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Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved com-
pression ramp are conducted using direct numerical simulation for a free stream Mach number
M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24◦, and the concave
curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the
selected conditions, the shock foot is transferred to a fan of the compression wave because of the
weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically
attached where the instantaneous flow-field is close to the intermittent transitory detachment state.
Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced sig-
nificantly when the concave curvature is aligned in the spanwise direction. Consistent with findings
of previous experiments, the effect of the concave curvature on the logarithmic region of the mean
velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across
the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of
the turbulence state in the inner and outer layers of the boundary layer are considerably different.
The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using
the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler
instability in the curved ramp is quantitatively analyzed using a stability criterion. The instanta-
neous streamwise vorticity confirms the existence of the Görtler-like structures. These structures
are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of
the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant
modes with performance loss of 16% provide an optimal low-order representation of the essential
characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic
modes are found to be similar to that of the Görtler-like vortices. Published by AIP Publishing.
https://doi.org/10.1063/1.4996762

I. INTRODUCTION

The supersonic turbulent boundary layer subjected to a
concave curvature is a benchmark flow phenomenon in prac-
tice, which is dominated by the combined effect of complex
physical mechanisms, such as the longitudinal curvature,1

pressure gradient,2 and the associated additional strain rates
induced by bulk compression and dilatation.3 In contrast to
the stability of the convex curvature, the concave curvature
destabilizes and exhibits a reinforcing effect on the turbulence
level. Another significant flow characteristic is the centrifugal
instability, which may induce Taylor-Görtler type4,5 vortices
associated with large spanwise variations in the skin fric-
tion. Because of the strong nonlinear interaction in the curved
region, the concave effect on the turbulence structure has not
been fully understood and is significant for improving the
understanding of the relevant mechanisms of this complicated
flow.

a)Author to whom correspondence should be addressed: cpyu@imech.ac.cn

Many researchers have investigated the behavior of
a supersonic turbulent boundary layer along a concave
curvature. Most early experiments focused on the mean veloc-
ity scaling.6,7 Similar to the results obtained for a flat plate
with an adverse pressure gradient, the mean velocity profiles
in the curved region exhibited an increase trend in the wake
region and a dip below the logarithmic law in the outer edge
of the inner layer. To analyze the curvature radius effect on the
turbulence behavior, Jayaram et al.6 studied a supersonic tur-
bulent boundary layer subjected to a concave surface curvature
with two different radii, i.e., 10 and 50 times the thickness of
the upstream boundary layer. In their experiments, the total
perturbation level in both cases of the radii was the same
because the turning angle was kept constant; however, the
perturbation rate changed dramatically because of the differ-
ent curvature radii. They found that the total strain affected
the shorter radius mode, exhibiting a marked increase in the
Reynolds stress ratio and the length and time scale of the
turbulent motions. However, the longer radius mode was sensi-
tive to the local strain, and the structural parameters remained
unchanged.
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Donovan et al.7 experimentally investigated the changes
in the instantaneous structure of a supersonic turbulent bound-
ary layer that developed along a concave surface with a turning
angle of 16◦. As evidenced by the large gradient in the fluctuat-
ing stream mass flux, the significant change in the large-scale
organization in the boundary layer was verified. Recently,
Wang et al.8,9 experimentally investigated the coherent vortex
structure of a supersonic concave turbulent boundary layer
with a turning angle of 20◦. They found that the concave cur-
vature exhibited a reinforcing effect on the large-scale hairpin
packets. Concave curvatures are generally sensitive to longitu-
dinal vortices. Hoffmann et al.10 studied the effect of a concave
curvature on an incompressible boundary layer and showed
that the longitudinal vortices were indirectly responsible for
inducing significant changes in the turbulent structure. In con-
trast to that observed in a subsonic boundary layer, Sturek and
Danberg11 and Laderman12 did not find any evidence of steady
Taylor-Görtler type vortices in supersonic concave-curved
flows. They suggested that the formation of longitudinal roll
cells could be prevented via the nonlinear interaction between
the concave curvature and the compression ramp. How-
ever, Jayaram et al.6 concluded that the measurement tech-
niques employed were unsuitable for detecting Taylor–Görtler
type vortices, which might be characteristic of an unsteady
motion.

Although the response of a supersonic turbulent bound-
ary layer subjected to a concave curvature has been experi-
mentally studied, high-fidelity numerical calculations are lim-
ited. In recent years, direct numerical simulation (DNS) and
large eddy simulation (LES) have been developed for com-
pressible wall-bounded flows with significant success.13–17

However, to the best of the author’s knowledge, only a few
DNS analyses have been conducted on a supersonic tur-
bulent boundary layer subjected to a curved compression
ramp.

Hence, in this study, the compressible turbulent boundary
layer over a curved compression ramp for a free-stream Mach
number M∞ = 2.9 and a Reynolds number Reθ = 2300 was
numerically investigated. The inflow conditions are the same
with the previous numerical analysis of a separated 24◦ com-
pression ramp.18 The three-dimensional compressible Navier–
Stokes equations were solved using the DNS with the help
of a modified weighted essentially non-oscillatory (WENO)
scheme and a limiter technique.17 The motivation of this study
is to improve the basic understanding of the supersonic curved
flow by thoroughly analyzing the DNS data.

II. COMPUTATIONAL SETUP
A. Governing equations

The governing equations are the non-dimensionalized
conservative forms of the continuity, momentum, and energy
equations in curvilinear coordinates. The equations are non-
dimensionalized by the inflow parameters. The unit of the
reference length is millimeters,

∂U
∂t

+
∂F
∂ξ

+
∂G
∂η

+
∂H
∂ζ
= 0, (1)

where
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ρ
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and F = Fc + Fv = Jrξ
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σxxsx + σxysy + σxzsz

σyxsx + σyysy + σyzsz

σzxsx + σzysy + σzzsz

τxsx + τysy + τzsz




,

(2)

where

sx = ξx/rξ , u∗ = usx + vsy + wsz, rξ =
√
ξ2

x + ξ2
y + ξ2

z ,

τx =σxxu + σxyv + σxzw − qx,

τy =σyxu + σyyv + σyzw − qy,

τz =σzxu + σzyv + σzzw − qz.

