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A B S T R A C T

It is well known that the plane channel flows of UCM and Oldroyd-B fluids are linearly stable at low Reynolds
numbers. However, an elastic instability is detected by modal analysis in the thermocapillary convection with
straight streamlines. The instability appears when the Weissenberg number is in the order of 1. When the
Reynolds number is small enough, the critical Weissenberg number is almost a constant, which only depends on
the Marangoni number. The unstable waves include a wide range of wave number and can be streamwise and
oblique. The free surface with thermocapillary effect is crucial for the instability, as it induces the normal stress
in the basic flow and reduces the constraint on perturbations.

1. Introduction

The flow instabilities of viscoelastic fluids are of great practical
importance for polymer processing operations. The study for these
phenomena has lasted over the years [1]. In many applications such as
the extrusion of polymer melt, the instability occurs at low Reynolds
numbers, which is quite different from the hydrodynamic instability at
high Reynolds numbers of Newtonian fluid. In order to identify its
mechanism, many studies have been devoted to the stability of shear
flow of viscoelastic fluids. A purely elastic instability has been dis-
covered in Taylor-Couette flow by linear stability analysis [2], where
the curved streamlines are crucial for the instability mechanism [3]. In
contrast, the parallel shear flows of viscoelastic fluids in channels are
always linearly stable at low Reynolds numbers [4,5]. The viscoelastic
channel flows are highly susceptible to non-modal amplification of
disturbances [6–10], and the elastic instabilities reported are associated
with nonlinearity [11]. However, in this paper, an elastic instability is
detected by linear stability analysis in the thermocapillary convection
at low Reynolds numbers.

Thermocapillary convection refers to the shear flow driven by the
temperature-induced surface tension gradient. It has been an active
research topic for its practical application in the crystal growth tech-
niques [12]. The thermocapillary flows in polymer liquids are known to
occur in many industrial applications, such as film drying [13], optical
lithography [14], deliberate patterning of polymer [15], inkjet printing
[16] and polymer processing in microgravity [17]. It is worth noting

that the polymer liquids are often viscoelastic fluids, whose rheological
properties differ significantly from Newtonian fluids. The effect of
elasticity should be considered in the flow of polymeric fluid.

A few investigations have been undertaken to some problems of
viscoelastic thermocapillary convections. Corbett & Kumar [18] have
examined the thermocapillary patterning of polymer films via a linear
stability analysis and nonlinear simulations. The Jeffreys model is used
to investigate viscoelastic effects. It suggests that the thermal and
electrohydrodynamic effects can be used simultaneously in the pat-
terning. Kaloni & Lou [19] have demonstrated the influence of ther-
mocapillary forces on the stability of buoyancy-driven viscoelastic fluid
layer. But they only considered the cases when the buoyancy force is
much larger than the thermocapillary force with Prandtl numbers 10
and 100. Davalos-Orozco & Chavez [20] have investigated analytically
the two-dimensional linear thermocapillary instability of a thin vis-
coelastic fluid layer under a horizontal temperature gradient. The so-
lution obtained is based on the small wavenumber approximation. The
instability of thermocapillary liquid layers for Oldroyd-B fluid has been
studied by Hu et al. [21] with Prandtl numbers 0.02 and 100. Three
kinds of instabilities are found in different elasticity, which includes
oblique wave, streamwise wave and spanwise stationary mode. The
flow is stabilized at small elasticity but destabilized at high elasticity.
However, the parameters examined in the above works are limited.
There are still many problems remaining. For example, the stability of
thermocapillary convection at low Reynolds number and high elastic
number (the ratio of Weissenberg number to Reynolds number) has not

https://doi.org/10.1016/j.jnnfm.2017.10.009
Received 3 August 2017; Received in revised form 24 October 2017; Accepted 27 October 2017

* Corresponding author.
E-mail address: hjhhkx@126.com (K.-X. Hu).

Journal of Non-Newtonian Fluid Mechanics 250 (2017) 43–51

Available online 03 November 2017
0377-0257/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/03770257
https://www.elsevier.com/locate/jnnfm
https://doi.org/10.1016/j.jnnfm.2017.10.009
https://doi.org/10.1016/j.jnnfm.2017.10.009
mailto:hjhhkx@126.com
http://dx.doi.org/10.1016/j.jnnfm.2017.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.10.009&domain=pdf


been investigated, although this case appears in many flows of polymer
liquid. Thus, it is natural to ask whether a pure elastic instability can
exist in the thermocapillary convection at low Reynolds number, which
is the purpose of this paper.

