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Computational fluid dynamics based unsteady aerodynamic reduced-order models can significantly 
improve the efficiency of transonic aeroelastic analysis. In this paper, the concept of the conventional 
model reduction method based on the system identification theory is extended to aerodynamic 
subsystems with the consideration of computational fluid dynamics-induced interval uncertainties in 
simulation to get the aerodynamic reduced-order model as uncertain as the original aerodynamic 
subsystem. The interval estimation of identified coefficients involved in the uncertain reduced-order 
model is obtained by utilizing the first-order interval perturbation method. The stability problem of 
the interval aeroelastic state-space model formulated based on the constructed uncertain aerodynamic 
reduced-order model is equivalently transformed into a standard interval eigenvalue problem associated 
with a real non-symmetric interval matrix in which the interval bounds of eigenvalues are evaluated 
by virtue of the first-order interval matrix perturbation algorithm. A new stability criterion for the 
interval aeroelastic state matrix is defined to predict the robust flutter boundary of the concerned 
uncertain aeroelastic system. Two numerical examples with respect to the uncertain aerodynamic ROM 
constructions and robust flutter boundary predictions of the two-dimensional Isogai wing and the three-
dimensional AGARD 445.6 wing in transonic regime are implemented to assess the validity and accuracy 
of the presented approach. The obtained results are also compared with Monte Carlo simulation solutions 
as well as numerical and experimental results in the literatures indicating that the proposed method can 
provide a more robust and conservative prediction on the flutter boundary of an aeroelastic system 
compared with conventional deterministic aeroelastic analysis approaches.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

Classical aeroelasticity is the study dealing with the stability 
and response of elastic structures under the interaction of inertial 
forces, structural, and aerodynamic. Fluid–structure interaction ef-
fects are of paramount importance regarding the limits of the flight 
envelope and therefore strongly influence safety and efficiency re-
quirements [1].

The issue of dynamic stability, which is commonly referred to 
as the flutter analysis, is an important branch in the field of aeroe-
lasticity. The accurate prediction of unsteady aerodynamic forces 
is an essential foundation for flutter analysis. Due to the inherent 
superiority over the traditional linear potential flow theory for ad-
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dressing distinct aerodynamic nonlinearities in the transonic flight 
regime or at a high angle of attack, the computational fluid dy-
namics (CFD) techniques have been widely used in aerodynamic 
calculations during the last several decades. However, in terms 
of efficiency, the high-fidelity CFD approach requires expensive 
computational costs associated with the meticulous descriptions 
of flow in both spatial and temporal dimensions, which limits its 
further applications in aeroelastic analysis, optimal design and con-
trol.

To alleviate the contradiction between the computational effi-
ciency and predictive accuracy, increasing attention has been paid 
to the CFD-based reduced-order models (ROMs), which provide an 
alternate way to effectively model unsteady aerodynamic loads. 
The CFD-based ROM seeks to construct a simple mathematical rep-
resentation model, which can capture the dominant behavior of 
the aerodynamic or aeroelastic system and can be convenient to 
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Nomenclature

a dimensionless distance of elastic axis behind midchord
AI

as interval state matrix of uncertain aeroelastic model
Ai coefficient matrices of f(k − i)
b airfoil semichord
B j coefficient matrices of ξ (k − j)
e output error vector
E Young’s modulus
f system output (generalized aerodynamic coefficient) 

vector
F generalized aerodynamic force vector
G shear modulus
G generalized structural damping matrix
h plunge displacement of elastic axis
J (θ) criterion function with respect to θ

k discrete time step
K generalized structural stiffness matrix
Kh plunge spring constant
Kα pitch spring constant
L data length of system input and output
M modal truncation order of structural subsystem
M generalized structural mass matrix
Ma Mach number of freestream
na output delay orders of aerodynamic model
nb input delay orders of aerodynamic model
q freestream dynamic pressure
q∗ critical dynamic pressure
rα dimensionless gyration radius of airfoil around stiff-

ness center
t real time
V ∗

f flutter speed index
vi eigenvector associated with the ith eigenvalue of ma-

trix
vim imaginary part of the ith eigenvector
vir real part of the ith eigenvector
xa state vector of aerodynamic state-space ROM
xas state vector of aeroelastic state-space model
xs state vector of structural state-space model

xα dimensionless distance of center of gravity behind 
stiffness center

Greek

α pitch displacement
Γ θ feasible set of identified coefficients
Γ λ feasible set of eigenvalues
δ perturbation variable
� radius of interval
θ coefficient set of the aerodynamic ROM to be identi-

fied
θ̂ estimation of identified coefficients
λi the ith eigenvalue of matrix
λim imaginary part of the ith eigenvalue of matrix
λir real part of the ith eigenvalue of matrix
μ mass ratio
ν Poisson’s ratio
ξ system input (generalized structural displacement) 

vector
ρ density
ωh uncoupled natural frequency of airfoil in plunge
ωα uncoupled natural frequency of airfoil in pitch