(3)

Here, Fc and Fv denote the convective and viscous terms,
respectively. The flux terms G and H have similar forms as F.
The viscous stress and heat flux terms are obtained from the
following Newtonian and Fourier models:

σij =
2µ
Re

[
1
2



∂ui

∂xj
+
∂uj

∂xi



−

1
3
∂uk

∂xk
δij

]

and

qj = −
µ

(γ − 1) Re Pr M2
∞

∂T
∂xj

. (4)

Here, the temperature dependence of µ is based on the Suther-
land’s law, and the relationship between the thermodynamic
variables is given by the ideal gas law,

µ(T ) = T3/2(1 + 0.82)/(T + 0.82) and p =
ρT

γM2
∞

. (5)

B. Numerical methods

When a supersonic turbulent boundary layer develops
along a curved compression ramp, the complicated flow is
characterized by the interaction between the shock wave and
the turbulent boundary layer. The previous DNS of the com-
pressible turbulent boundary layer shows that the numerical
dissipation in the numerical method should be kept mini-
mum to resolve the small-scale turbulence structure. How-
ever, to avoid spurious oscillation in the shock region, an
appropriate dissipative scheme must be selected. The WENO
method is one of the suitable schemes whereby the conflict-
ing objectives can be met. Previous studies17,19 on the WENO
method have shown that the dissipation in smooth region is
still relatively high. To solve this problem, the WENO meth-
ods have been modified and applied successfully to the sim-
ulation of shock-turbulence interaction dominated complex
flows.

In this simulation, the convective terms in Eqs. (1) and (2)
are computed using a dissipation-optimized WENO method,
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which is proposed by Martin et al.20 Owing to the symmetry of
the candidate stencil used, the order of accuracy and bandwidth
resolution are optimized, while minimizing the dissipation.
More details about this method can be found elsewhere.20

Wu and Martin17 have demonstrated that the numerical dissi-
pation can be further reduced using a relatively linear method
defined as follows:

ωk =



Ck , if TVmax/TVmin < ATV
RL and TVmax < BTV

RL

ωk , otherwise
.

(6)

Here, ωk denotes the weights and Ck denotes the opti-
mal weights.20 TVmax and TVmin denote the maximum
and minimum total variation of each candidate sten-
cil, respectively. The threshold values ATV

RL and BTV
RL are

used to stabilize the simulation. In addition, the vis-
cous terms are computed using an eighth-order central
scheme, and the time integration is performed using the
third-order total-variation-diminishing (TVD) Runge–Kutta
method.21

C. Computational domain and boundary conditions

Figure 1(a) shows the computational domain, includ-
ing the upstream flat plate and the curved compression
ramp. In this simulation, the streamwise domain ranges from
x = �335 mm to x = 55 mm. The length of the flat plate is cru-
cial to the generation of the inflow turbulent boundary layer,
which is introduced later in this paper. The turning angle of the
curved ramp is 24◦, and the curvature radius is 97.5 mm, corre-
sponding to approximately 15δ. Unless otherwise stated in this
paper, δ denotes the turbulent boundary layer thickness at the

FIG. 1. (a) Sketch of the computational domain and (b) the grid points in the
curved compression ramp. The grid is plotted at intervals of five points in both
the x and y directions.

reference location, indicated in Fig. 1. The curved region exists
in the range �20 mm < x < 20 mm. The normal extent of
the computational domain is 35 mm. In the previous DNS of
compression ramps,16,17 the size of the spanwise domain was
generally two times the thickness of the incoming boundary
layer. However, to eliminate any spurious dynamics and to
determine the large-scale Görtler vortex, the spanwise size of
the computational domain in the present simulation extends
up to 7.5δ.

The computational mesh is generated algebraically with
2500 × 160 × 480 nodes in the streamwise, wall-normal,
and spanwise directions, respectively. As shown in Fig. 1(b),
the grid points are equally spaced in the curved compres-
sion ramp and stretched in the sponge region downstream.
The grid points in the wall-normal direction are clustered
in the near-wall region, ensuring approximately 100 points
inside the boundary layer. The grids in the spanwise direc-
tion are uniformly spaced. In the wall units based on the
viscous length scale, which is defined as µw/(ρwuτ) at the
reference location, the grid resolutions in the curved region
are ∆x+ ≈ 4.5, ∆yw

+ ≈ 0.5, and ∆z+ ≈ 5.0, which are compa-
rable with those obtained in the DNS of previous compression
ramps.17

The generation of the inflow turbulent boundary layer22

is a critical issue in the simulation of the curved flow. In
this study, a fully developed incoming turbulent boundary
layer is obtained via the laminar-to-turbulent transition within
the upstream flat plate. First, the profile of the compress-
ible laminar boundary layer is enforced at the inlet of the
computational domain, and subsequently, a region of blow-
ing and suction disturbance,23 shown in Fig. 1, is introduced
to induce the transition to turbulence. More details about the
disturbance can be found elsewhere.23 To ensure that the
turbulence at the reference location attains an equilibrium
state, the length of the flat plate must be sufficient. Table I
lists the parameters of the boundary layer at the refer-
ence location, where δ, δ*, θ, and Cf denote the thick-
ness, displaced thickness, momentum thickness, and wall
skin-friction coefficient, respectively. Evidently, the statisti-
cal quantities of the boundary layer at the reference loca-
tion are in good agreement with the DNS results obtained
by Wu and Martin17 and the experimental data presented by
Bookey et al.18

In addition, a no-slip and adiabatic wall condition
is applied to the ramp surface. To avoid the reflection
of the numerical disturbance, a buffer region14,15 with
progressively coarsening meshes is assumed near the far
field and outlet boundary. Periodic boundary conditions
are used in the spanwise direction of the computational
domain.

TABLE I. Parameters of the turbulent boundary layer at the reference
location.

Case δ (mm) δ* (mm) θ (mm) Cf

Current DNS 6.5 2.06 0.41 0.002 56
Wu and Martin17 6.7 2.36 0.43 0.002 25
Bookey et al.18 6.4 1.80 0.38 0.002 17
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FIG. 2. Two-point correlation coeffi-
cient of the velocity at various locations:
(a) x = �35 mm and y+ = 50, (b) x = 0
mm and y+ = 50, (c) x = 30 mm and
y+ = 50, and (d) x = 30 mm and y/δ= 0.5.

To assess the validity of the computational domain,
Fig. 2 shows the two-point correlation coefficient as a
function of the spanwise distance, which is defined as

Rαα(Kr ∆z) =
Nz−1∑
k=1

〈
αKαK+Kr

〉
, Kr = 0, 1, . . . , Nz − 1. Here,

α represents the fluctuations of the flow field. The stream-
wise locations are selected at x = �35 mm and x = 0 mm,
corresponding to the upstream boundary layer and the curved
region, respectively. As shown in Fig. 2, the correlation
coefficient at both locations rapidly tends to zero with the
increase in the spanwise distance. It is clear that the change
in the correlation coefficient is negligible when the distance
is beyond 2.0δ, suggesting that the spanwise domain in
this simulation is sufficiently wide to resolve the turbulence
dynamics.

