) = −�F (i, z) ,

�F (i, z) = ki · i (t) − kc · z (t) ,

u (t) = R · i (t) + L0 · i̇ (t) − ki · ż (t) .

(5)

Here,

I0 = 2δ0
N

√
mg + Flift

μ0A
, ki = μ0AN 2 I0

2δ20
,

kc = μ0AN 2 I 20
2δ30

, L0 = μ0AN 2

2δ0
. (6)

By setting z̈, z, and ż as the feedback-control variables, the
voltage control formula under feedback is expressed as

u = kp · z + kd · ż + ka · z̈. (7)

Here, kp, kd, and ka are the feedback gains of the position,
speed, and acceleration, respectively.

3 Mechanism analysis

The aerodynamic lift Flift increases sharply with increasing
vehicle speed, as shown in Eq. (3). Equation (6) shows that
the steady current I0 depends on Flift . Therefore, the aero-
dynamic load affects the suspension-system parameters and
the effect increases with the vehicle speed. In this section, we
investigate the influence mechanism of the aerodynamic lift
force on movement stability, on the basis of the linear model
established in Sect. 2.

Consider the feedback-control quality x = [
z̈ z ż

]T
as

the state variable. The equation for the vertical vibration of
the electromagnet is

z̈ = −ki i

m
+ kcz

m
. (8)

Then, we obtain

...
z = −ki

m
i̇ + kc

m
ż

= −ki
m

(
ki
L0

· ż − R

L0
· i + 1

L0
u

)
+ kc

m
ż

= − R

L0
z̈ + RI 20

δ20m
z − I0

δ0m
u. (9)

The state equation of the system is

ẋ = Ax+ Bu,

u = Kx,
(10)

A =
⎡
⎢⎣− R

L0

RI 20
δ20m

0

0 0 1
1 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣− I0

δ0m

0
0

⎤
⎥⎦ , (11)

K = [
ka kp kd

]
. (12)

According to the state feedback-control law, the characteris-
tic matrix of the closed-loop system is

A+ B · K =
⎡
⎢⎣− R

L0
− I0

δ0m
ka

RI 20
δ20m

− I0
δ0m

kp − I0
δ0m

kd

0 0 1
1 0 0

⎤
⎥⎦ .

(13)
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The characteristic equation is

λ3 + a1λ
2 + a2λ + a3 = 0. (14)

Here, the parameters are given as

a1 = R

L0
+ I0

δ0m
ka, a2 = I0

δ0m
kd,

a3 = − RI 20
δ20m

+ I0
δ0m

kp, I0 = 2δ0
N

√
mg + Flift

μ0A
. (15)

The stability condition of the trivial solution in Eq. (10) is
that the real parts of the three characteristic value roots are
less than zero. According to the Routh-Hurwitz criterion,
the necessary and sufficient condition for the real part of the
eigenvalue to be negative is

a1 > 0, a1a2 > a3, a3 > 0. (16)

The range of the control parameters can be determined by
Eq. (16) is shown in Eq. (17). If the aerodynamic lift changes,
the range of the control parameters also changes.

kp >
RI0
δ0

, ka > − Rδ0m

L0 I0
, kd >

(
kpδ0 − RI0

)
L0m

Rδ0m + ka I0L0
.

(17)

If the feedback-control parameter
[
ka kp kd

]
is fixed, the

electromagnet stable suspension clearance δ0 remains
unchanged. According to Eq. (6), the equilibrium current I0
changes because of the aerodynamic lift force, which alters
the equilibrium position of the system. The linearization
system represented by Eq. (5) depends on the equilibrium
position (I0, δ0). The alteration of the equilibrium position
changes the characteristic matrix (13) of the closed-loop sys-
tem and the coefficients of the characteristic equation (14).
Thus, the aerodynamic lift influences the motion stability of
the suspension system.