Abbreviations

ARMA autoregressive moving average
ARX autoregressive model with exogenous input
CFD computational fluid dynamics
LB lower bound
LTI linear time invariant
MCS Monte Carlo simulation
NV nominal value
POD proper orthogonal decomposition
ROM(s) reduced-order model(s)
ROM-DAR reduced-order modeling suitable for deterministic 

aerodynamic responses
ROM-UAR reduced-order modeling suitable for uncertain aero-

dynamic responses
UB upper bound
use in the conceptual design, control and data-driven systems [2]. 
According to different modeling ideas, the methodologies to reduce 
the order of an aerodynamic model can be subdivided broadly 
into two main categories: one is based on the proper orthogonal 
decomposition (POD) approach [3] and the other on the system 
identification technology, mainly including autoregressive moving 
average (ARMA) models [4], linear state-space models [5], Volterra 
series models [6] and neural networked models [7]. Typically, most 
of the current proposed CFD-based ROMs, such as first-order POD 
methods, ARMA models, linear state-space models and first-order 
Volterra series models, are dynamic linear models constructed un-
der the assumption of small-amplitude vibrations, which can ac-
curately predict mildly nonlinear responses and are suitable for 
a wide range of flight conditions. These aerodynamic ROMs have 
been extensively applied to the analysis or design of transonic flut-
ter [8], limit cycle oscillation [9], gust response [10], aeroservoelas-
ticity [11], aerothermoelasticity [12] and transonic flutter suppres-
sion with control delay [13] with respect to simple airfoils, three-
dimensional wings and even complete aircrafts in both frequency 
and time domain through the years. Most of the existing aerody-
namic ROMs are generally linear or weakly-nonlinear models. The 
latest developments in the field of aerodynamic model reduction 
especially nonlinear model reduction is discussed by Marques et 
al. [14] Among the nonlinear ROMs, the nonlinear model projec-
tion is used to the reduction of nonlinear aerodynamic models for 
gust response prediction allowing a systematic investigation of the 
influence of a large number of gust shapes without regenerating 
the ROM [15]. The investigation on the accuracy of prediction and 
incurred computational cost of ROMs based on indicial functions, 
Volterra theory using nonlinear kernels, radial basis functions and 
a surrogate-based recurrence framework for X-31 aircraft pitching 
motions indicates that these ROMs can produce accurate predic-
tions for a wide range of motions in transonic regime with a lim-
ited number of time-accurate CFD simulations [16]. While main-
taining a high level of accuracy, the preceding aerodynamic model 
reduction methods can expedite the computational efficiency by 1 
to 2 orders of magnitude compared with full CFD simulations, and 
demonstrate a huge potential for the analysis and design of aeroe-
lasticity.

Generally, conventional aeroelasticity investigations are per-
formed under the assumption of complete determinacy of sys-
tems. As a practical matter, real aeroelastic systems are inevitably 
confronted with multiple sources of uncertainty arising from 
1) modeling-induced uncertainties due to simplifying assumptions, 
modal truncation, errors in boundary conditions and unmodeled 
dynamics, 2) numerical uncertainties generated by diversity in 
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mesh quality, different convergence precision and spatiotempo-
ral discretization errors, 3) parametric uncertainties on account 
of inaccuracy or discrepancy of physical parameters involved in 
structural and aerodynamic subsystems. Theoretically, these afore-
mentioned uncertainties will result in a significant impact on the 
aeroelastic behavior of concern. In current engineering field, the 
flutter margin is introduced to preclude the occurrence of aircraft 
flutter due to various uncertain factors throughout the flight enve-
lope. This integrated estimation strategy for the uncertain factors 
lacks quantitative recognition to the uncertainty, which is contrary 
to the development tendency of precise and meticulous design 
for aeroelastic system and can even lead to a disastrous conse-
quence. For instance, the insufficient estimation of uncertainty in 
aerodynamic modeling is one of the causes of inadequate control 
for hypersonic vehicle X-43A on its first test flight. Therefore, it is 
absolutely crucial to appropriately and accurately model the uncer-
tain factors included in the aeroelastic system.

Typically, as reviewed by Pettit [17] and Dai et al. [18], un-
certainty modeling for aeroelastic systems can be tackled by two 
major approaches, i.e. probabilistic and non-probabilistic methods, 
depending on distinct quantification techniques. The probabilistic 
methods, based on Monte Carlo simulation (MCS) [19], polynomial 
chaos expansion [20], stochastic collocation [21] and so on, have 
been prevalently employed to quantify the propagation of stochas-
tic uncertainty through the aeroelastic system. These probabilistic 
approaches consider uncertainties as probabilistic variables and de-
vote to achieving the adequate distribution characteristics of the 
aeroelastic stability boundary.

However, the main disadvantage of the probabilistic method is 
its over-reliance on the prior information of uncertainties, which is 
based on a large amount of experimental samples and is usually 
difficult to be obtained. Compared with the distribution informa-
tion, the bounds of uncertain variables are easier to be defined. 
Hence, the non-probabilistic approaches including the interval the-
ory [22], the perturbation technique and the structured singular 
value (μ) method [23], have emerged to deal with robust aeroe-
lastic issues, in which the uncertain variables are described as 
bounded parameters and the “worst case” of the aeroelastic sta-
bility boundary throughout the uncertainty set is more concerned. 
Currently, most of the uncertainties embedded in robust aeroelas-
tic analysis have been modeled in the physical parameter level for 
each subsystem. In terms of elastic structural subsystem, bounded 
damping and stiffness coefficients [24], weight uncertainty of the 
tip-mass together with its location variation [25], dispersivity of 
elastic modulus and density [26], and modal shape variations [27]
were well modeled for comprehensive investigations into the in-
fluences of parametric changes in structure on robust aeroelastic 
stability boundary. As for aerodynamic subsystem, some attractive 
methods for uncertainty modeling of derivative of aerodynamic 
forces [28], aerodynamic influence coefficients [29], and unsteady 
aerodynamic pressure [30] were developed to evaluate the corre-
sponding impacts on robust aeroelastic behavior. Additionally, un-
certainties come from nonlinearity [31] and unmodeled dynamics 
[32] were also taken into account to conduct the robust aeroelas-
tic stability analysis. It is noteworthy that there is still a long way 
to get an appropriate quantification of aerodynamic and nonlinear 
uncertainty and its contribution to aeroelastic instability compared 
with the structural uncertainty.

