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Realizing highly efficient supersonic combustion is critical for the development of 
scramjets. The ground test data of scramjet combustors are both expensive and difficult to 
be measured, thus high-fidelity numerical simulation becomes a necessary way for 
supersonic combustion research. By aid of the in-house developed compressible reacting 
flow solver AstroFoam, the hybrid Reynolds-Averaged Navier-Stokes/Large Eddy 
Simulation (RANS/LES) turbulence modeling framework based on Improved Delayed 
Detached Eddy Simulation (IDDES) and the Partially Stirred Reactor (PaSR) turbulent 
combustion model are used for the study of HyShot II scramjet tested in the high enthalpy 
shock tunnel in Göttingen (HEG). A detailed mechanism of H2/Air combustion with 9 species 
and 19 elementary reactions is used. The predicted static pressure distribution agrees well 
with experimental data. Typical flow structures of jet in supersonic cross flow including the 
evolvement of S-shaped structure to -shaped structure are captured. Based on the 
distribution of temperature and OH mass fraction, the flow field can be divided into three 
zones: the mixing zone, the ignition zone and the turbulent combustion zone. Analysis of the 
cross-sections in the ignition zone along the streamwise direction reveals that the initial 
emergence OH reactant lies mainly in the shear layer, and the Kelvin-Helmholtz instability 
is the underlying stimulation of the ignition. 

Nomenclature 
CDES = length coefficient for LES branch in IDDES model 
Cmix = coefficient for characteristic time of mixing process 
Cw = length coefficient for distance to wall 
dw = distance to wall in IDDES model 
dwall = near wall distance in original S-A model 
D = diameter of fuel nozzle 
hmax = grid largest length scale 
hwn = grid length scale in wall-normal direction 
Sij = strain rate 
 = dissipation rate of turbulent kinetic energy 
 = equivalence ratio 
 = characteristic time of chemistry 

 = characteristic time of mixing process 
 = characteristic time of turbulence 
 = turbulent reaction rate 
 = turbulent reaction rate 

 = subgrid length scale 
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I. Introduction 
alf century of scramjet study has made considerable achievement in the illumination of the mixing and 
combustion mechanism of supersonic combustion. However, due to the deficiency of effective measurement 

techniques, neither flight nor ground tests have revealed the most profound physics in scramjet combustor. Here, a 
numerical study of HyShot II scramjet based on detailed H2/Air combustion mechanism is made to help understand 
the aerothermochemistry in supersonic combustion with transverse fuel jet. 

Jets in supersonic crossflow (JISC) is a canonical problem in the supersonic combustion studies especially in 
transverse jet, as the complex three-dimensional (3-D) flow structures significantly influence the fuel/air mixing and 
the subsequent self-ignition process. Early studies of JISC mostly focused on the mixing mechanism. Experimental 
studies [1, 2] observed the analogy in vortex structures and pressure distribution between the transverse jet and the 
cylinder disturbance in a supersonic flow, and thus proposed that jet penetration can be treated as an equivalent 
obstacle. Chenault et al. [3] investigated the effect of different turbulence models on the modeling of jet disturbance, 
and found that Reynold’s Stress Model (RSM) accurately predicted time-averaged characteristics and main flow 
structures of JISC, as well as captured the second flow. The large eddy simulation (LES) simulation of JISC with 
Mach 1.6 free-stream by Rana et al. [4] demonstrated that Kelvin-Helmholtz type instabilities were dominantly 
responsible for the mixing process.  