III. RESULTS AND DISCUSSIONS
A. Incoming turbulent boundary layer

The generation of a realistic incoming turbulent bound-
ary layer plays a key role in the following simulation.
Figure 3 shows the instantaneous density gradient in the
upstream flat-plate boundary layer. The entire transition pro-
cess to a turbulence flow induced by the wall blowing and
suction is clearly revealed. As shown in Fig. 3, the outer region
of the boundary layer at x > �50 mm is characterized by

large-scale bulges, indicating the appearance of a fully devel-
oped turbulent boundary layer.

Using the mean and fluctuation quantities, the statisti-
cal characteristics of the fully developed turbulent boundary
layer are quantitatively verified with the empirical correla-
tions and previous numerical results. Figure 4 shows the van
Driest transformed mean velocity profile at the reference loca-
tions based on the current DNS data. In this paper, the vari-
able y* denotes the wall normal distance in the curvilinear

FIG. 3. Isosurface of the instantaneous density gradient colored by the wall-
normal distance (y*) in the upstream flat-plate boundary layer.
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FIG. 4. (a) van Driest transformed mean velocity profile in the inner scaling
and (b) van Driest transformed mean deficit velocity profile in the outer scaling.
The results are taken at the reference location.

coordinates. The variable u+ represents the transformed veloc-

ity, which is defined as u+ = u
uτ

√
Re, uτ =

√
τw
ρw

. The variable

y+ represents the wall-normal coordinate, which is renormal-
ized by y+ = y ρuτ

µ

√
Re. The profile exhibits a linear behavior

in the sub-layer for y+ < 6, and the logarithmic region is consis-
tent with the logarithmic scaling for 30 < y+ < 60. In addition,
the recent DNS results are in good agreement with the exper-
imental and previous DNS data.17,18,24 Figure 5 shows the
turbulent fluctuation intensity of the three velocity compo-
nents in the inner and outer scaling, respectively. Based on
the Morkovin’s hypothesis, the turbulent fluctuation is scaled
using the density. The current DNS data are in good agreement
with the well-established incompressible DNS data25,27 and
experimental measurements.26 For instance, the streamwise
velocity fluctuation, shown in Fig. 5(a), attains a peak value of

FIG. 5. Profiles of the turbulence fluctuation taken at the reference location
in the (a) inner scaling and (b) outer scaling.

2.68 at y+ = 11, which is comparable to that of incompressible
flows.25,27

B. Instantaneous and mean flow fields

Figure 6 shows the numerical schlieren of the instan-
taneous flow field in the streamwise/wall-normal plane,
in which the parameter is defined as 0.8 exp[−10(|∇ρ|
− |∇ρ|min)/(|∇ρ|max− |∇ρ|min)]. It is clear that the shock wave
penetrates into the boundary layer and gradually evolves as a
fan of the compressive wave. The high values of the density
gradient are indicated by the dark regions. We can observe
qualitatively that the intensity of the turbulence fluctuations
downstream of the curved ramp is amplified as the flow devel-
ops. Figure 7 shows the coherent vortex structures obtained
using the Q criterion.28 In the incoming boundary layer, the
near-wall region is dominated by elongated streamwise vortex
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FIG. 6. Numerical visualization of the instantaneous flow field in the stream-
wise and wall-normal plane.

FIG. 7. Isosurface of the Q criterion colored by the wall normal distance (y*).

structures. However, in the concave region, the structures are
characterized by large-scale hairpin-like vortices in the outer
region of the boundary layer. Moreover, another interesting
scenario is that these vortices are concentered as packets in
the spanwise direction, exhibiting a trend similar to that of the
Görtler-like vortices.

Figure 8 shows the streamwise distribution of the mean
wall pressure in the curved ramp. There are no similar numer-
ical and experimental data to validate the current DNS data.
An auxiliary DNS of the compression ramp with the same
inflow conditions and computational grid is performed in this
study to verify the accuracy of the DNS results of the curved
24◦ ramp. The results show that the distribution of the wall
pressure in the compression ramp is in good quantitative agree-
ment with that of the DNS performed by Wu and Martin17 and

FIG. 8. Comparison of the mean wall pressure with the DNS and experimen-
tal data.

the experimental measurements performed by Bookey et al.18

A plateau of pressure in the corner region is obtained, indicat-
ing the separation of the mean flow field. However, the curved
ramp results show no sign of a pressure plateau in the concave
curvature because of the relatively weaker adverse gradient of
the wall pressure.

Figure 9(a) shows the streamwise distribution of the mean
and instantaneous wall skin-friction coefficients, where the
theoretical value29 obtained using the Blasius formulation with
the van Driest II transformation is presented. Here, the mean
and instantaneous results are both spanwise-averaged. Before
the points at approximately x = �30 mm, the skin friction in the
upstream flat-plate boundary layer shows a good agreement
with the estimate, further supporting the above conclusions
that the incoming turbulent boundary layer attains an equi-
librium state. In the curved region, as expected, it is found
that the skin friction decreases as the flow develops along the
concave wall, followed by a slow increase in the downstream
region of the curved ramp. However, in contrast to the flow
reversal of the 24◦ compression ramp, the mean flow field
in the curved ramp is attached statistically. Furthermore, the
two instantaneous results, shown in Fig. 9(a), are considerably
different. It is apparent that the former is separated instanta-
neously where the flow is attached at another instantaneous
time. This is because of the weak adverse gradient induced
by the concave curvature. To further demonstrate the intermit-
tency of the flow separation, the contours of the instantaneous
skin friction are plotted, as shown in Fig. 9(b). The negative
skin frictions are indicated by contours marked in red. The
scattered red spots are clearly visible in the curved region for
�20 mm < x < 20 mm.

For a separated flow, Simpson30 proposed a quantitative
definition to classify the detachment state near the wall. In this
study, following Simpson,30 the detachment state is defined

FIG. 9. (a) Streamwise distribution of the mean and instantaneous wall skin-
friction coefficients and (b) contours of the instantaneous skin friction coef-
ficient. The symbols denote the Blasius estimation. The negative value is
denoted by red contours.
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FIG. 10. Distribution of the statistical probability (γu) as a function of the
streamwise location.

by the statistical probability on the basis of the friction time
of that the instantaneous flow is separated. According to
Simpson,30 the instantaneous backflow of 1% of the total time
is defined as the incipient detachment (ID) and intermittent
transitory detachment (ITD) corresponding to an instanta-
neous backflow of 20% of the total time. If the probability of
separation is over 50%, it is defined as a transitory detachment
(TD). To quantitatively analyze the instantaneous separation
in this simulation, Fig. 10 shows the streamwise distribu-
tion of the statistical probability (γu). It is apparent that the
value in the incoming boundary layer and the downstream
region of the concave wall is significantly smaller and within
the range of the ID. Furthermore, the figure shows that the
flow in the vicinity of the curved ramp is close to the ITD
state in the curved region wherein γu varies between 0.01
and 0.14.