The robustness of the model reduction method, which describes 
the applicability of the ROM to aeroelastic systems with uncer-
tainties, is also important in addition to accuracy and efficiency. 
In the aspect of research on CFD-based ROMs considering un-
certainties, Lieu et al. [33] proposed a fast Mach-adaptation al-
gorithm suitable for different freestream Mach numbers by an-
gle interpolation between two POD subspaces. An efficient ROM 
robust to flight parameter variations was constructed by Liu et 
al. [34] using Kriging surrogates and recurrence frameworks to-
gether in which the freestream Mach number is taken as a part 
of the input data. Zhang et al. [35] developed an aerodynamic 
model reduction method applicable for arbitrary structural modal 
shapes by the interpolation of basis generalized displacements. 
These improvements enhance the robustness and efficiency of the 
aerodynamic ROMs used in aeroelastic analysis. However, these 
improved ROMs address uncertainties by surrogate models or in-
terpolation, and the models themselves are still deterministic in 
essence.

In addition, from the overall perspective, much of previous 
work in the robust aeroelasticity scope concentrates upon the 
parametric uncertainties existing in structural and aerodynamic 
subsystems while aerodynamic responses produced by the CFD 
solver are regularly considered deterministic. In fact, CFD simu-
lation has the nature of approximation and dispersion, and al-
ways accompanied by multiple sources of uncertainty. As NASA’s 
technical vision [36] of the required capabilities of CFD in the 
notional year 2030 indicates, management of uncertainty quan-
tification and propagation in CFD simulation is regarded as a 
bottleneck to be conquered to improve the credibility of predic-
tions. Although numerous types of uncertainties associated with 
CFD simulations originating from discretization errors [37], differ-
ent turbulence models, uncertain initial or boundary data [38] and 
so on have been exclusively investigated, research on aerodynamic 
reduced-order modeling considering the CFD-induced uncertainties 
and further application in robust aeroelastic analysis is still in its 
preliminary stage.

Hence, the motivation for this paper is to develop a CFD-based 
model reduction strategy for unsteady aerodynamics considering 
bounded uncertainties associated with CFD simulation and simul-
taneously promote its application into robust flutter boundary pre-
diction. For this purpose, the interval perturbation method is pro-
posed to get the interval estimation of identified coefficients in the 
uncertain aerodynamic reduced-order model and eigenvalues of 
the uncertain aeroelastic state matrix. The remainder of this paper 
is organized as follows. In section 2, an uncertain model reduction 
method for aerodynamic subsystems with interval parameters is 
developed based on the system identification theory and the first-
order interval perturbation approach. In section 3, a strategy to 
predict the robust flutter boundary of the formulated uncertain 
aeroelastic model is proposed with the help of the standard in-
terval eigenvalue solving algorithm and the newly defined stability 
criterion about the interval aeroelastic state matrix. Two numerical 
examples are given to demonstrate the validity and accuracy of the 
presented uncertain aerodynamic model reduction method as well 
as the robust flutter analysis approach in section 4. Finally, some 
conclusions are summarized in section 5.

2. Uncertain reduced-order modeling for aerodynamic 
subsystems with interval parameters

In the current section, an uncertain model reduction method 
based on the system identification approach is proposed for aero-
dynamic subsystems where CFD-induced bounded uncertainties of 
aerodynamic responses are considered. The interval estimation of 
identified coefficients of the reduced-order model is obtained by 
utilizing the first-order interval perturbation theory. Above all, the 
conventional strategy for aerodynamic reduced-order modeling ap-
plied in the field of transonic flutter analysis and optimization is 
briefly introduced.
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2.1. Reduced-order modeling suitable for deterministic aerodynamic 
responses (ROM-DAR)

Model reduction procedures are widely used in aeroelastic sta-
bility prediction to improve the computational efficiency of the 
unsteady CFD solution in transonic regime. Conceptually, the un-
steady CFD solution performed in an aeroelastic analysis is simply 
a dynamic system that calculates the aerodynamic responses based 
on a prescribed motion of the structure. For an aeroelastic stability 
problem involving structural vibrations with small amplitude only, 
the aerodynamic subsystem can be assumed to be a dynamic lin-
ear system. Under this assumption, although the steady flow fields 
are nonlinear in spatial dimension, the unsteady aerodynamic re-
sponses are considered to be linear with regard to small-amplitude 
vibrations of structure in temporal dimension. Hence, based on the 
dynamic linearization hypothesis, the aerodynamic subsystem can 
be regarded as a linear time invariant (LTI) system with multiple 
inputs and multiple outputs. Multiple forms of unsteady aerody-
namic ROMs have been developed to mathematically describe the 
input/output relationship of the unsteady CFD solution.