In the present work, the linear stability of viscoelastic thermo-
capillary convection is investigated at low Reynolds numbers. The
model of thermocapillary liquid layers is considered, while the rheo-
logical property of polymer liquid is modeled by the Oldroyd-B fluid.
The flow state is susceptible to an elastic instability when the
Weissenberg number is in the order of 1. The critical parameters are
determined.

This paper is organized as follows. In Section 2, the equations of the
viscoelastic thermocapillary convection are formulated. The solution of
the basic flow and the dimensionless governing equations are derived.
Then in Section 3, the properties of elastic instability are demonstrated.
The wave speed and growth rate for the perturbation are displayed. The
critical parameters for the instability are obtained, and the energy
mechanism is studied. After that, the comparisons are made with other
instabilities of viscoelastic fluids in Section 4. Finally, the conclusions
are drawn in Section 5.

2. Problem formulation

In the theoretical study of thermocapillary convections, the ther-
mocapillary liquid layer presented by Smith and Davis [22] has been
widely used, where the fluid on an infinite rigid plane is set in motion
by the temperature gradient on the free surface (see Fig. 1). The oblique
hydrothermal wave predicted by this model has been observed in both
experiment [23] and numerical simulation [24]. The model includes
two kinds of plane shear flows, the linear flow and return flow. The
former has homogeneous velocity gradient, while the latter is a sum of
plane Couette and Poiseuille flow with zero mass flux through the
vertical section. In Fig. 1, d is the depth of the layer, u0 is the velocity, x
is the streamwise direction, z is the wall-normal direction, and y is the
spanwise direction. For simplicity, we suppose the surface tension is big
enough that the deformation of free surface is not considered as that in

[22]. This assumption is satisfied in some applications, such as liquid
silicon [22] and silicone oil [23].

2.1. Governing equations

In our work, R is defined as =R ρUd
μ , where ρ, μ are the fluid density

and viscosity, respectively. U is the characteristic velocity defined as
=U bγd μ/ , b is the temperature gradient on the surface and γ is the

negative rate of change of surface tension with the temperature. The
Marangoni number is defined as =Ma bγd μχ/2 , whereχ is the thermal
diffusivity. There is a relation betweenMa and R =Ma R Pr· , where Pr is
the Prandtl number. These definitions are the same as those of
Newtonian fluid in [22].

The dimensionless governing equations of the flow are as follows,
which are the continuity equation, momentum equation and energy
equation, respectively.

∇ =u· 0, (2.1)

⎛
⎝

∂
∂

+ ∇ ⎞
⎠

= −∇ + ∇R
t

pu u u Q· · ,
(2.2)

∂
∂

+ ∇ = ∇T
t

T
Ma

Tu· 1 .2
(2.3)

Here u, p, T are the velocity field, pressure and temperature, re-
spectively. Q is the stress tensor. The heat produced by viscous dis-
sipation is ignored in the right side of (2.3).

We use the Oldroyd-B fluid to model the rheological property of the
polymer liquid as it has been widely used in the theoretical studies
[1,2]. Its dimensionless constitutive equation is [21]

⎛
⎝

+ ⎞
⎠

= ⎛
⎝

+ ⎞
⎠

λ δ
δt

λβ δ
δt

Q S1 1 .͠
(2.4)

Here S is the strain-rate tensor,

= ∇ + ∇S u u( ) ,T (2.5)

δ
δt

is the upper convected derivative with the expression of

= ∂
∂

+ ∇ − ∇ − ∇δ
δt t
Q Q u Q u Q Q u· ( ) · ·( ).T

(2.6)

λ is the Weissenberg number, which has =λ μ
G

U
d , G is the elastic

modulus. β͠ is the ratio of solvent viscosity to the total viscosity. The
Oldroyd-B fluid recovers a Newtonian fluid when =λ 0.