C. Turbulent boundary layer characteristics

To better analyze the evolution of the turbulent bound-
ary layer throughout the curved compression ramp, the flow

FIG. 11. Profiles of the van Driest transformed mean streamwise velocity in
region II.

is divided into three regions: an upstream turbulent bound-
ary layer (region I), the interaction region of the curved ramp
(region II), and the downstream of the curved ramp (region
III). Figure 9(a) shows the schematics of the corresponding
streamwise locations of the regions. The curved region lies
from x = �20 mm to x = 20 mm.

Figure 11 shows the profiles of the van Driest transformed
mean streamwise velocity U+

vd at selected locations in region II
as a function of the wall-normal distance in wall units y+.
For comparison, the data in region I, denoted by blue sym-
bols, are included in this figure. As shown in Fig. 11, the
velocity in region I is linear (U+

vd = y+) in the viscous sub-
layer and obeys the logarithmic law (U+

vd = 2.44 log y+ + 5.1)
for 30 ≤ y+ ≤ 100. In the interaction region of compres-
sion ramp, the velocity profiles are characteristic of dips in
the logarithmic region. The simulation of the curved ramp

FIG. 12. Wall-normal distribution of the density and velocity fluctuations
at several streamwise locations: (a) density fluctuations and (b) streamwise
velocity fluctuations.
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indicates that the profiles in region II exhibit no obvious dips
and the log-law is still preserved. This phenomenon is similar
to the results of an experiment conducted using a turbulent
boundary with a Mach number of 2.95 subjected to a concave
surface curvature.8,9 Additionally, it is clear that the concave
curvature affects the velocity profile in the wake region for
y+ ≥ 200.

Figure 12 shows the wall-normal distribution of the den-
sity and streamwise velocity fluctuations at several stream-
wise locations. Clearly, the density and velocity fluctuations
increase dramatically as the flow develops along the curved
ramp. However, as shown in Fig. 12, the streamwise evo-
lution processes of the density and velocity fluctuations are
substantially different in the interaction regions. With respect

to the distribution of the density fluctuation upstream,
the fluctuation profiles in the curved ramp are similar;
however, a rapid increase is observed in the outer part,
significantly faster than that in the near-wall region. In con-
trast, the velocity fluctuation in the near-wall region is rel-
atively unaffected, and the fluctuation intensities for 0.25
< y*/δ < 0.50 exhibit an approximately threefold increase
compared to the value upstream. The simulation results
suggest that the surface curvature significantly affects the
turbulent fluctuation in the outer region of the boundary
layer.

Figure 13 shows the computed anisotropy invariant maps
at the selected streamwise locations. This map comprises the
second and third invariants of the Reynolds stress anisotropy

FIG. 13. Anisotropy invariant maps at
selected streamwise locations along the
curved compression ramp. The colored
map denotes the normal distance (y*/δ)
from the wall.
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tensor (bij), which are defined as follows:31

bij =

〈
ρu′′i u′′j

〉
2 〈ρ〉 〈k〉

−
1
3
δij, IIb = bijbji, and IIIb = bijbjkbki.

(7)
Lumley32 demonstrated that the evolution of the tur-

bulence state through the curved ramp could be obtained
by investigating the anisotropy invariant map. Figure 13(a)
shows the turbulence states of the incoming turbulent bound-
ary layer. It is clear that the near-wall region is character-
istic of a two-component turbulence and the outer region
is represented by isotropic turbulence. Moreover, the max-
imum anisotropy occurred at y+ ≈ 9, which falls approxi-
mately in the buffer layer. The results are consistent with that
obtained for a canonical flat-plate turbulent boundary layer.33

Figures 13(b)–13(d) show the change in the turbulence state
throughout the curved ramp. From the streamwise positions of
x = �10 mm to x = 10 mm, the turbulence in the near-wall
and outer regions evolves differently. In particular, the two-
component axisymmetric turbulence is gradually attained in
the proximity of the wall because of the blocking effect.33 Fur-
thermore, the maximum anisotropy is reduced in the near-wall
region and the turbulence state approaches axisymmetric com-
pression. These behaviors are observed in the DNS conducted
by Grilli et al.34 However, in the outer region, the anisotropy
increases and subsequently decreases toward the isotropic tur-
bulence along the line corresponding to the axisymmetric
expansion. Downstream of the curved region in the compres-
sion ramp, the anisotropy increases in the near-wall region;
however, the change in the turbulence state in the outer region
is negligible, as shown in Figs. 13(e) and 13(f). This indicates
that there exists a faster reversal tendency in the near-wall
region than that in the outer part. Based on the comparison
with the results shown in Fig. 13(a), the disturbed turbu-
lent boundary layer does not fully recover to its equilibrium
state.

To study the near-wall asymptotic behavior, the distribu-
tions of the turbulent kinetic energy (TKE) at various loca-
tions are plotted, as shown in Fig. 14. For the incompressible

FIG. 14. Distribution of the turbulent kinetic energy at various streamwise
locations.

boundary layer,35,36 the TKE within the near-wall region obeys
the following asymptotic behavior:

K+ ≈ A+ (
y+)2, (8)

where A+ is a constant. Figure 14 shows that the viscous
sub-layer of the upstream supersonic turbulent boundary layer
satisfies the above equation for A+ = 0.135, which is some-
what smaller than the value obtained in the DNS conducted
by Pirozzoli et al. (A+ = 0.2035).23 This is because of the dif-
ference in the inflow conditions. In addition, the peak value
of the TKE is approximately 4.42 at y+ = 12.2, which is in
good agreement with that obtained in previous compressible
flows. Although the TKEs in the near-wall and outer regions
are significantly enhanced along the curved ramp, the evolv-
ing process is significantly different. It is clear that the TKE
in the near-wall region not only increases linearly but also
obeys the asymptotic behavior with a larger constant A+ than
that of the upstream compressible turbulent flat-plate bound-
ary layer. The TKE in the outer region increases dramatically
and reaches a peak value for 10 mm < x < 20 mm. This sug-
gests that the curvature effect has different underlying mecha-
nisms on the inner and outer regions of the turbulent boundary
layer.

Figure 15 shows the isocontour lines of the TKE and
Reynolds shear stress in the curved ramp. The TKE is ampli-
fied across the curved ramp. It is clear that the turbulence
reaches a maximum value in the downstream region of the
curved ramp (10 mm < x < 20 mm). This is different from
that obtained in previous DNS results of the compression
ramp17 with similar inflow conditions and total turning angle,
where the peak value of the TKE is observed at the separated
shear layer. This discrepancy could be related to the weaker
adverse pressure gradient, where the mean flow in the curved

FIG. 15. (a) Isocontour lines of the turbulent kinetic energy and (b) Reynolds
shear stress in the curved ramp.
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FIG. 16. Streamwise distribution of the structure parameter in the curved
ramp.

ramp is attached statistically. However, as shown in Fig. 15(b),
the effect of the concave curvature on the distribution of the
Reynolds shear stress is negligible. Consistent with the recent
simulation results of the compression ramp,17 the peak region
of the Reynolds shear stress is still observed at similar stream-
wise locations (at approximately x = 20 mm) with comparable
values.