In the current investigation, the ARX (AutoRegressive model 
with eXogenous input) model is adopted to construct the unsteady 
aerodynamic ROM based on the system identification method. In 
the process of aerodynamic model reduction, the multistep signal 
with a broad spectrum of frequencies is used as the mode excita-
tions (generalized structural displacements) to excite the primary 
flow physics,and the CFD solver is employed to generate the aero-
dynamic responses (generalized aerodynamic coefficients based on 
the normal mode shapes) corresponding to the prescribed mode 
excitations in discrete-time domain. The ARX model describes the 
responses of the investigated aerodynamic subsystem as a sum of 
scaled previous outputs and scaled present and previous inputs, 
which can be written as [35]

f(k) =
na∑

i=1

Aif(k − i) +
nb−1∑

j=0

B jξ(k − j) + e(k) (1)

where f(k) is the kth data of the M-dimensional vector of system 
outputs (generalized aerodynamic coefficients), and ξ (k) denotes 
the kth data of the M-dimensional vector of system inputs (gener-
alized structural displacements). M is the modal truncation order 
of the structural subsystem. Ai and B j are the coefficient matrices 
to be identified. na and nb are delay orders of outputs and inputs, 
respectively. e(k) represents the kth data of model output errors 
corresponding to the original system outputs. In terms of deter-
ministic aerodynamic responses, the unknown model coefficients 
in Eq. (1) are deterministic and can be estimated using the least 
squares method. Thus, the unsteady aerodynamic ROM suitable for 
deterministic aerodynamic responses is constructed.

2.2. Reduced-order modeling suitable for uncertain aerodynamic 
responses (ROM-UAR)

Due to the complexity of the aerodynamic subsystem, the aero-
dynamic responses generated by the CFD solver are inevitably con-
fronted with the influence of uncertainties originating from errors 
or diversities of boundary conditions, mesh sizes, spatiotemporal 
discretization and other sources. Apparently, in order to make con-
fident predictions of the concerned aerodynamic subsystem, the 
consideration of uncertainties involved in aerodynamic responses 
becomes indispensable and the presented deterministic model re-
duction method needs to be improved accordingly. Since most 
uncertainty quantification schemes are based on the description 
of the uncertainties as random variables, the probabilistic method 
becomes the preferred way to deal with uncertain problems. How-
ever, the probabilistic technique requires sufficient sample infor-
mation to acquire the probability density functions of uncertain-
ties, which will consequentially lead to extremely large CFD com-
putational costs for the current uncertainty quantification problem 
of aerodynamic responses. Generally, compared with the distribu-
tion information, the bounds of uncertain variables can be attained 
more conveniently. In this paper, considering the actual situation 
that the available information of uncertainties of aerodynamic re-
sponses f(k) = ( f i(k)), i = 1, 2, . . . , M is not sufficient to provide 
the probability density function, each element of the kth aerody-
namic response vector f(k) is assumed to belong to an interval 
number. Thus, the uncertain aerodynamic ROM considering inter-
val uncertainties of aerodynamic responses can be described as the 
following perturbed form

fc(k) + δf(k) =
na∑

i=1

Ai
(
fc(k − i) + δf(k − i)

)

+
nb−1∑

j=0

B jξ(k − j) + e(k) (2)

where fc(k) stands for the nominal value of the kth vector of 
system outputs and can be regarded as the deterministic part of 
the generalized aerodynamic response vector. δf(k) ∈ �fI (k) is a 
small perturbation from fc(k) and can be considered as the uncer-
tain part of the generalized aerodynamic response vector. �fI (k) =
[−�f(k), �f(k)] denotes the interval of the uncertain part of the 
generalized aerodynamic response vector with zero nominal value 
where �f(k) = (� f i(k)), i = 1, 2, . . . , M is the radius of the interval 
vector �fI (k).

For convenience, Eq. (2) can be rewritten as the least squares 
scheme for inputs and outputs of the investigated system as below

fc(k) + δf(k) = θ T (
xc(k) + δx(k)

) + e(k) (3)

where θ T = [A1 · · ·AnaB0 · · ·Bnb−1] is a M × (na + nb) · M-dimen-
sional coefficient set of aerodynamic ROM to be identified. xc(k) =
[(fc(k − 1))T , . . . , (fc(k − na))T , ξ T (k), . . . , ξ T (k − nb + 1)]T and 
δx(k) = [(δf(k − 1))T , . . . , (δf(k − na))T , 0, . . . , 0]T ∈ �xI (k) repre-
sent the nominal value of a (na + nb) · M-dimensional vector of 
inputs and outputs, and a small perturbation around xc(k), respec-
tively.

Taking L as the data length of system inputs and outputs in the 
process of identification, namely k = 1, 2, . . . , L, we can obtain the 
following identification format with the help of Eq. (3)

Fc
L + δFL = (

Hc
L + δHL

)
θ + EL (4)

where

Fc
L =

⎡
⎢⎢⎢⎢⎢⎣

(fc(1))T

(fc(2))T

...

(fc(L))T

⎤
⎥⎥⎥⎥⎥⎦ , δFL =

⎡
⎢⎢⎢⎢⎢⎣

(δf(1))T

(δf(2))T

...

(δf(L))T

⎤
⎥⎥⎥⎥⎥⎦ ∈ �FI

L,

EL =

⎡
⎢⎢⎢⎢⎢⎣

eT (1)

eT (2)

...

eT (L)

⎤
⎥⎥⎥⎥⎥⎦
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Hc
L =

⎡
⎢⎢⎢⎢⎢⎣

(xc(1))T

(xc(2))T

...

(xc(L))T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(fc(0))T · · · (fc(1 − na))T ξ T (1) · · · ξ T (2 − nb)

(fc(1))T · · · (fc(2 − na))T ξ T (2) · · · ξ T (3 − nb)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

(fc(L − 1))T · · · (fc(L − na))T ξ T (L) · · · ξ T (L + 1 − nb)

⎤
⎥⎥⎦

δHL =

⎡
⎢⎢⎢⎢⎢⎣

(δx(1))T

(δx(2))T

...

(δx(L))T

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(δf(0))T · · · (δf(1 − na))T 0 · · · 0

(δf(1))T · · · (δf(2 − na))T 0 · · · 0
...

. . .
...

...
. . .

...