As the speed increases, the aerodynamic lift increases.
Naturally, the equilibrium position (I0, δ0) varies with the
vehicle speed. This means that the stability of a rigid-
guideway single-magnet suspension system is independent
of the vehicle speed if the aerodynamic lift is not considered.
If the aerodynamic lift is considered, the motion stability of
the suspension system is related to the vehicle speed. If the
aerodynamic lift is not considered or is zero, the selected
control parameters

[
ka kp kd

]
satisfy the stability condition

of Eq. (17). However, as the speed increases and the aero-
dynamic lift exceeds a certain value, the control parameters
do not satisfy the stability condition. Thus, bifurcation and
instability of the suspension system may occur.

According to the aforementioned analysis, we propose the
novel concept of a critical speed for examining the motion

stability of themaglev train considering aerodynamic effects.
Under certain aerodynamic conditions, when the vehicle
speed exceeds a specific value, the real parts of the eigenvalue
of the characteristic matrix are equal to zero, the suspension
system reaches the critical state and a bifurcation occurs. This
speed is called the critical speed.

The necessary and sufficient condition for the asymptotic
stability of the trivial solution of Eq. (10) is that the real
part of the eigenvalue is less than zero. In the critical state,
the real part of the eigenvalue is equal to zero. Suppose that
the complex number λ = α + iβ (where α and β are real
numbers) is the root of the characteristic equation (14). It is
substituted into the characteristic equation, and the real and
imaginary parts are separated. Then, we obtain

α3 − 3αβ2 + a1α2 − a1β2 + a2α + a3 = 0,
3α2β − β3 + 2a1αβ + a2β = 0.

(18)

When the real part of the eigenvalue λ is equal to zero, the
stability of the maglev system at the equilibrium position is
in the critical state. The three characteristic roots of the char-
acteristic equation (14) comprise a pair of conjugate complex
eigenvalues and a real eigenvalue. The system stability has
the following two critical states.

(1) The first kind of critical state: the real parts of the pair
of conjugate eigenvalue are equal to zero. Thus, α = 0, λ =
±iβ, and a dynamic bifurcation (Hopf bifurcation) occurs
in the suspension system. This results in the maglev system
having a motion of limited cycle under disturbance instead
of decaying to zero. Accordingly, Eq. (18) becomes

−a1β2 + a3 = 0,
a2β − β3 = 0.

(19)

Then, we obtain

a1a2 = a3. (20)

The critical speed is derived and expressed as Eq. (21). This
is called the critical speed A.

vcritical−A =

√√√√√ μ0AN2m2(kp−Rkd/L0)
2

4(mR+kakd)2
− mg

1
2CLρAv

−U. (21)

(2) The second kind of critical state: the real eigenvalue is
equal to zero, i.e. α = β = 0, λ = 0. Thus, a static bifur-
cation occurs, resulting in the increase of the electromagnet
displacement in an exponential manner and the instability
of the system. Accordingly, Eq. (18) becomes a3 = 0. The
derived critical speed for this case is shown in Eq. (22) and
is denoted as B.
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vcritical−B =

√√√√√
(
kp
R

)2
μ0AN2

4δ20
− mg

1
2CLρAv

−U. (22)

The aforementioned analysis indicates that at a certain vehi-
cle speed, the aerodynamic loads cause the real part of the
eigenvalues of the characteristic matrix to be zero and reach
the critical state. This speed is called the critical speed. The
critical speed has often been used in the stability analysis of
wheel-rail vehicle system dynamics [30–33]. The analysis in
this section shows that critical speed problem should also be
considered in themotion stability analysis of amaglev system
with aerodynamic loads. If the single-magnet rigid guideway
suspension system given by Eqs. (1)–(4) does not consider
the aerodynamic load or if the vehicle speed is zero, the sys-
tem is stable at the equilibrium position. When the speed is
less than the critical speed, the system is stable. When the
speed is greater than the critical speed, the system is unstable.
When the vehicle speed is equal to the critical speed, a system
bifurcation occurs in the critical state. In the next section, the
expressions for the two kinds of critical speed correspond-
ing to the two critical states of a single-magnet suspension
control system are derived considering the aerodynamic lift.