The structure parameter, which is defined as the ratio of
the shear stress to the trace of the Reynolds stress tensor, is
plotted in Fig. 16, where the red dots denote the wall-normal
location of the maximum structure parameter in the turbulent
boundary layer. This change can be used to illustrate the ampli-
fication mechanism for the normal and shear components of
the Reynolds stress tensor. In agreement with previous exper-
imental and numerical findings, the concave curvature has
different effects on the amplification mechanism. Upstream of
the curved region, a nearly constant peak value is obtained at
approximately 0.15 toward the edge of the boundary layer. This
is similar to the DNS data reported by Adams.14 Subsequently,
the structure parameter is found to increase dramatically from
0.2 at x = �10 mm to 0.38 at x = 10 mm throughout the curved
region. Downstream of the curved ramp, the same trend is
observed inside the boundary layer. However, a secondary
peak is visible outside the boundary layer, corresponding to
the shock wave.

To further study the concave curvature effect on the trans-
port mechanism of the TKE, various budget terms in the TKE
transport equation are discussed. The transport equation of the
TKE in the compressible form is given as follow:15

∂

∂t
( ρ̄k) = C + P + T + V + ε + Π + M, (9)

where C, P, T, V, ε, Π , and M are the advection, produc-
tion, turbulent transport, viscous diffusion, viscous dissipation,
pressure dilation, and mass diffusion terms, respectively. The
explicit expressions of these terms are given as follows:15

C =−∂
(
ũj ρ̄k

)
/∂xj, P = −ρu′′i u′′j ∂ũi/∂xj,

T =−∂(1/2ρu′′i u′′i u′′j + p′u′′j )/∂xj,

V = ∂σ′iju′′i /∂xj,

ε =σ′ij∂u′′i /∂xj,

Π = p′∂u′′i /∂xi,

M = ū′′i (∂σ̄ij/∂xj − ∂p̄/∂xi),

(10)

where the over bar and tilde variables denote the Reynolds-
averaged and Favre-averaged values, respectively. The prime

and double prime variables correspond to the fluctuations.
Figure 17 shows the profiles of the significant terms in the
TKE transport equation at x = �35 mm and x = 0 mm, respec-
tively. As shown in Fig. 17(a), the results are characteristic of a
zero-pressure gradient turbulent flat-plate boundary layer. The
production term is balanced with the turbulent transport term
for a major portion of the boundary layer, suggesting that the
TKE is transported from the far-from-wall region to the near-
wall region by the turbulent transport. In the near-wall region,
the viscous dissipation term largely balances with the viscous
diffusion term, indicating that the turbulence is dissipated in
the near-wall region because of the viscous effect. It is clear
that the sum of all the terms exhibits an overall balance. This
indicates that the boundary layer is in an equilibrium state. In
Fig. 17(b), the magnitude of the corresponding terms increases
significantly in region II. Moreover, the behavior of the turbu-
lent boundary layer in the curved ramp is different. The peak
value of the turbulent production term in the TKE equation is

FIG. 17. Budget of the turbulent kinetic energy: (a) x = �35 mm, region I,
and (b) x = 0 mm, region II.
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attained in the outer region of the boundary layer. This is due
to the interaction with the shock wave. Furthermore, compared
with the upstream turbulent boundary layer, the advection term
becomes significant at y*/δ > 0.1, as shown in Fig. 17(b). It is
suggested that the TKE budget in the outer part of the bound-
ary layer in the corner region is dominated by the production
and advection term.

D. Görtler-like vortex

When the flow develops on the concave curvatures, the
so-called Taylor–Görtler vortex, which is due to a combined
interaction between the centrifugal instability, pressure gra-
dient and viscosity, has been the subject of many numeri-
cal and experimental investigations. As reported by Loginov
et al.,37 the spanwise inhomogeneity of the mean skin-friction
coefficient is associated with the Görtler-like vortices and the
structures are supposed to be steady. However, in the DNS
analysis of the compression ramp, Priebe et al.38 found that the
Görtler-like vortices observed in the interaction are unsteady.
It should be noted that the characteristics of the Görtler vortex
have not been fully understood.

Figure 18(a) shows the contours of the mean skin-friction
coefficient along the curved ramp. The start and end loca-
tions of the curved region are indicated by vertical black lines.
Figures 18(b) and 18(c) show the spanwise variation in the
skin-friction at two streamwise locations, x = �5 mm and
x = 30 mm, respectively. In the curved region and the down-
stream of this region, the results show a significant variation
in the spanwise direction with the characteristic of a streak
structure. A similar trend was observed in previous simula-
tions conducted by Grilli et al.34 and Loginov et al.37 It was
proposed that the regions of the low and high skin-friction are
due to the up and down wash effects of the steady Görtler-like
vortices.34,37

For the supersonic turbulent boundary layer subjected to a
concave surface curvature, a stability criterion, namely, Görtler
number (GT), was proposed to assess the Görtler instability. It
is similar to that of a laminar and incompressible flow,39 which
is defined as follows:

GT =
θ

0.018δ∗

√
θ

R
,

R =
1
κ

, κ =

[
u2 ∂v
∂x
− v2 ∂u

∂y
+ uv



∂v
∂y
−
∂u
∂x




]

(
u2 + v2)3/2

.

(11)

Here, θ and δ* denote the boundary layer momentum and
displacement thickness, respectively. The variable R is given
by the curvature radius of the flow throughout the curved ramp.
Note that the Görtler number in this simulation is computed
using the time and spanwise averaged flow-field. Figure 19(a)
shows the contours of the Görtler number. The black solid
contours denote the critical value, which is approximately
0.6.39 The values are high along the main shock and in the
boundary layer in the curved region for �20 mm < x < 20
mm. Figure 19(b) shows the three streamlines, indicated by
white solid lines, through the boundary layer. Generally, the
trends in the different streamlines are similar. In the incoming
boundary layer, the Görtler number is very small and, sub-
sequently, increases beyond the critical value when the flow
enters the curved region. Along the streamlines, the value
increases through the entire curved region. Subsequently, it
decreases dramatically below 0.6 in the downstream region of
the curved ramp.

To further verify the occurrence of streamwise vortices in
the curved ramp, the isosurface of the instantaneous stream-
wise vorticity is plotted, as shown in Fig. 20. The positive and
negative values are indicated using red and blue, respectively.