Study of JISC has a practical meaning for the design scramjet combustors as the fuel is typically injected 
perpendicularly to supersonic free-stream in most combustors. In order to avoid the uncertainties in modeling 
complex hydrocarbon chemistry and focus on the impact of JISC on supersonic combustion, a H2 fueled scramjet 
combustor is selected for numerical study rather than ethylene or kerosene. Pioneering flight test of HyShot II [5] 
scramjet motivated many later experimental and numerical studies of supersonic combustion, including the ground 
test of HyShot II in High Enthalpy Shock Tunnel Göttingen (HEG) of Deutsches Zentrum für Luft-und Raumfahrt 
(DLR) [5]. In this study, the mixing and combustion process of HyShot II in the HEG ground test were reproduced 
and analyzed by Improved Delayed Detached Eddy Simulation (IDDES) [6] with Partially Stirred Reactor (PaSR) 
[7]. A detailed mechanism of H2/Air combustion with 9 species and 19 elementary reactions is used to simulate the 
combustion chemistry. 

II. HyShot II flight test and HEG ground based experiment 
HyShot II flight test took place in central Australia. A two-stage Terrier-Orion Mk70 rocket is used to achieve an 

apogee in excess of 300 km with a highly parabolic trajectory. The combination of rocket and trajectory allowed the 
test-section to reenter the atmosphere with a Mach number higher than 7.5 and between 35 and 25 km altitude. Post-
flight analysis was performed in HEG utilizing 1:1 scale wind tunnel. Results showed qualitative agreement with the 
flight data and confirmed the establishment of supersonic combustion. In this study we consider HEG experiment 
condition XII, which corresponds to the flight condition at an altitude of 32.5 km and the global equivalence ratio is 
ϕ = 0.43. The flow-path of the HEG shock tunnel duplicates the flight configuration and consists of a intake ramp, a 
rectilinear combustion chamber and a single-sided exhaust nozzle, as shown in Figure 1. The intake ramp has a half-
angle of 18o. The bleed channels have a length of 5 mm, while the combustion chamber has a length of 300 mm and 
a cross-section  of 9.8 75.0 mm2. Gaseous H2 at sonic speed is injected perpendicularly to the air stream through 4 
identical flush-mounted injectors with a diameter of D = 2.0 mm, which lie at 58 mm downstream of the leading 
edge of the combustor. Fourteen pressure transducers were used for the static pressure measurement. Compared to 
the flight test, the HEG facilities provide more controllability of the test conditions and more detailed measurements, 
which is an ideal CFD modeling target.  

 
Figure 1 Schematic of the HyShot II scramjet configuration 

III. HEG computational set-up 
The HyShot II is composed of intake ramp, combustor and exhaust nozzle as show in Figure 1. Since side and 

floor bleeds are used to spill the boundary layers from the flow, the combustor can be treated as separated from the 
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inlet nozzle, thus the study will only model the combustor and the exhaust nozzle for simplicity. At the combustor 
inlet, the boundary conditions for pressure, velocity and temperature in transverse direction are taken from the 
RANS modeling of the inlet nozzle by Schramm et al. [8]. Gaseous H2 is injected perpendicularly to free stream at 
four fuel injectors located 58 mm downstream of the chamber leading edge. To alleviate the computational burden, 
only 1/4 of the flow-path is modeled by using the combustor symmetries, and symmetry boundary condition is 
applied to splitting planes. The wall temperature is fixed at 300 K assuming that the wall temperature rise is small 
during the short test duration. A sonic nozzle with an inlet diameter of 4D is designed for the fuel injection. Details 
of the boundary conditions are shown in Table. 1. Two sets of mesh as shown in Figure 2 are used in this study, 
including a structured coarse mesh with 5.2 million cells and a refined mesh with 18.5 million cells. All the results 
in Part V are based on the refined mesh (referred to as Mod-refined) unless otherwise indicated. 