4 Numerical analysis

To analyze the stability of the suspension system, we use
the electromagnet parameters shown in Table 1. The aero-
dynamic load is calculated using Eq. (3). To calculate the
aerodynamic load on the electromagnet, the relevant param-
eters for the calculation of the aerodynamic loads should be
set. At present, there are no aerodynamic data for maglev
trains. In this study, the aerodynamic lift of the maglev vehi-
cle was calculated by employing the parameters used in the
aerodynamic analysis of high-speed wheel-rail trains. We
set the reference area as Av = 10 m2 and the air density as
ρ = 1.225 kg/m3 and assumed a wind speed U of 10.7m/s.
The aerodynamic lift was divided into upward aerodynamic
lift (lift coefficient is negative) and downward aerodynamic
lift (lift coefficient is positive). The lift coefficients do not
vary with respect to the vehicle speed.

The feedback control parameters are set as kp = 20,000,
kd = 500. ka = 50 and ka = 60 are selected as two cases.
The selected feedback control parameters meet the stabil-
ity condition shown in Eq. (17) when the aerodynamic load

Table 1 Electromagnet parameters [34]

μ0 (N/A2) δ0 (m) Nm R (	) Am (m2) m (kg)

4π×10−7 0.01 320 10.0 2.0 2.1× 104

is not considered. The conjugate eigenvalues and the real
eigenvalue are calculated with respect to the vehicle speed
for cases where the aerodynamic force is vertically upward
and vertically downward. The critical speed is determined,
and the effects of the parameters are analyzed.

4.1 Upward aerodynamic force

Figures 2–5 show the variation of the real part of the conju-
gate eigenvalue and the real eigenvalue with respect to the
vehicle speed for lift coefficients of 0.01, 0.02, 0.03, 0.04,
0.05, 0.06. Figures 2 and 3 show the conjugate eigenvalue
results for ka = 50 and ka = 60, respectively. Figures 4 and
5 show the real eigenvalue results for ka = 50 and ka = 60,
respectively.

Figures 2 and 3 show that when the aerodynamic force is
upward, the real part of the conjugate eigenvalue increases

L

L

L

L

L

L

Fig. 2 Changing curve of the real part of the conjugate eigenvalue
(upward aerodynamic force, kp = 20,000, kd = 500, and ka = 50)

L

L

L

L

L

L

Fig. 3 Changing curve of the real part of the conjugate eigenvalue
(upward aerodynamic force, kp = 20,000, kd = 500, and ka = 60)
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L

L

L

L

L

L

Fig. 4 Changing curve of the real eigenvalue (upward aerodynamic
force, kp = 20,000, kd = 500, and ka = 50)

L

L

L

L

L

L

Fig. 5 Changing curve of the real eigenvalue (upward aerodynamic
force, kp = 20,000, kd = 500, and ka = 60)

Table 2 Statistical table for the critical speed A with an upward aero-
dynamic force

(km/h)

Lift coefficient 0.01 0.02 0.03 0.04 0.05 0.06

ka 50 1278.2 892.5 721.7 619.8 550.3 499.0

ka 60 1821.0 1276.3 1035.1 891.2 793.1 720.6

with the vehicle speed. It passes through the horizontal zero
line; that is, the conjugate eigenvalue crosses the imaginary
axis. Then, the suspension system reaches the first kind of
critical state, at the critical speed A. The value of critical
speed A shown in the figures is the same as that calculated
using Eq. (21). The critical speed results shown in the two
graphs are presented in Table 2.