FIG. 18. (a) Contours of the mean skin-
friction on the curved ramp. The line
plots of the mean skin-friction as a func-
tion of the spanwise position are taken at
locations S1 (b) and S2 (c), respectively.
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FIG. 19. (a) Contours of the Görtler number (GT) and (b) streamwise distri-
bution of the turbulent Görtler number along the streamlines. The black solid
lines denote the critical value with 0.6. The normal locations of the streamlines
are indicated using white solid lines.

As expected, the streamwise vortex in the spanwise direction
is characteristic of alternating positive and negative regions,
consistent with the pattern of Görtler-like vortices. Another
notable characteristic is that the spatial scale of the above
positive and negative regions increases rapidly as the bound-
ary layer develops along the curvature surface, particularly in
the downstream region of the curved ramp. This suggests that
the concave curvature enhances the streamwise vortex struc-
ture. In particular, the distribution of the streamwise vorticity
is characterized by intermittency. For a deeper understand-
ing, Figs. 21 and 22 show the contours of the streamwise
vorticity in the spanwise and wall-normal planes selected at

FIG. 20. Isosurface of the instantaneous streamwise vorticity.

FIG. 21. Contour plot of the instantaneous streamwise vorticity in the
spanwise/wall-normal plane at x = �20 mm.

two streamwise locations, respectively. The data, shown in
Fig. 21, were obtained at the incoming turbulent boundary
layer. As expected, the streamwise vortices, indicated using
the white circles, are concentrated in the near-wall region. This
is because the near-wall region of the compressible flat-plate
turbulent boundary layer is characterized by the streamwise
aligned legs of the hairpin vortices. For a more direct view
of the curvature effect on these vortices, Fig. 22 shows the
results at x = 30 mm. Apparently, in contrast with the incom-
ing boundary layer, the spanwise structure is dominated by the
large-scale streamwise vortex packets, which are centered in
the outer region of the boundary layer at y*/δ= 0.5. In addition,
to better depict the unsteadiness of the vortex structure, Fig.
22 shows the two different instantaneous flow-fields. Clearly,
the vortex packets, labeled as A–D, undergo a significant vari-
ation. Based on the above analysis, the existence of unsteady
Görtler-like vortices in the curved compression ramp is
confirmed.

E. Dynamic mode decomposition

The dynamic mode decomposition (DMD), proposed by
Schmid,40 is a relatively new data-driven spectral analysis
technique, which is based on the Koopmans analysis of a
non-linear dynamic system. The modal analysis helps in under-
standing the dynamic processes associated with characteristic
frequencies. Recently, Jovanovic et al.41 developed a sparsity
promoting dynamic mode decomposition (namely, DMDSP)
to achieve a trade-off between the number of extracted
dynamic modes and the accuracy of reconstruction. According
to Jovanovic et al.,41 the DMDSP algorithm is briefly outlined
as follows:

(a) Two snapshot matrices, namely, ψ0 and ψ1, are used
as input. The matrices contain the numerical dataset
sampled at a constant time step and are assembled as
follows:

FIG. 22. Contour plots of the instantaneous streamwise vorticity in the
spanwise/wall-normal plane at x = 30 mm. (a) t = 960 and (b) t = 1800.
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FIG. 23. Eigenvalues obtained using
the DMD algorithm (circle) and the
DMDSP algorithm (cross). The dashed
curve denotes the unit circle.

ψ0 = [v0, v2, · · · , vN−1] and ψ1 = [v1, v2, · · · , vN ] ,

(12)

where v is the flow variable and the subscript denotes
the index of the flow-field snapshot. The objective of
the DMD is to obtain a low-order representation of the
mapping matrix A between the two snapshot matrices.

(b) An optimal representation of the mapping matrix A is
given as follows:

FDMD = U∗ψ1V Σ−1. (13)

Here, U, V, and Σ are obtained by an economy-size
singular value decomposition of the snapshot matrixψ0.
The flow-field reconstruction is obtained as follows:

ψ0︷        ︸︸        ︷[
v0v1· · ·vN−1

]
≈

φ︷          ︸︸          ︷[
φ1φ2· · ·φN−1

]

Dα︷       ︸︸       ︷


α1

α2

. . .
αr



Vand︷        ︸︸        ︷


1µ1· · ·µN−1
1

1µ2· · ·µN−1
2

...
... · · ·

...
1µr · · ·µN−1

r



.

The matrix of the dynamic modes φ is computed as
φi = Uyi, where yi is the eigenvector of FDMD. The diag-
onal matrix Dα is obtained using the amplitude vector
αi. The Vandermonde matrix Vand , which represents the
temporal evolution of the dynamic modes, is formed by
the eigenvalues µi of FDMD.

(c) To balance the number of extracted modes and the
error of reconstruction, the objective function with a
punishment term is constructed as follows:

minimize
α

ΣV ∗ − ΛDαVand
2

F + γ
r∑

i=1

|αi |, (14)

where Λ denotes the matrix holding the eigenvectors and
‖‖2F denotes the Frobenius norm. The user-defined γ is
used to emphasize the dynamically significant modes. A
sparsity structure of the amplitude vector associated with
the most relevant modes is obtained by solving the opti-
mization problem using alternating direction method of

the multipliers. A complete description of this method
can be found in the study conducted by Jovanovic et al.41

In this section, the streamwise velocity field is quanti-
tatively analyzed using the DMDSP method to extract the
characteristic dynamic modes from the simulation results.
The modal analysis is conducted using 160 snapshots of the
spanwise and wall-normal planes at the streamwise location
(x = 30 mm), and the time spacing of the inter-snapshot is
approximately 1.23δ/U∞. As shown in Fig. 18, the selected
location is at the region of high and low skin frictions,
labeled as S2.

Figure 23 shows the distribution of the eigenvalues, where
the symbol size denotes the amplitude of the mode (|αi|). It is
clear that the obtained modes are symmetric about the real
axis because of the real-valued simulation data. Moreover,
the modes are present inside or along the unit circle, sug-
gesting that these modes are saturated. In addition, the modes
M0–M3 obtained using the DMDSP method are labeled with
red crosses in Fig. 23. Compared to the total snapshots, the
performance loss of the reconstruction with the four modes
is approximately 16%. The four modes are close to the unit
circle. Table II lists the frequency (fU∞/δ) and growth rate
(λi) of the four modes, computed using logarithmic trans-
formation.40 The mode M0 with the largest amplitude and
the lowest growth rate is related to the mean-averaged flow.
The frequencies of the dynamic modes M1–M3 are 0.0115,
0.0172, and 0.0223, respectively. In comparison with the char-
acteristic frequency of the turbulent boundary layer (approxi-
mately 1.0), these modes are characteristic of low frequency.
Figure 24 shows the dependency of the amplitude of the modes

TABLE II. Four modes obtained using the DMDSP method.