 
Table 1 Boundary Conditions for the HEG Simulation 

 P (105 Pa) T (K) U (m/s) Mass Fraction 

Combustor inlet 
Adopted from RANS modeling [5], Dirichlet 

boundary condition 

O2: 0.233 
N2: 0.767 
H2: 0 

Fuel nozzle inlet 
2.97 

(Total 
pressure) 

300 0   H2: 1 

Walls of combustor, 
expander and fuel 

nozzle 
Zero gradient 300 0 Zero gradient 

Combustor outlet 
Zero gradient,  

supersonic outlet  
Side walls for 

combustor 
Symmetry boundary  

 

 

Figure 2 CFD mesh for the HEG chamber: (a) global view of the structured mesh with 5.2 million cells, (b) 
local view of the H2 fuel nozzle cut at the middle plane 

IV. Mathematical models and numerical methods 
IDDES approach is used for the turbulence modeling to reduce the computational cost in boundary layer 

modeling as well as capture the instantaneous flow structures. IDDES is a hybrid Reynolds Average Navier Stokes / 
Large Eddy Simulation (RANS/LES) approach for the turbulence modeling, RANS is applied in near-wall regions  
to avoid the huge cell number required for LES, and LES is applied in regions far from the wall to accurately 
describe the instantaneous processes of mixing and combustion. The one-equation Spalart-Allmaras (S-A) model is 
used as the background RANS model to cover the boundary layer through well-designed inflation grid layer. The S-
A model was designed for wall-bounded flows in aerospace applications, and shown good performance in boundary 
layer separating prediction [9]. Since S-A model only adds one extra unknown variable knows as modified turbulent 
kinetic viscosity, it’s relatively simple and computationally efficient. The IDDES method is an advanced version of 
DES97 and DDES, with progressive and well-designed subgrid length scale to avoid premature separation and 
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mismatched log-layer. In the original S-A model near wall distance dwall is used as length scale, while in IDDES the 
subgrid length scale Δ  is used instead [6] 

  grid w w w max wn maxΔ min{max d ,C ,h ,h= C h } (1) 
where d  is distance to wall, hmax is the grid largest length scale in flow direction, wall-normal direction and 
spanwise direction, hwn is the grid length scale in wall-perpendicular direction and the coefficient C  = 0.15. The 
LES model is also closed by the S-A one-equation model through setting the length scale as  C Δ  in the LES 
region, where C  = 0.65. 

Since the characteristic time scales of chemistry τ  and turbulence τ  share a close magnitude in supersonic 
combustion, PaSR model based on finite-rate chemistry model is used for the turbulent combustion modeling. 
Golovitchev et. al [7] proposed a PaSR model considering the effect of imperfection mixing on turbulent reaction 
rate through defining the turbulent reaction rate ω  by  

 c
t l

c mix

τ
ω ω

τ τ
=

+
 (2) 

where ω  is laminar reaction rate. τ  is the characteristic time of mixing process and determined by 

 1/2eff
mix mix

ν
τ ( )

ε
=C  (3) 

where C  = 1, ε is the dissipation of turbulent kinetic energy and is calculated as ε 2ν S  based on S-A 
model with S  is strain rate. Based on these equations, turbulent reaction rate is controlled by rate of imperfect 
mixing zone converting to perfect mixing zone.  

The H2/Air combustion mechanism from Burke et. al [10] is selected for it is sensitive to the pressure variation. 
After removing argon and helium participating reactions, a skeletal mechanism with 9 species and 19 elementary 
reactions is used as the chemistry input. 

The modeling in this study employed an FVM (Finite Volume Method) based on in-housed developed 
compressible reacting flow solver AstroFOAM, which was extended from the compressible non-reacting solver 
rhoCentralFOAM distributed with OpenFOAM package mainly through adding the features of multi-species 
transport and multi-component reaction. The inviscid convective fluxes were evaluated by central Kurganov-
Tadmor (KT) scheme, which assumes a low numerical dissipation in resolving discontinuities (e.g. shock) yet a high 
computational efficiency due to its Riemann-free simplicity. TVD (Total Variation Diminishing) scheme at cell face 
with Minimod limiter is used to achieve second-order spatial accuracy. Mixture is assumed to be ideal gases in 
thermal equilibrium. Thermodynamic curve fits from McBride et al. [11] are used for species-specific heats and 
enthalpies. Molecular viscosity is calculated based on Sutherland formula, then constant Prandtl number and 
Schmidt number with the value of 1.0 are applied for the calculation of turbulent thermal and mass diffusion 
coefficients. Direct integration (DI) method is used for the stiff chemistry system solving.  