Figures 4 and 5 show that when the aerodynamic force
is upward, the real eigenvalue gradually decreases with the

L

L

L

L

L

L

Fig. 6 Changing curve of the real part of the conjugate eigenvalue
(downward aerodynamic force, kp = 20,000, kd = 500, and ka = 50)

L

L

L

L

L

L

Fig. 7 Changing curve of the real part of the conjugate eigenvalue
(downward aerodynamic force, kp = 20,000, kd = 500, and ka = 60)

vehicle speed. It does not intersect with the zero horizontal
line. Thus, the suspension system never reaches the second
kind of critical state, and the vehicle does not reach the critical
speed B. In this case, the expression under the square root
in Eq. (22) is negative; thus, the critical speed B cannot be
calculated.

4.2 Downward aerodynamic force

Figures 6–9 show the variation of the real part of the conju-
gate eigenvalue and the real eigenvalue with respect to the
vehicle speed for lift coefficients of 0.01, 0.02, 0.03, 0.04,
0.05, 0.06. Figures 6 and 7 show the conjugate eigenvalue
results for ka = 50 and ka = 60, respectively. Figures 8 and
9 show the real eigenvalues results for ka = 50 and ka = 60,
respectively.
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L

L

L

L

L

L

Fig. 8 Changing curve of the real eigenvalue (downward aerodynamic
force, kp = 20,000, kd = 500, and ka = 50)

L

L

L

L

L

L

Fig. 9 Changing curve of the real eigenvalue (downward aerodynamic
force, kp = 20,000, kd = 500, and ka = 60)

Figures 6 and 7 show that when the aerodynamic force is
downward, the real part of the conjugate eigenvalue gradu-
ally decreases with the increase of the vehicle speed. It does
not intersect with the zero horizontal line. Thus, the sus-
pension system never reaches the first critical state, and the
vehicle speed does not reach critical speed A. In this case,
the expression under the square root in Eq. (21) is negative,
and the critical speed A cannot be calculated.

Unlike the results presented in Sect. 4.1, when the aero-
dynamic force is downward, with the increase of the vehicle
speed, the real eigenvalue gradually increases and intersects
with the zero horizontal line, as shown in Figs. 8 and 9.When
the vehicle speed is increased until the real eigenvalue is zero,
the suspension system reaches the second kind of critical
state, and the vehicle speed reaches the critical speed B. The
critical speed results shown in Figs. 8 and 9 are presented
in Table 3 and are consistent with Eq. (22). In Table 3, the

Table 3 Statistical table for the critical speed B with a downward aero-
dynamic force

(km/h)

Lift coefficient 0.01 0.02 0.03 0.04 0.05 0.06

ka 50 3264.4 2297.0 1868.4 1613.0 1438.6 1309.9

ka 60 3264.4 2297.0 1868.4 1613.0 1438.6 1309.9

critical speed is equal for ka = 50 and ka = 60. Accord-
ing to Eq. (22), we also know that the critical speed B is
independent of the acceleration-control parameter ka and the
speed-control parameter kd.

The data in Tables 2 and 3 show that a higher aerody-
namic coefficient yields a lower critical velocity, regardless
of whether the aerodynamic lift is upward or downward.

4.3 Condition for the existence of the critical speed

Asdiscussed inSect. 4.1 and4.2,when the aerodynamic force
is downward, the critical speed A does not exist. In this case,
the expression under the square root in Eq. (21) is negative,
and the critical speed cannot be calculated. When the aero-
dynamic force is upward, the critical speed B does not exist.
In this case, the expression under the square root in Eq. (21)
is negative, and the critical speed cannot be calculated. Thus,
we deduce the following.

(1) The expression under the square root in Eq. (21) being
greater than zero is a necessary condition for the vehicle
reaching the critical speed A, i.e.