Mode name |αi | fU∞/δ |λi |

M0 194.4747 0.0000 1.55 × 10�5

M1 2.1335 0.0115 2.17 × 10�4

M2 3.0345 0.0172 1.65 × 10�3

M3 2.3380 0.0223 2.84 × 10�4
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FIG. 24. (a) Effects of the mode ampli-
tude on (a) the frequency and (b) the
growth rate of the dynamic modes. Cir-
cle: DMD; Cross: DMDSP.

on the frequency and growth rate. Based on the findings of
Jovanovic et al.,41 although the amplitude of the three dynamic
modes are small, the decay rates are much smaller than that
of the modes with higher amplitudes. Therefore, the latter is
strongly damped and has a strong influence only during the
early stage of the evolution; however, the former plays a major
role during the entire process. Hence, the low-frequency modes
are dynamically relevant.

To depict the spatial structure, Fig. 25 shows the real part
of the modes M0–M3. Generally, the structures of the mean and
dynamic modes are different. It is apparent that the mode M0
is consistent with the time-averaged streamwise velocity flow-
field. The dynamic modes M1–M3 clearly exhibit a relatively
similar spatial structure. They are regularly distributed in the
spanwise direction, with an alternating velocity fluctuation that

FIG. 25. Real part of the modes from streamwise velocity data: (a) M0,
(b) M1, (c) M2, and (d) M3.

FIG. 26. Wall skin friction coefficient as a function of the spanwise position
at x = 30 mm. (a) 0 mm < z < 24 mm and (b) 24 mm < z < 48 mm. Symbol:
DNS; line: DMD modes from DNS.

appears in the boundary layer. It is interesting to note that the
dynamic modes have a strong relationship with the Görtler-
like vortices. Furthermore, we can clearly see that the spatial
scales of the three modes are similar, which is approximately
one boundary layer thickness. Figure 26 shows the comparison
of the wall skin-friction coefficient reconstructed using the
above four modes with the exact DNS data. The agreement is
satisfactory in general. The reconstructed results show a good
approximation of the data from the DNS, further supporting
the above conclusion that the four modes obtained using the
DMDSP method provide an optimal low-order representation
of the original DNS data.

IV. CONCLUSIONS

A numerical investigation using the DNS is performed
to study the response of the supersonic turbulent boundary
layer subjected to a curved compression ramp with a turning
angle of 24◦. Various mechanisms associated with the complex
curved flow are analyzed systematically, including the mean
and instantaneous flow properties, turbulent boundary layer
statistics, and characteristic of the Görtler-like vortices.
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As expected, the instantaneous density gradient analysis
reveals that a fan of the compression wave occurs at the foot of
the shock wave because of the weak adverse pressure gradient
induced by the concave curvature. Because of the enforcing
effect, the outer region of the boundary layer downstream
of the curved ramp is characterized by organized large-scale
hairpin vortex packets. The mean and instantaneous wall skin-
friction coefficients indicate that the mean flow is attached
statistically; however, the instantaneous flow field is close to
the incipient detachment state, exhibiting strong unsteadiness
and intermittency. The evolution of the turbulent boundary
layer is studied in terms of the mean velocity profile, fluctu-
ation intensity, anisotropy of the Reynolds stress, and TKE.
Consistent with previous experimental observations, the log-
arithmic region of the velocity profiles in the curved region
is relatively unaffected, exhibiting a good agreement with the
logarithmic law. The turbulence intensity is amplified dramat-
ically, up to thrice that of the upstream value. The variation in
the turbulent state in the inner and outer regions of the bound-
ary layer is comparatively studied using anisotropy invariant
maps. The effects on the turbulence state in the above two lay-
ers are different. In the inner layer, the anisotropy reduces and
the turbulence state approaches the axisymmetric compres-
sion. Anisotropy in the outer layer increases and subsequently
decreases toward isotropic turbulence along the line corre-
sponding to the axisymmetric expansion. The balance of TKE
budget in the curved ramp is still obtained, however, with the
increase in the wall-normal distance, the magnitude of the
advection term in TKE equation increases significantly, par-
ticularly in the outer region of the boundary layer. The balance
is dominated by the strong turbulent production and advection
terms.

The existence of the Görtler-like vortices is visualized
by the alternating positive and negative streamwise vortici-
ties. Moreover, compared to the upstream boundary layer, the
Görtler-like vortex structure is significantly enhanced and cen-
tered in the outer part of the boundary layer. The results further
confirm the hypothesis that the unsteady Görtler-like roll cells
might exist in the curved flow.

In addition, the DMD analysis of the streamwise velocity
is performed to determine the dynamically significant modes.
The skin-friction coefficient reconstructed using the extracted
four modes is in good agreement with the DNS results, sug-
gesting that the reconstructed flow field with a performance
loss of 16% provides an optimal representation of the DNS
data. The spatial structures of the dominated low-frequency
dynamic modes are consistent with the spanwise distribution
of Görtler-like vortices.
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development of Görtler vortices,” Phys. Fluids 20, 094103 (2008).

5J. D. Swearingen and R. F. Blackwelder, “The growth and breakdown of
streamwise vortices in the presence of a wall,” J. Fluid Mech. 182, 255
(1987).

6M. Jayaram, M. W. Taylor, and A. J. Smits, “The response of a compressible
turbulent boundary layer to short regions of concave surface curvature,”
J. Fluid Mech. 175, 343 (1987).

7J. F. Donovan, E. F. Spina, and A. J. Smits, “The structure of a supersonic
turbulent boundary layer subjected to concave surface curvature,” J. Fluid
Mech. 259, 1 (1994).

8Q. C. Wang and Z. G. Wang, “Structural characteristics of the supersonic
turbulent boundary layer subjected to concave curvature,” Appl. Phys. Lett.
108, 114102 (2016).

9Q. C. Wang, Z. G. Wang, and Y. X. Zhao, “An experimental investigation
of the supersonic turbulent boundary layer subjected to concave curvature,”
Phys. Fluids 28, 096104 (2016).

10P. H. Hoffmann, K. C. Muck, and P. Bradshaw, “The effect of concave
surface curvature on turbulent boundary layers,” J. Fluid Mech. 161, 371
(1985).

11W. B. Sturek and J. E. Danberg, “Supersonic turbulent boundary layer
in adverse pressure gradient. Part I: The experiment,” AIAA J. 10, 475
(1972).

12A. J. Laderman, “Adverse pressure gradient effects on supersonic boundary
layer turbulence,” AIAA J. 18, 1186 (1980).

13P. Moin and K. Mahesh, “Direct numerical simulation: A tool in turbulence
research,” Annu. Rev. Fluid Mech. 30, 539–578 (1998).

14N. A. Adams, “Direct simulation of the turbulent boundary layer along a
compression ramp at M = 3 and Reθ = 1685,” J. Fluid Mech. 420, 47–83
(2000).