Although the upper-convected Maxwell (UCM) fluid is simpler (It is
a special case of Oldroyd-B fluid when =β 0͠ .), and has been applied in
many previous works of polymer melt [1,5,25], we cannot use it in the
present work for the following reason. This model has an instantaneous
elasticity, which often gives rise to short-wave instabilities with un-
bounded growth rates [26]. We find that the short-wave instability also
appears in the thermocapillary convection of UCM fluid when the
Weissenberg number is unrealistically low, which indicates that the
UCM fluid model needs to be modified for the problem in this paper.
Joseph & Saut [26] suggested that this phenomenon can be regularized
by using the Oldroyd-B fluid, which has an additional Newtonian
viscosity to the UCM fluid. Therefore, we use the Oldroyd-B fluid in the
following and set =β 0.001͠ , which means that the Newtonian viscosity
is significantly lesser. The reason why we chose this value is that, the
flow is stabilized by the increase of β͠ , and the critical parameters de-
termined by our computation can be comparable with the some fluid
parameters with =β 0.001͠ .

The boundary conditions are set as follows. On the wall, there is no
slip and zero heat flux:

= = ∂
∂

= =u v w T
z

zu ( , , ) 0, 0, 0,
(2.7)

on the free surface,Fig. 1. The model of thermocapillary liquid layers: (a) linear flow and (b) return flow.
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+ ∂
∂

= + ∂
∂

= = − ∂
∂

= − + =∼
∞Q T

x
Q T

y
w T

z
Bi T T Q z0, 0, 0, ·( ) , 1.13 23

(2.8)

Here, the first two equations stand for the relation between the
temperature gradient and stress caused by thermocapillary effect. T∞ is
the temperature of the bounding gas far from the surface.Bi is the Biot
number. ∼Q is the imposed heat flux to the environment, which is not an
independent parameter [22]. In the experiment, ∼Q is determined by
setting a horizontal temperature gradient in the liquid ( = −∂

∂ 1T
x ). Then

a parallel shear flow =u u z( ) is induced by the thermocapillary effect,
and a temperature distribution in z is obtained from a balance between
the vertical conduction and horizontal convection: = −∂

∂
u z( )Ma

T
z

1 2
2 . So

∂
∂

=

T
z

z 1
can be deduced by the velocity field u(z) and the condition ∂

∂
=

T
z

z 0

as follows: ∫ ∫= + = −∂
∂

=

∂
∂

=

∂
∂

z Ma u z zd ( )dT
z

z

T
z

z

T
z

1 0
0
1

0
12

2 . T∞ is passive

and depends on the temperature of liquid surface. Then, ∼Q is introduced
for the energy balance on the surface and can be determined by the
particular basic-state solution as follows [22]:

= − ∂
∂

− −∼

=
= ∞Q T

z
Bi T T·( ).

z
z

1
1

The solutions of the basic flow are derived as follows. The velocity
field is a linear combination of plane Couette and Poiseuille flow, while
the temperature field is linear in x as imposed plus a distribution in z:

= ′ + ′ − = =′u z u z u z z v w( ) (1) 1
2

(1)( 2 ), 0,0 0 0
2

0 0 (2.9a)

= − ′ + ′ ′ −

+ ′ − ′ −

′

′

{
}

T x z u x Ma u u z

u u z

( , ) (1) · (1) 1
24

(1)(1 )

1
6

[ (1) (1)](1 ) .

0 0 0 0
4

0 0
3

(2.9b)

These solutions are the same as those for Newtonian fluid in [22].
The strain-rate and stress tensor of the basic flow have the following
form:

= ′ ⎡

⎣
⎢

⎤

⎦
⎥ = ′

⎡

⎣
⎢
⎢

′ − ⎤

⎦
⎥
⎥

u z u z
λu z β

S Q( )
0 0 1
0 0 0
1 0 0

, ( )
2 ( )(1 ) 0 1

0 0 0
1 0 0

.
͠

0 0 0 0
0

(2.9c)

Here the subscript 0 stands for the basic flow, ′u z( )0 and ′′u z( )0 are
the first and second derivatives of u0 with respect to z, respectively. For
the linear flow,

′ = ′ =′u u(1) 1, (1) 0,0 0 (2.10)

while for the return flow

′ = ′ =′u u(1) 1, (1) 3
2

.0 0 (2.11)

It can be seen from (2.9c) that the main difference of the basic flow
between Newtonian fluid and viscoelastic fluid is that the latter has a
normal stress, which is caused by the elasticity of polymer.