(δf(L − 1))T · · · (δf(L − na))T 0 · · · 0

⎤
⎥⎥⎥⎥⎦

∈ �HI
L

(5)

Basing on the principle of least squares method, we can define 
the criterion function as below

J (θ) =
L∑

k=1

eT (k)e(k) = ‖FL − HLθ‖2
F

= tr
(
(FL − HLθ)T (FL − HLθ)

)
(6)

where ‖ •‖F denotes the Frobenius-norm of a matrix, FL = Fc
L +δFL

and HL = Hc
L + δHL .

Eq. (6) clearly characterizes the error of the aerodynamic ROM 
compared with the original CFD solver. By minimizing the crite-
rion function (6), we can get the estimated value θ̂ of coefficients 
involved in Eq. (4) which satisfies

∇θ J (θ)|
θ̂

= ∇θ

(
tr

(
FT

L FL
) − 2 tr

(
FT

L HLθ
) + tr

(
θ T HT

L HLθ
))∣∣

θ̂

= 2
(−HT

L FL + HT
L HL θ̂

) = 0 (7)

where ∇θ (•) stands for the derivative of a scalar quantity with 
respect to a matrix expressed as

∇θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
∂θ11

∂
∂θ12

· · · ∂
∂θ1 j

∂
∂θ21

∂
∂θ22

· · · ∂
∂θ2 j

...
...

. . .
...

∂
∂θi1

∂
∂θi2

· · · ∂
∂θi j

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i = 1,2, . . . , (na + nb) · M; j = 1,2, . . . , M (8)

Due to the uncertainties involved in the systemic outputs 
(aerodynamic responses) f(k), the estimation of identified co-
efficients θ̂ determined by inputs and outputs of the system 
are also uncertain. With the idea of least squares method, the 
critical job for reduced-order modeling of the uncertain aero-
dynamic subsystem of interest is to seek a feasible set Γ θ ⊂
R(na+nb)·M×M of the uncertain coefficient matrices θ̂ which is com-
patible with the mode excitations and bounded aerodynamic re-
sponses, namely

Γ θ = {
θ̂ : −HT

L

(
δf(k)

)
FL

(
δf(k)

) + HT
L

(
δf(k)

)
HL

(
δf(k)

)
θ̂ = 0,

δf(k) ∈ �fI (k)
}

(9)
In general, Γ θ is an irregular convex set with a complicated 
boundary which is particularly difficult and unnecessary to find 
out. For facilitating system analysis and control, a convex set, 
which is easy handling and contains the feasible set Γ θ as tightly 
as possible is expected. By virtue of interval mathematics, we can 
seek a hyper-rectangle (or interval matrix) to approximate set Γ θ . 
That is to say, the interval estimation of Γ θ can be obtained by 
determining the lower and upper bounds of the system coefficient 
matrices as follows

θ̂
I = [

θ̂
(
δf(k)

)
,
¯̂
θ
(
δf(k)

)] = (
θ̂ I

i j

(
δf(k)

))
(10)

where

θ̂
(
δf(k)

) = min
{
θ̂ : −HT

L

(
δf(k)

)
FL

(
δf(k)

)
+ HT

L

(
δf(k)

)
HL

(
δf(k)

)
θ̂ = 0, δf(k) ∈ �fI (k)

}
¯̂
θ
(
δf(k)

) = max
{
θ̂ : −HT

L

(
δf(k)

)
FL

(
δf(k)

)
+ HT

L

(
δf(k)

)
HL

(
δf(k)

)
θ̂ = 0, δf(k) ∈ �fI (k)

}
(11)

We assume that the estimation of the identified coefficients θ̂
has the following form

θ̂ = θ̂
c + δθ̂ (12)

where θ̂
c

and δθ̂ ∈ �θ̂
I

stand for the nominal estimation of 
identified coefficients and a small perturbation from θ̂

c
, respec-

tively. �θ̂
I = [−�θ̂, �θ̂ ] is the interval of the uncertain part of 

the identified coefficient matrix with zero nominal value where 
�θ̂ = (�θ̂i j), i = 1, 2, . . . , (na + nb) · M; j = 1, 2, . . . , M is the ra-

dius of the interval matrix �θ̂
I
. Substituting Eq. (12) into Eq. (7)

yields

−(
Hc

L + δHL
)T (

Fc
L + δFL

)
+ (

Hc
L + δHL

)T (
Hc

L + δHL
)(

θ̂
c + δθ̂

) = 0 (13)

Expanding Eq. (13) and neglecting the higher-order terms, we 
have

θ̂
c = ((

Hc
L

)T
Hc

L

)−1(
Hc

L

)T
Fc

L

δθ̂ = ((
Hc

L

)T
Hc

L

)−1((
Hc

L

)T
δFL + (δHL)

T Fc
L − (

Hc
L

)T
δHL θ̂

c

− (δHL)
T Hc

L θ̂
c) (14)

where δθ̂ can be regarded as a function of the elements in δHL

and δFL . By means of the principle of interval mathematics, we 
can obtain the interval natural extension of the second equation in 
Eq. (14) as

�θ̂ =
M∑

i=1

L∑
k=1

∣∣∣∣((Hc
L

)T
Hc

L

)−1
((

Hc
L

)T ∂Fc
L

∂ f i(k)
+

(
∂Hc

L

∂ f i(k)

)T

Fc
L

− (
Hc

L

)T ∂Hc
L

∂ f i(k)
θ̂

c −
(

∂Hc
L

∂ f i(k)

)T

Hc
L θ̂

c
)∣∣∣∣� f i(k) (15)