15X. L. Li, D. X. Fu and Y. W. Ma, “Direct numerical simulation of
shock/turbulent boundary layer interaction in a supersonic compression
ramp,” Sci. China: Phys., Mech. Astron. 53, 1651 (2010).

16F. L. Tong, Z. G. Tang, C. P. Yu, X. K. Zhu, and X. L. Li, “Numerical
analysis of shock wave and supersonic turbulent boundary layer interaction
between adiabatic and cold walls,” J. Turbul. 18, 569–588 (2017).

17M. Wu and M. P. Martin, “Direct numerical simulation of supersonic
turbulent boundary layer over a compression ramp,” AIAA J. 45, 879
(2007).

18P. Bookey, C. Wyckham, and A. Smits, “New experimental data of STBLI
at DNS/LES accessible Reynolds numbers,” AIAA paper 2005-309, 2005.

19S. Pirozzoli, “Numerical methods for high-speed flows,” Annu. Rev. Fluid
Mech. 43, 163–194 (2011).

20M. P. Martin, E. M. Taylor, M. Wu, and V. G. Weirs, “A bandwidth-optimized
WENO scheme for the effective direct numerical simulation of compressible
turbulence,” J. Comput. Phys. 220, 270 (2006).

21S. Gottlieb and C. W. Shu, “Total variation diminishing Runge-Kutta
schemes,” Math. Comput. Am. Math. Soc. 67, 73–85 (1998).

22X. H. Wu, “Inflow turbulence generation methods,” Annu. Rev. Fluid Mech.
49, 23–49 (2017).

23S. Pirozzoli, F. Grasso, and T. B. Gatski, “Direct numerical simulation
and analysis of a spatially evolving supersonic turbulent boundary layer at
M = 2.25,” Phys. Fluids 16, 530 (2004).

24S. Pirozzoli and M. Bernardini, “Turbulence in supersonic boundary layers
at moderate Reynolds numbers,” J. Fluid Mech. 688, 120–168 (2011).

25X. Wu and P. Moin, “Direct numerical simulation of turbulence in a nomi-
nally zero-pressure-gradient flat-plate boundary layer,” J. Fluid Mech. 630,
5 (2009).

26L. P. Erm and P. N. Joubert, “Low Reynolds number turbulent boundary
layers,” J. Fluid Mech. 230, 1–44 (1991).

27P. R. Spalart, “Direct numerical simulation of a turbulent boundary layer up
to Reθ = 1410,” J. Fluid Mech. 187, 61–98 (1988).

28J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech.
285, 69 (1995).

29F. M. White, Viscous Fluid Flow (McGraw-Hill, 1974).
30R. L. Simpson, “Turbulent boundary layer separation,” Annu. Rev. Fluid

Mech. 21, 205 (1989).

https://doi.org/10.1146/annurev.fluid.17.1.321
https://doi.org/10.1146/annurev.fl.26.010194.001443
https://doi.org/10.1017/s0022112074001728
https://doi.org/10.1063/1.2980349
https://doi.org/10.1017/s0022112087002337
https://doi.org/10.1017/s0022112087000429
https://doi.org/10.1017/s0022112094000017
https://doi.org/10.1017/s0022112094000017
https://doi.org/10.1063/1.4944536
https://doi.org/10.1063/1.4962563
https://doi.org/10.1017/s0022112085002981
https://doi.org/10.2514/3.50122
https://doi.org/10.2514/3.50870
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1017/s0022112000001257
https://doi.org/10.1007/s11433-010-4034-x
https://doi.org/10.1080/14685248.2017.1311017
https://doi.org/10.2514/1.27021
https://doi.org/10.1146/annurev-fluid-122109-160718
https://doi.org/10.1146/annurev-fluid-122109-160718
https://doi.org/10.1016/j.jcp.2006.05.009
https://doi.org/10.1090/s0025-5718-98-00913-2
https://doi.org/10.1146/annurev-fluid-010816-060322
https://doi.org/10.1063/1.1637604
https://doi.org/10.1017/jfm.2011.368
https://doi.org/10.1017/s0022112009006624
https://doi.org/10.1017/s0022112091000691
https://doi.org/10.1017/s0022112088000345
https://doi.org/10.1017/s0022112095000462
https://doi.org/10.1146/annurev.fluid.21.1.205
https://doi.org/10.1146/annurev.fluid.21.1.205


125101-16 Tong et al. Phys. Fluids 29, 125101 (2017)

31S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).
32J. L. Lumley, “Computational modeling of turbulent flows,” Adv. Appl.

Mech. 18, 123 (1978).
33S. Pirozzoli, M. Bernardini, and F. Grasso, “Direct numerical simulation

of transonic shock/boundary layer interaction under conditions of incipient
separation,” J. Fluid Mech. 657, 361–393 (2010).

34M. Grilli, S. Hickel, and N. A. Adams, “Large-eddy simulation of a super-
sonic turbulent boundary layer over compression-expansion ramp,” Int. J.
Heat Fluid Flow 42, 79–93 (2013).

35V. C. Patel, W. Rodi, and G. Scheuerer, “Turbulence models for near-wall
and low Reynolds number flows: A reviews,” AIAA J. 23, 1308–1319
(1985).

36C. G. Speziale, R. Abid, and E. C. Anderson, “Critical evaluation of two-
equation models for near-wall turbulence,” AIAA J. 30, 324–331 (1992).

37M. S. Loginov, N. A. Adams, and A. A. Zheltovodov, “Large eddy simu-
lation of shock wave/turbulent boundary layer interaction,” J. Fluid Mech.
565, 135–169 (2006).

38S. Priebe, J. H. Tu, C. W. Rowley, and M. P. Martin, “Low-frequency
dynamics in a shock-induced separated flow,” J. Fluid Mech. 807, 441–477
(2016).

39I. Tani, “Production of longitudinal vortices in the boundary layer
along a concave wall,” J. Geophys. Res. 67, 3075–3080, https://doi.org/
10.1029/jz067i008p03075 (1962).

40P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5 (2010).

41M. R. Jovanovic, P. J. Schmid, and J. W. Nichols, “Sparsity pro-
moting dynamic mode decomposition,” Phys. Fluids 26, 024103
(2014).

https://doi.org/10.1016/s0065-2156(08)70266-7
https://doi.org/10.1016/s0065-2156(08)70266-7
https://doi.org/10.1017/s0022112010001710
https://doi.org/10.1016/j.ijheatfluidflow.2012.12.006
https://doi.org/10.1016/j.ijheatfluidflow.2012.12.006
https://doi.org/10.2514/3.9086
https://doi.org/10.2514/3.10922
https://doi.org/10.1017/s0022112006000930
https://doi.org/10.1017/jfm.2016.557
https://doi.org/10.1029/jz067i008p03075
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1063/1.4863670