2.2. Perturbation equations

Following the usual linear stability analysis, an infinitesimal
normal-mode perturbation is imposed on the basic flow:

= + + +
⌢ ⌢ ⌢ ⌢

T P T P T p σt i αx βyu Q u Q u Q( , , , ) ( , , , ) ( , , , )exp[ ( )],0 0 0 0

(2.12a)

= =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⌢ ⌢ ⌢ ⌢ ⌢
u v w

Q Q Q
Q Q Q
Q Q Q

u Q( , , ), .
11 12 13

12 22 23

13 23 33

  
  
   (2.12b)

Here = +σ σ iσr i, σr and σi are the growth rate and frequency of
perturbation, respectively, α, β denote the wave number in the x and y
directions respectively. The subscripts 1,2,3 in Qij stand for the x, y, z
directions, respectively. = +k α β2 2 is the wave number and

= −ϕ β αtan ( / )1 is the direction of wave propagation. Due to symmetry,
we only need to consider the case of ϕ∈ [0°, 180°]. Hereafter, the
variables without subscript 0 stand for the perturbation. It has been
shown in [16] that, in thermocapillary convection, there is no Squire's
theorem which ensures that the most dangerous mode is two-dimen-
sional. The reason may due to the difference of the boundary condition
between the thermocapillary convection (see (2.8)) and channel flows.
Thus, we consider the three-dimensional disturbances directly.

The linearized equations of perturbation quantities are derived by
substituting (2.12a)-(2.12b) into the governing equations as follows.

̂+ + ′ =
⌢ ⌢

iαu iβv w 0, (2.13)

′ + −

− + + ′ + + + ′

= − −
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+ − + = −
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Here, =η λβ͠ . The boundary conditions for the perturbation flow are
set as follows.

= = = ∂
∂

= =
⌢ ⌢ ⌢

⌢

u v w T
z

z0, 0,
(2.23)
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+ = + = = ∂
∂

= =
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⌢

Q αT Q βT w T
z

zi 0, i 0, 0, 0, 1.13 23 
(2.24)

We use Chebyshev-collocation method [27] to obtain the eigenvalue

σ. Nc Chebyshev-collocation points ⎜ ⎟= ⎛

⎝
⎜ − ⎛

⎝
⎞
⎠

⎞

⎠
⎟ = ∼+z j N1 cos /2, 1jπ

N c1c

are set in the flow region for the Eqs. (2.13)–(2.22) while 2 points
=z 0, 1 are set on the boundaries for the Eqs. (2.23)-(2.24).

⌢
u is ex-

panded as

∑=
=

+

−
⌢ ⌢
u a H z( ).

k

N

k k
1

1

1

c

(2.25)

Here = −
⌢
z z1 2 , = −−

−⌢ ⌢
H z k z( ) cos[( 1)cos ( )]k 1

1 is the − −k( 1) th
Chebyshev polynomial and ak is the coefficient. The cases of other
perturbation quantities are similar. Then, the general eigenvalue pro-
blem can be derived in the form of = σWg Zg, where W, Z are two
matrices, and g is the eigenvector. The eigenvalues can be obtained by
using the QZ algorithm available in the Matlab-software package. In our
work, the results are sufficiently accurate when = ∼N 70 90c .

In order to validate our code, we provide a benchmark by solving
the same problems for Newtonian fluid in previous works. The results of
Newtonian fluid for the linear flow and return flow are computed by
setting =λ 0. The critical parameters are listed in Table 1, which agree
with the results in [22]. Here, = −ψ ϕ1800 , and =c σ k/i is the wave
speed.

3. Numerical results

Different from those in [21], here we focus on the flow at low
Reynolds number and high elastic number. In the following, the Rey-
nolds number = =R Ma Pr/ 0.01 in Figs. 2–6 and 9, while = ∼−R 10 18

in Figs. 7 and 8. It is found that unstable modes appear when the
Weissenberg number exceeds a critical value.

3.1. Elastic instability

The variation of growth rate with wave number is displayed in
Fig. 2 for a moderate Weissenberg number ( =λ 1). There are unstable
modes for both streamwise wave ( =ϕ 0o) and oblique waves (ϕ≠ 0o,
90o). The wave number of the unstable mode includes =O k( ) 1 and

=O k( ) 10. Here, the most unstable mode is the oblique wave with the
wave number =O k( ) 10.