By virtue of the first equation in Eq. (14) and Eq. (15), the 
lower and upper bounds of identified coefficients θ̂ used as the 
interval estimation of Γ θ can be readily obtained via interval op-
erations

θ̂
I = θ̂

c + �θ̂
I = [θ̂ ,

¯̂
θ ] = [

θ̂
c − �θ̂, θ̂

c + �θ̂
]

(16)

Eq. (16) can also be written as the component form

θ̂i j = θ̂ c
i j + �θ̂ I

i j = [θ̂ i j,
¯̂
θ i j] = [

θ̂ c
i j − �θ̂i j, θ̂

c
i j + �θ̂i j

]
,

i = 1,2, . . . , (na + nb) · M; j = 1,2, . . . , M (17)
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It is worth noting that the proposed method is limited to 
the case where the CFD-induced uncertainties of aerodynamic re-
sponses are small since only the first-order perturbation is em-
ployed in Eq. (14). However, for the situation that the uncertainties 
of the concerned aerodynamic responses are large, the second-
order perturbation in Eq. (13) should be taken into considera-
tion.

Then, with the help of Eq. (14) to Eq. (17), the uncertain aero-
dynamic ROM considering interval uncertainties of aerodynamic 
responses can be constructed as follows

f(k) = (
θ̂

I)T
x(k) =

na∑
i=1

AI
i f(k − i) +

nb−1∑
j=0

BI
i ξ(k − j) (18)

It is obvious that the coefficient matrices of the above reduced-
order model are interval matrices rather than deterministic matri-
ces. The proposed reduced-order model with interval uncertainties 
can be used to predict uncertain responses of the aerodynamic 
subsystem where CFD-induced uncertainties are considered and 
replace the CFD solver for the aeroelastic uncertainty analysis in 
transonic regime.

3. Robust flutter analysis based on the aerodynamic ROM in 
presence of interval uncertainties

In this section, the stability problem of an uncertain aeroe-
lastic state-space model with interval parameters is transformed 
into a standard interval eigenvalue problem associated with a real 
non-symmetric interval matrix. The lower and upper bounds of 
eigenvalues of the uncertain aeroelastic state matrix are evaluated 
by virtue of the first-order interval matrix perturbation algorithm. 
By reference to the Lyapunov stability criterion for deterministic 
situations, a new stability criterion with respect to the interval 
aeroelastic continuous-time state-space model is defined to predict 
the robust flutter boundary of the investigated uncertain aeroe-
lastic system. Primarily, the state-space model of the uncertain 
aeroelastic system is formulated by coupling the above proposed 
uncertain aerodynamic ROM with the structural dynamic equation 
in continuous-time domain.

3.1. Aeroelastic state-space model construction based on the uncertain 
ROM

For the convenience of the subsequent aeroelastic stability anal-
ysis, the difference model of the uncertain aerodynamic ROM de-
scribed by Eq. (18) should be transformed into the state-space 
form. Here, we define a state vector xa(k) consisting of vectors 
of generalized aerodynamic coefficients and generalized structural 
displacements as follows

xa(k) = [
fT (k − 1), . . . , fT (k − na), ξ T (k − 1), . . . ,

ξ T (k − nb + 1)
]T

(19)

Then, the state-space form of the uncertain aerodynamic ROM 
in discrete-time domain can be expressed as

xa(k + 1) = Ã
I
axa(k) + B̃

I
aξ(k)

f(k) = C̃
I
axa(k) + D̃

I
aξ(k)

(20)

where
Ã
I
a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AI
1 AI

2 · · · AI
na−1 AI

na BI
1 BI

2 · · · BI
nb−2 BI

nb−1
I 0 · · · 0 0 0 0 · · · 0 0
0 I · · · 0 0 0 0 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · I 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 I 0 · · · 0 0
0 0 · · · 0 0 0 I · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · 0 0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̃
I
a = [ (BI

0)
T 0 0 · · · 0 I 0 0 · · · 0 ]T

C̃
I
a = [AI

1 AI
2 · · · AI

na−1 AI
na BI

1 BI
2

· · · BI
nb−2 BI

nb−1]
D̃

I
a = [BI

0]

(21)

To couple the structural equations in continuous-time domain, 
the discrete-time state-space form of the uncertain aerodynamic 
ROM is further converted to the continuous-time form as

ẋa(t) = AI
axa(t) + BI

aξ(t)

f(t) = CI
axa(t) + DI

aξ(t)
(22)

Now, consider the following continuous-time structural dy-
namic equation in the modal basis coordinates

Mξ ..(t) + Gξ(t). + Kξ(t) = F(t) (23)

where M represents the generalized mass matrix, G is the gener-
alized damping matrix, K denotes the generalized stiffness matrix, 
and F(t) = qf(t) is the generalized aerodynamic force vector, where 
q is the dynamic pressure of the freestream. By introducing state 
vector xs = [ξ T , ̇ξ T ]T , the continuous-time state-space form of the 
structural dynamic equation is as follows

ẋs(t) = As · xs(t) + q · Bs · f(t)

ξ(t) = Cs · xs(t) + q · Ds · f(t)
(24)

where the system parameter matrices in Eq. (24) are respectively 
written as

As =
[

0 I
−M−1K −M−1G

]
, Bs =

[
0

M−1

]
,

Cs = [
I 0

]
, Ds = [0]

(25)

Coupling the state-space equations of the uncertain aerody-
namic ROM described by Eq. (20) with the structural dynamic 
state-space equations expressed by Eq. (24) in continuous-time do-
main, the state-space model for the uncertain aeroelastic system in 
presence of interval parameters can be constructed as[

ẋs(t)
ẋa(t)