μ0AN2m2(kp−Rkd/L0)
2

4(mR+kakd)2
− mg

1
2CLρAv

> 0. (23)

If the single-magnet–rigid guideway suspension system
given by Eqs. (1)–(4) considering the aerodynamic lift satis-
fies the conditions of Eq. (23) and the aerodynamic load is not
considered or the vehicle speed is zero, the suspension system
is stable at the equilibrium position. The stability of the sys-
tem at the equilibrium position is described as follows.When
v < vcritical−A, the system is stable.When v > vcritical−A, the
system is disturbed and no longer convergent, and the cycle
motion is limited. When v = vcritical−A, Hopf bifurcation
occurs in the system, and the system is in the critical state.
(2) The necessary condition for the vehicle to reach the crit-
ical speed B is that the expression under the square root in
Eq. (22) is greater than zero, i.e.(

kp
R

)2
μ0AN2

4δ20
− mg

1
2CLρAv

> 0. (24)
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Fig. 10 Relationship between the control parameter kp and the critical
speed A (upward aerodynamic force, kd = 500, ka = 50)

If the single-magnet rigid guideway suspension system given
by Eqs. (1)–(4) considering the aerodynamic lift satisfies the
conditions of Eq. (24) and the aerodynamic load is not con-
sidered or the vehicle speed is zero, the suspension system
is stable at the equilibrium position. The stability of the sys-
tem at the equilibrium position is described as follows.When
v < vcritical−B , the system is stable. When v > vcritical−B ,
the displacement index of the electromagnet increases, and
the system rapidly becomes unstable. When v = vcritical−B ,
static bifurcation occurs in the system, and the system is in
the critical state.

4.4 Relationship between critical speed and control
parameters

Figures 10–12 show the relationship between the critical
speed A and the control parameters kp, kd, and ka for an
upward aerodynamic force. The results indicate that the crit-
ical speed A decreases with the increase of kp and increases
with the increase of kd and ka. Figure 13 shows the relation-
ship between the critical speed B and the control parameter
kp for a downward aerodynamic force. The results indicate
that the critical speed B increases with kp.

5 Conclusions

In order to facilitate proposing relevant concepts and obtain-
ing explicit expressions, a singlemagnetic suspension system
is adopted in the paper. The intrinsic mechanism of the aero-
dynamic effect on the motion stability of high-speed maglev
system was revealed based on the single magnetic suspen-
sion system. The concept of the critical speed for the maglev
vehicle considering aerodynamic effect was proposed. Also,
the formula for calculating the critical speed was derived.

L

L

L

L

L

L

Fig. 11 Relationship between the control parameter kd and the critical
speed A (upward aerodynamic force, kp = 20,000, ka = 50)

L

L

L

L

L

L

Fig. 12 Relationship between the control parameter ka and the critical
speed A (upward aerodynamic force, kp = 20,000, kd = 500)

L

L

L

L

L

L

Fig. 13 Relationship between the control parameter kp and the critical
speed B (downward aerodynamic force, kd = 500, ka = 50)
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Aerodynamic load changes the equilibrium position of
the maglev-vehicle suspension system. Thus, the inherent
parameters of the maglev dynamical system change, and the
motion stability is affected. In this study, the motion stability
of a single-magnet suspension system considering the aero-
dynamic lift was analyzed. The results indicate that when
the speed reaches a certain value, the motion stability of the
maglev system reaches a critical state because of the aero-
dynamic lift increasing significantly with the vehicle speed.
There are two cases for reaching the critical state, and the
speed corresponding to the critical state is the critical speed.
The critical speed formula for the two critical states and the
necessary conditions for reaching these two stateswere deter-
mined.

According to the concept and formula of the critical speed
proposed for the high-speed maglev vehicle, a numerical
analysis was performed for themotion stability of themaglev
system with varying parameters. The results showed that
when the aerodynamic force is upward, the first kind of insta-
bility occurs as the speed increases. In this case, the critical
speed A decreases with the increase of kp and increases with
the increase of kd and ka. When the aerodynamic force is
downward, the second kind of instability occurs as the speed
increases. In this case, the critical speed B increases with the
increase of kp and is unaffected by variations in kd and ka.
When the lift coefficient increases, the critical speeds A and
B both decrease.

In this study, the novel concept of the critical speed for the
motion stability of a high-speed maglev vehicle considering
the aerodynamic load was proposed, which has potential for
wide applications in the dynamic analysis and optimization
design of high-speed maglev vehicles.
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