It can be found in Fig. 2 that the variation of growth rate with ϕ is
not monotonous. This is reasonable. The results of Newtonian fluid
[22,23] have shown that the preferred mode can either be the spanwise
mode ( =ϕ 90o), streamwise wave ( =ϕ 0o) or oblique wave (ϕ≠ 0o,
90o), which depends on the parameters. For the last case, the pertur-
bation growth rate reaches its maximum in an oblique direction. We
will solve the perturbation equations in the range of ϕ∈ [0°, 180°] to
find the preferred mode.

In order to check the convergence of our results, the eigenvalues are
computed with different numbers of Chebyshev nodes and the results
are displayed in Table 2. As the eigenvalues computed with

= ∼N 70 90c are the same at least for the six decimal places, the nu-
merical method is sufficiently accurate to find the instability.

In the following, we will derive the critical Weissenberg number λc,
which is defined as the smallest Weissenberg number for the flow with a
neutral mode =σ 0r . It is the condition for the onset of elastic

instability.
The neutral curves (λ versus Ma) are displayed in Fig. 3. It can be

seen that the flow state is susceptible to an elastic instability when
Weissenberg number is in the order of 1. λc changes little at small Ma.
Then it increases with Ma when =O Ma( ) 0.1. The preferred mode
changes from streamwise wave ( = ∘ϕ 0 ) to oblique wave (ϕ≠ 0o, 90o)
when Ma is large enough. λc of the return flow is slightly smaller than
that of the linear flow at small Ma, while the case is reversed at large
Ma. The effect of Biot number is little at small Ma. However, when
Ma>0.1, λc is decreased by the increase of Bi in most cases. It suggests
that Bi is destabilizing, which is opposite to the case of Newtonian fluid
[22].

Table 1
The critical parameters for Newtonian fluid.

=Pr 0.1 Ma k ψ c

Linear flow 12.0 0.91 83.4° 0.046
Return flow 22.4 0.65 71.2° 0.070

Fig. 2. The variation of growth rate with wave number for: (a) =ϕ 0o (streamwise wave);
(b) =ϕ 30o; (c) =ϕ 67o; (d) =ϕ 80o in linear flow at =λ 1, =Ma 1, =Pr 100.

Fig. 3. The neutral curves (λ versus Ma) for the linear flow (LF) and the return flow (RF).
1) The dash-dot line ( ) denotes the linear flow at =Bi 0: (a) streamwise
wave, (b) oblique wave;
2) the dash line ( ) denotes the return flow at =Bi 0: (c) streamwise wave,
(d) oblique wave;
3) the solid line ( ) denotes the linear flow at =Bi 5: (e) streamwise wave,
(f) oblique wave;
4) the dash-dot-dot line ( ) denotes the return flow at =Bi 5: (g) stream-
wise wave, (h) oblique wave.
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The wave number and wave propagation angle corresponding to the
mode in Fig. 3 are displayed in Fig. 4. The variation of wave number
with Ma is similar to that of λc. The wave number has =O k( ) 10 when
O(Ma)≥ 1. However, k≈ 2.3 when Ma≤ 0.1. The oblique wave is
always upstream and the propagation angle is close to 110°. We can see
that Bi decreases the wave number and propagation angle at large Ma.
However, the differences are quantitative rather than qualitative.

The computation shows that when Ma<0.1, the temperature per-
turbation is small. It can be inferred that the instability is not sensitive
to the temperature field. However, when Ma is large, the temperature
perturbation is obvious, and the Marangoni forces on the surface can
dissipate the perturbation energy. Thus, the flow is stabilized by the
temperature perturbation. This may be the reason why λc increases with
Ma in Fig. 3. As the heat flux through the surface decreases the tem-
perature perturbation, the increase of Bi can lead to a decrease of λc.
The instability at large Ma is affected by both the elasticity and ther-
mocapillary effect. For simplicity, we will restrict our attention to the
case at small Ma, where the temperature perturbation is small.