]
=

[
As + qBsDI

aCs qBsCI
a

BI
aCs AI

a

][
xs(t)
xa(t)

]

ξ(t) = [
Cs 0

][
xs(t)

xa(t)

] (26)

To simplify the representation, assume that

xas(t) =
[

xs(t)

xa(t)

]
, AI

as =
[

As + qBsDI
aCs qBsCI

a

BI
aCs AI

a

]
,

Cas = [
Cs 0

] (27)

Then, Eq. (26) can be rewritten as

ẋas(t) = AI
asxas(t)

ξ(t) = C x (t)
(28)
as as
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Up to present, the continuous-time state-space model of the 
uncertain aeroelastic system with interval parameters has been for-
mulated. As compared with the conventional deterministic aeroe-
lastic system, the state matrix AI

as of the uncertain aeroelastic 
system described by Eq. (28) is composed of interval parame-
ters, which reflects the influence of uncertainties involved in the 
aerodynamic subsystem. How to evaluate the stability and predict 
the flutter boundary of an uncertain aeroelastic system with in-
terval parameters becomes an appealing problem, which will be 
discussed in the next subsection.

3.2. Robust flutter boundaries prediction for interval aeroelastic 
state-space model

The stability of a given aeroelastic system is directly related to 
the eigenvalues of the state matrix of the corresponding aeroelastic 
state-space model. Lyapunov stability analysis approach has been 
widely applied to evaluate the stability of a conventional aeroelas-
tic state-space model with deterministic parameters. In terms of 
practice, Lyapunov stability condition is equivalent to the eigen-
values criterion. Due to the coupling of aerodynamics and struc-
tures destroying the symmetry of the structural subsystem, the 
eigenvalues of the state matrix of the aeroelastic system are com-
plex numbers. In accordance with Lyapunov stability condition, an 
aeroelastic system is considered to be stable in continuous-time 
domain only if all the eigenvalues of the state matrix of the aeroe-
lastic state-space model are absolutely distributed in the left-half 
complex plane.

However, for a given dynamic pressure q, the state matrix AI
as

in Eq. (28) now is an interval matrix, that leads to the real and 
imaginary parts of its eigenvalues are also interval numbers. By 
reference to the Lyapunov stability criterion suitable for determin-
istic cases, we can define the stability criterion with respect to the 
uncertain aeroelastic state-space model with interval parameters in 
continuous-time domain as follows: for any state matrix Aas ∈ AI

as , 
if all the eigenvalues of Aas are distributed in the left-half com-
plex plane, then the interval aeroelastic system is robustly stable; 
assume that we can find two different state matrices Aas and A′

as

belonging to AI
as , if all the eigenvalues of Aas are distributed in 

the left-half complex plane while some of the eigenvalues of A′
as

are distributed in the right-half complex plane (real axis included), 
then the interval aeroelastic system is possibly stable; for any state 
matrix Aas ∈ AI

as , if all the eigenvalues of Aas are distributed in 
the right-half complex plane (real axis included), then the interval 
aeroelastic system is absolutely unstable.

Evidently, in order to achieve the distribution information of 
eigenvalues of the concerned interval state matrix, we should ac-
quire the lower and upper bounds of the corresponding eigenval-
ues in advance. In particular, the stability problem of an uncertain 
aeroelastic state-space model here is transformed into a standard 
interval eigenvalue problem associated with a real non-symmetric 
n × n(n = (na + na + 1) · M) interval matrix as below

AI
asν = (

Ac
as + �AI

as

)
ν = λν (29)

where Ac
as denotes the nominal value of AI

as , �AI
as = [−�Aas, �Aas]

is the interval of the uncertain part of the state matrix with zero 
nominal value where �Aas is the radius matrix of AI

as , λ is the 
eigenvalue of AI

as and ν is the associated eigenvector. All the pos-
sible eigenvalues satisfying Eq. (29) constitute a feasible region in 
complex number field C which can be denoted by

Γ λ = {
λ : λ ∈C,AI

asν = λν,Aas ∈ AI
as

}
(30)

In view of the boundary complexity of the set Γ λ , we tend to 
seek an interval vector, which can contain the set Γ λ tightly, to 
approximate the feasible set. In other word, the aim of the cur-
rent work is to find out a closed interval vector that contains all 
possible eigenvalues λi, i = 1, 2, . . . , n, namely

λir ∈ λI
ir = [λir, λ̄ir], λim ∈ λI

im = [λim, λ̄im],
i = 1,2, . . . ,n (31)

where

λir = min
Aas∈AI

as

{
Re

(
λi(Aas)

)}
,

λ̄ir = max
Aas∈AI

as

{
Re

(
λi(Aas)

)}
, i = 1,2, . . . ,n

λim = min
Aas∈AI

as

{
Im

(
λi(Aas)

)}
,

λ̄im = max
Aas∈AI

as

{
Im

(
λi(Aas)

)}
, i = 1,2, . . . ,n

(32)

However, it is still difficult to find the exact interval bounds of 
the eigenvalues described by Eq. (31). For simplicity, but without 
losing accuracy, the first-order interval matrix perturbation algo-
rithm [39] is employed to evaluate the interval bounds of eigen-
values of the state matrix of the concerned aeroelastic system with 
interval parameters since deviation amplitudes of uncertainties are 
assumed to be small in the current context. Firstly, we consider the 
following standard eigenvalue problem when the uncertain param-
eters are taken as nominal values