V. Results and discussion 
Figure 3 compares the predicted time-averaged and measured [5] wall pressure distribution, along with the LES 

result from Fureby et. al [12]. The predictions by the coarse mesh and the refined mesh are generally close to each 
other except for those between x = 0.05 m and x = 0.2 m, where the mesh refinement is mainly located in this 
region. The agreement with experimental data is good, except for small deviations between x = 0.05 m and x = 0.2 
m. The discrepancies between the two mesh sets and the deviations against the measurements all occur in this 
regions, which locate in a short distance downstream of the injection and correspond the main vortex generation 
regions. Thus it implies that a high mesh resolution may be critical to accurately capture the flow patterns there. 
Both the current and Fureby’s results well predict the general pressure profile,  and the current refined modeling 
results show better agreement with the measurements  in the latter part of the burner section from x = 0.17 m to x = 
0.3. 
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Figure 3 Comparison of predicted time averaged and measured wall pressure distribution, the arrow 

indicates location of fuel injector. 
Figure 4 shows the contours of instantaneous static pressure, temperature, Mach number, H2 mass fraction on the 

middle streamwise plane. Bow Shock and shock trains can be detected in the pressure contour. Pressure rises in the 
latter half of the burner section due to volumetric expansion caused by combustion and decreases in the expander 
section as a consequence of increasing cross-section area. The high temperature (>2000 K) zone mainly locates in 
the latter half of the burner and the entrance of the expander due to the intense heat release from the H2/Air 
combustion. The Mach number contour shows a continuous supersonic flow in the burner section, implying that 
the combustor is running at scramjet mode. The low temperature (<600 K) zone located immediately following the 
jet injection and near the wall corresponds to the cold H2 jet wake. The flow field is mostly in supersonic status and 
isolated subsonic regions lie mainly around the fuel nozzle. The jet penetration identified from the H2 mass fraction 
contour is about 2D. The mixing distance marked by the fully dispersion of H2 is around 20D.  

 
Figure 4 Instantaneous static pressure, temperature, Mach number, H2 mass fraction contours at the midline 
transverse plane at 2.543 ms, with isoline of 600 K and 2000 K in temperature contour and sonic line in Mach 

number contour  
Figure 5 shows a close-up view of the two-dimensional (2-D) JISC flow structures on the middle plane, which 

are widely observed in both experimental and numerical studies. As seen, typical features are well captured by 
refined mesh. The boundary layer separates immediately upstream of the fuel nozzle, which leads to the λ-shape 
shock, the fuel jet acts as an obstacle and forces the supersonic main flow to circumvent it and form the bow shock. 
Two recirculation zones, named R1 and R2 are formed between the λ shock and the bow shock, and between the 
bow shock and the fuel jet respectively. The supersonic fuel jet shows typical features of under-expanded jets, 
including the Mach barrel, the Prandtl-Meyer expansion fan, the Mach disk, reflected shocks and triple points. It’s 
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observed that the maximum Mach number lies at the top end of the jet plume just before the Mach disk. A new 
recirculation zone named R3 is produced at the downstream of the fuel jet.  

	
Figure 5 Instantaneous two Dimensional JISC flow structure near fuel injector at the midline transverse 

plane at 2.543 ms 
Figure 6 shows the three-dimensional (3-D) iso-surface of the Q-criterion (the second invariant of the velocity 

gradient tensor) colored by H2 mass fraction. Typical vortex structures of JISC, e.g. the horseshoe vortex, the 
counter rotating vortices (CRVs) and finer vortices in complex structures can be detected. These structures include 
S-shaped vortices with long arms stretching in the streamwise direction and align with the jet wake, and tips 
curling over the jet plume forming parcels. Although the jet core  as it mixes with the main flow, the difference of 
streamwise velocity between the jet plume and the main stream leads to the shear layer. The S-shaped vortices have 
also been observed by Ben-Yakar et. al. [13] in their experiment, and they proposed that the stretch movement of 
the long arms is enhanced by the shear stresses in the shear layer. These structures seem to originate from the 
Kelvin-Helmholz instability in the shear layer. Further downstream, the tips of different S-shaped vortices merge, 
and adjacent S-shaped vortices coalesce into Ω-shaped vortices. The Ω-shaped vortices break down into CRVs as 
they travel downstream.  