An important feature of the elastic instability is the wave speed
=c σ k/i . The variation of wave speed with Ma and λ is displayed in

Fig. 5 at =k 2.26, =Pr 1. It shows that ∝c ,
Ma λ
1 1 , which is similar to

the property of elastic wave in plane shear flows for Burgers fluid [28].
The wave speed computed is dimensionless. We change the

dimensionless wave speed into the dimensional quantity in order to
elucidate its physical meaning. Let =c h

Ma λ
1

·
, where h is a constant.

Then, the dimensional wave speed has the form
= = =C cU h ·U

Ma λ
G
ρ

h
Pr·
, which is obviously an elastic wave speed.

It can be found that the wave speed in Fig. 5 is in the order of 100.
In contrast, in [21], the wave speeds of oblique wave and streamwise
wave are in the order of 0.1∼1, while the wave speed of spanwise
stationary mode is zero. This suggests that the elastic instability in this
paper is completely different from those in [21]. The reason is attrib-
uted to β͠ . The elastic wave in Fig. 5 decays rapidly with the increase of
β͠ as it has a high frequency. Therefore, the instability detected at

=β 0.001͠ in this paper cannot be found in the case of =β 0.1͠ in [21].
We plot the preferred mode at =Ma 0.01 in Fig. 6. The preferred

mode is a two-dimensional streamwise wave. Its velocity and stress
related to the spanwise direction are all zero: =v 0,

= = =Q Q Q 012 22 23 . The streamlines are the periodically arranged rolls
in the streamwise direction. This is distinct from the streamwise wave
in [21], whose velocity u fluctuates several times in the vertical di-
rection. It also differs from the spanwise mode and oblique wave in
[21], which are both three-dimensional. To some extent, w is symme-
trical with respect to the line =z 0.55. In contrast, the amplitude of u at
z>0.55 is obviously larger than that at z<0.55. This may due to their

Fig. 4. The (a) wave number and (b) wave propagation angle corresponding to the mode in Fig. 3.

Fig. 5. The variation of wave speed c at (a) =λ 0.321 and (b) =Ma 0.01 for the streamwise wave in linear flow at =k 2.26, =Pr 1.
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boundary conditions. For the former, =w 0 at =z 0, 1, so there is a
symmetry property for w. For the latter, there is no constraint on u at

=z 1 while the boundary condition at =z 0 is =u 0, so the fluctuation
near the surface is larger.

The amplitudes of Q11, Q13 and Q33 have the same order. However,
for the normal stress (Q11 and Q33), the largest amplitude is on the
surface, while for the shear stress (Q13), it is at the bottom. This is
reasonable. The normal stress is caused by the stretching of the polymer
chains, which is associated with the velocity gradient. As the surface
has less constraint on the perturbation velocity, the normal stress can
have the largest fluctuation on the surface. In contrast, the non-slip
boundary condition at the wall is a large constraint on the perturbation
velocity. The shear stress at the wall suppresses the growth of pertur-
bation energy and leads to a strong dissipation (see Fig. 9). So we can
expect a large shear stress at the wall.

As the largest amplitude of perturbation velocity is on the surface,
the instability is closely related to the surface, although it is not an
interfacial instability. To the best of our knowledge, this type of in-
stability is not found in other shear flows of viscoelastic fluids, as they
cannot induce a shear stress on the surface without imposing any
constraint on the horizontal perturbation velocity.

The neutral curves (λ versus log10R) for the linear flow are dis-
played in Fig. 8 at =Ma 0.01 and =Ma 0.1. It can be seen that when
R→ 0, the critical Weissenberg number λc tends to a constant and the
preferred mode is the oblique wave. λc decreases with Ma significantly,
which is contrast to the cases at Ma≥ 0.1 in Fig. 3. When R≈ 0.01, λc
reaches its minimum and the preferred mode is the streamwise wave.
When R becomes larger, λc increases with R and is almost independent
on Ma.

The wave number, wave propagation angle and wave speed corre-
sponding to the mode in Fig. 7 are displayed in Fig. 8. The wave number
also tends to a constant when ≤ −R 10 6. For the wave propagation angle
and wave speed, the situations are similar. The variations of wave
number and wave speed with Ma are small when ≥ −R 10 2, while those

Fig. 6. The preferred mode for the linear flow at =Ma 0.01, =λ 0.321, =k 2.26, =Pr 1.
(a) Stream lines; the distribution of the perturbation velocity: (b) u and (c) w; the dis-
tribution of the perturbation stress: (d) Q11, (e) Q13 and (f) Q33. Here, the preferred mode
is a two-dimensional streamwise wave, whose velocity and stress related to the spanwise
direction are all zero: =v 0, = = =Q Q Q 012 22 23 .

Fig. 7. The neutral curves (λ versus log10R) for the linear flow:
1) the solid line denotes the case at =Ma 0.01: (a) oblique wave, (b) streamwise wave;
2) the dash line denotes the case at =Ma 0.1: (c) oblique wave, (d) streamwise wave.
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are obvious when ≤ −R 10 4. The wave propagation angle ϕ increases
with Ma for oblique waves, while = ∘ϕ 180 for the streamwise waves in
Fig. 7. The wave speed decreases with R significantly when ≥ −R 10 4.

The instability persists down to =R 0, where the critical parameters
are =λ 3.879,c =k 1.39, = ∘ϕ 94. 5 at =Ma 0.01 and =λ 1.999,c =k 2.53,

= ∘ϕ 97 at =Ma 0.1, respectively. This indicates that the inertia is not
necessary for the instability.

3.2. Energy analysis

As shown in [28,29], the rate of change of perturbation energy can
be written as

∫ ∫ ∫∂
∂

= − + − ∇

= − + +

E
t R

d r
R

d r d r

N M I

Q S u Q n u u u1
2

( : ) 1 · · ·(( · ) )

,

kin 3 2
0

3

(3.1)

where N is the work done by the perturbation stress,M is the work done
by Marangoni forces on the free surface, and I is the energy comes from
the basic flow, respectively. The perturbation is normalized as follows,

∫ =d ru 1.2 3
(3.2)

We find that I is negligible at low Reynolds number, and M is
comparatively small. The perturbation energy mainly depends on N. As
the perturbation stress fluctuates in the vertical direction (see Fig. 6),
we plot the distribution of the work done by perturbation stress in
vertical direction in Fig. 9. Here, the work done by three components of
stress is defined as follows,

∫= −P
R

Q S r1 ( · )d .ij ij ij
2

(3.3)

There are strong fluctuations in the vertical direction for the work
done by normal stress. The work done by the normal stress Q11 in the

Fig. 8. The (a) wave number, (b) wave propagation angle and (c) wave speed corre-
sponding to the mode in Fig. 7.

Table 2
The eigenvalues computed with different numbers of Chebyshev nodes at =λ 1, =Ma 1,

=Pr 100, =k 3 in linear flow.

=ϕ 0o =ϕ 67o

=N 70c 0.209010+50.386446i 2.317419+30.662737i
=N 80c 0.209010+50.386446i 2.317419+30.662737i
=N 90c 0.209010+50.386446i 2.317419+30.662737i

Fig. 9. The distribution of the work done by three components of stress for the linear flow
at =Ma 0.01, =λ 0.321, =k 2.26, =Pr 1.
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region z∈ (0.65, 0.95) makes a great contribution to the perturbation
energy. There is a large dissipation of the shear stress Q13 near the wall,
while P13 is close to zero near the surface (Q13 is nearly zero as the
temperature perturbation is very small on the surface). It is conceivable
that the wall can dissipate the perturbation energy, while the free
surface has less constraint. This is the main reason why the channel
flows with two solid boundaries are always linear stable at low
Reynolds numbers while the instability appears in the thermocapillary
liquid layer with a free surface, even though their velocity profiles of
basic flow are similar (see Fig. 1).

For the streamwise wave in [21], the work done by perturbation
stress also fluctuates in vertical direction, which seems similar to the
case in Fig. 9. However, the former appears when Reynolds number is
in the order of 100. The effect of elasticity is deeply coupled with
thermocapillary effect and the basic flow. So the instability of the
former is not purely elastic.

4. Discussion

The instability in this paper is very different from that in [21]. First,
we note that the elastic number = λ Rɛ / , which only depends on the
properties of the fluid and the flow geometry [21]. It can be inferred
from Fig. 3 that ɛ is in the order of 100, which is much larger than that
in [21]. Therefore, the fluid in the present work has a higher elasticity.
Meanwhile, in [21], most of the perturbation energy comes from the
Marangoni forces when ɛ is not very small (O(ɛ)≥ 0.1). Thus, this in-
stability cannot only be attributed to the elasticity. In contrast, we have
shown in Section 3.2 that I is negligible and M is comparatively small.
So the instability is purely elastic here. Another striking difference
between the perturbation in this paper and that in [21] is the wave
speed. The wave speed of the former is much larger than that of the
latter. As the former has a high frequency, it decays rapidly with the
increase of β͠ . Therefore, we cannot find it in [21].