 

  
Figure 6 Instantaneous three-dimensional iso-surface for the Q-criterion, colored by H2 mass fraction at 2.543 

ms 
Figure 7 shows the 3-D iso-surfaces of the Q-criterion colored by OH mass fraction and temperature respectively. 

According to the distribution of OH mass fraction and temperature, the flow field can be generally divided into 
three zones: the mixing zone, the ignition zone and the turbulent combustion zone. In the mixing zone, which lies 
about 20D downstream of fuel nozzle, the combustion is too weak to produce apparent OH reactants, and the 
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mixing process dominates in this zone and prepares for the downstream ignition. Further downstream in the 
ignition zone, the fuel and the air are well mixed, remarkable OH arises but the temperature is still low (<2000 K) 
there. As the flow approaching to the end of the combustor, it turns to be fully developed turbulent flow and both 
OH mass fraction and temperature reach their peaks within this zone. It’s not surprising to find that the turbulent 
combustion zone coincides with the high temperature (>2000 K) zone shown in Figure 4. 

Figure 8 (a) shows instantaneous temperature and OH mass fraction contours at different cross-sections. Most of 
the contours show highly symmetric except the fourth one. The first cross-section locates in the mixing zone and 
the low temperature below 600 K near the bottom wall is caused by colder jet plume. Later in the second cross-
section the low-temperature region is separated from the wall as the jet core lifting up. Further downstream in the 
third cross-section, huge amounts of OH reactants is detected and the peak temperature reaches about 2000 K. 
Later cross-sections all locate in the turbulent combustion zone, where the increases in both temperature and OH 
mass fraction imply intense combustion reactions there. Figure 8(b) shows the contour of temperature and some 
key reactants superposed with the streamline in the second cross-section. CRVs can be clearly identified from the 
streamline, which coincides with the jet core marked by high concentration of H2. Since the consumption of O2 and 
production of OH are mostly spotted in the shear layer, which lies between the jet core and the main flow around 
the CRVs, the Kelvin-Helmholtz instability could be the underlying stimulation of the ignition. 

 

 
Figure 7 Overall view of instantaneous three-dimensional iso-surface for the Q-criterion, colored by OH mass 

fraction and temperature at 2.543 ms 
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8

 
Figure 8 Composite figure of instantaneous combustion field in HyShot II combustor: (a) temperature and 

OH mass fraction contour at different streamwise cross-section s; (b) temperature and mass fraction of OH, 
O2, H2 contour superposed with streamline at second cross-section  

VI. Conclusion 
In this study, IDDES coupled with PaSR is employed to analyze the mixing and combustion characteristics of 

supersonic combustion based on the HEG ground tests of HyShot II scramjet, which corresponds to the flight 
conditions at an altitude of 32.5 km. The predicted pressure distribution agrees well with the experimental data, 
especially in the latter part of the burner section. Typical flow structures of JISC are captured, and the evolvement 
of S-shaped structure to Ω-shaped structure is also detected. These complicated pattern vortices are believe to 
enhance mixing and further ignition process. Based on the distribution of temperature and OH mass fraction, the 
flow field is divided into three zones: the mixing zone, the ignition zone and the turbulent combustion zone. 
Analysis of reactants and temperature distribution on cross-sections in the ignition zone reveals that the initial 
emergence OH reactant lies mainly in the shear layer, and the Kelvin-Helmholtz instability could be the underlying 
stimulation of the ignition, which merits further studies. 
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