In previous works, the elastic instability has been found by linear
stability analysis in many flows with curved streamlines [30]. The
critical condition for the onset of elastic instability is directly related to
the curvature of the streamline. The complex coupling via normal
stresses and curved streamlines is crucial for the instability mechanism.
However, the thermocapillary convection in this paper gives an ex-
ample of the elastic instability in the flow with straight streamlines.
This suggests that the normal stress in parallel shear flow can also in-
duce unstable modes.

It is worth noting that the plane Poiseuille and Couette flow are
always linearly stable at low Reynolds numbers for Oldroyd-B fluid,
although both of them also have the normal stress. In these channel
flows, there can be large transient growths of small-amplitude dis-
turbances, although they decay at long times. This phenomenon is re-
lated to the non-modal nature of the linear operator for the system.
Hoda et al. [6,7] have studied the amplification of stochastic spatio-
temporal body forces in channel flows of viscoelastic fluids. Their re-
sults indicate that the elasticity can amplify disturbances significantly
even when inertial effects are weak. Furthermore, the transient growth
[8], the non-modal amplification of stochastic [9] and deterministic
[10] disturbances in inertialess plane Couette and Poiseuille flows of
viscoelastic fluids have been demonstrated. These works suggest that
the large transient growth could put the system into a regime where
nonlinear interactions are no longer negligible. It seems that the non-
modal amplification [6–10] and nonlinearity [11] can lead to the
elastic instability in channel flows, even the flows are linearly stable.

For thermocapillary convection, the linear stability analysis has
successfully predicted the instability behaviours in the experiments of
liquid bridge [31] and rectangular slot [32]. Therefore, we also use this
method to examine the instability of viscoelastic thermocapillary con-
vection. The instability detected by modal analysis in this paper differs
from the non-modal amplification in channel flows. This difference can
be attributed to the free surface of the thermocapillary convection.

Comparing with the solid boundary in channel flows, the free surface
reduces the constraint on perturbation obviously, so the perturbation is
more likely to grow at long times.

We can compare our results with some dimensional fluid para-
meters. Suppose the polymer liquid has the physical parameters as
follows. The density ρ is in the order of 103kg/m3, the negative rate of
change of surface tension with temperature γ is in the order of 10-4N/
m · K [33], the viscosity μ is in the order of 0.4Pa · s [34], the relaxation
time of the fluid =Γ μ

G is in the order of 3s, the Prandtl number Pr is in
the order of 10. If we set the temperature gradient on the surface

=b 3K/cm and the depth of the layer =d 1cm, then the Reynolds
number R is in the order of 0.01, the Marangoni number Ma is in the
order of 0.1, the shear rate =γ U d˙ / is in the order of 0.1/s, and the
Weissenberg number =λ μ

G
U
d is in the order of 0.3, which are close to

the results in this paper.

5. Conclusion

In the present work, the stability of the thermocapillary convection
at low Reynolds number and high elastic number ( =O (ɛ) 100) is ex-
amined. The elastic instability is detected by linear stability analysis.
The rheological property is modeled by the Oldroyd-B fluid, whose
solvent viscosity is much less than the total viscosity.

The instability appears when Weissenberg number λ is in the order
of 1. When R≈ 0.01, the critical Weissenberg number λc reaches its
minimum. The preferred mode includes the streamwise wave and ob-
lique wave and the corresponding wave number varies from =O k( ) 1 to

=O k( ) 10. The dimensional wave speed is proportional to G ρ/ , which
is similar to an elastic wave speed. The difference between linear flow
and return flow only appears when Ma is large enough. The heat flux
through the surface destabilizes the flow, which is opposite to the case
of Newtonian fluid. When Ma is small, the temperature perturbation is
very small, and the instability is not sensitive to the temperature field.
The instability differs from that in [21], as the wave speed of the former
is much larger than that of the latter. When R→ 0, λc tends to a con-
stant. When R≥ 0.01, λc increases with R and is almost independent on
Ma.
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