Ac
asν

c
i = λc

i ν
c
i , i = 1,2, . . . ,n (33)

where νc
i is the ith nominal right eigenvector corresponding to 

the ith nominal eigenvalue λc
i of Ac

as . For convenience, we assume 
that the eigenvalues are distinct and the right eigenvectors are 
biorthonormal which have been normalized so as to satisfy(
νc

j

)T
νc

i = δi j, i, j = 1,2, . . . ,n (34)

where δi j is the Kronecker delta symbol. Then, we give a small 
perturbation δAas ∈ AI

as to the nominal state matrix Ac
as , and the 

perturbed form of the standard eigenvalue problem can be ob-
tained as follows(
Ac

as + δAas
)(

νc
i + δν i

) = (
λc

i + δλi
)(

νc
i + δν i

)
,

i = 1,2, . . . ,n (35)

where δλi and δν i are the ith first-order perturbation eigenvalue 
and eigenvector, respectively. Expanding Eq. (35) and ignoring the 
second-order terms, we have

Ac
asν

c
i + Ac

asδν i + δAasν
c
i = λc

i ν
c
i + λc

i δν i + δλiν
c
i ,

i = 1,2, . . . ,n (36)

Recalling the first formula in Eq. (33), Eq. (36) can be rewritten 
as follows

Ac
asδν i + δAasν

c
i = λc

i δν i + δλiν
c
i , i = 1,2, . . . ,n (37)

Here, we assume that the perturbation eigenvectors can be ex-
pressed as a linear combination of nominal right eigenvectors and 
have the expression [40]

δν i =
n∑

j=1

εi jν
c
j, εii = 0, i = 1,2, . . . ,n (38)

where εi j(i �= j) are small coefficients. Premultiplying both sides of 
Eq. (37) by (νc

i )
T yields(

νc
i

)T
Ac

asδν i + (
νc

i

)T
δAasν

c
i = (

νc
i

)T
λc

i δν i + (
νc

i

)T
δλiν

c
i ,

i = 1,2, . . . ,n (39)
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Considering the normalized and biorthonormal condition of 
right eigenvectors, we have

(
νc

i

)T
Ac

asδν i = (
νc

i

)T
Ac

as

n∑
j=1

εi jν
c
j =

n∑
j=1

εi j
(
νc

i

)T
λc

jν
c
j

=
n∑

j=1

εi jλ
c
jδi j = 0

(
νc

i

)T
λc

i δν i = (
νc

i

)T
λc

i

n∑
j=1

εi jν
c
j =

n∑
j=1

εi jλ
c
i δi j = 0,

(
νc

i

)T
δλiν

c
i = δλi, i = 1,2, . . . ,n

(40)

Thus, the first-order perturbed eigenvalues with respect to the 
perturbed state matrix Aas = Ac

as + δAas can be obtained as follow

λi = λc
i + δλi = λc

i + (
νc

i

)T
δAasν

c
i , i = 1,2, . . . ,n (41)

Since the eigenvalues are complex numbers, Eq. (41) can also 
be expressed in the real and imaginary part form as

λi = λir + √−1λim = λc
ir + δλir + √−1

(
λc

im + δλim
)

(42)

where λir and λim are the real and imaginary parts of the eigenval-
ues, respectively, δλir and δλim are the corresponding perturbation 
terms. Combining Eq. (42) and Eq. (41) and introducing the real 
and imaginary part form of the eigenvectors yield the following 
expression(
νc

ir + √−1νc
im

)T
δAas

(
νc

ir + √−1νc
im

) = δλir + √−1δλim (43)

Expanding Eq. (43) and respectively considering the real part 
and the imaginary parts yield

δλc
ir = (

νc
ir

)T
δAasνc

ir − (
νc

im

)T
δAasνc

im

δλc
im = (

νc
ir

)T
δAasνc

im + (
νc

im

)T
δAasνc

ir

(44)

With the help of interval mathematics, we can obtain the fol-
lowing interval extension of the real part of complex eigenvalues 
from Eq. (42) and Eq. (44)

λI
ir = λc

ir + �λI
ir, i = 1,2, . . . ,n (45)

where �λI
ir = [−�λir, �λir] = (νc

ir)
T �AI

asν
c
ir − (νc

im)T �AI
asν

c
im and 

�λir are the radiuses of the real parts of complex eigenval-
ues. Then, by using the interval operation algorithm, the interval 
bounds of the real parts of complex eigenvalues can be achieved 
as

λI
ir = [λir, λ̄ir] = [

λc
ir − �λir, λ

c
ir + �λir

]
, i = 1,2, . . . ,n (46)

where �λir = |νc
ir |T �Aas|νc

ir | + |νc
im|T �Aas|νc

im|.
Similarly, the interval bounds of the imaginary parts of complex 

eigenvalues can also be obtained as follows by using the operations 
discussed above

λI
im = [λim, λ̄im] = [

λc
im − �λim, λc

im + �λim
]
, i = 1,2, . . . ,n

(47)

where �λim = |νc
ir |T �Aas|νc

im| + |νc
im|T �Aas|νc

ir |.
Finally, we can obtain the following interval estimation of 

eigenvalues of the interval state matrix AI
as through Eq. (46) and 

Eq. (47)

λI
i = λI

ir + √−1λI
im, i = 1,2, . . . ,n (48)

Once the lower and upper bounds of eigenvalues of the interval 
state matrix of the aeroelastic state-space model are find out based 
on the first-order interval matrix perturbation algorithm proposed 
above, the stability of the investigated aeroelastic system with in-
terval uncertainties can be evaluated according to the stability 
criterion used for uncertain circumstances defined at the begin-
ning of this subsection. To simplify representation, we can redefine 
the equivalent stability norm for the interval state matrix AI

as of 
the uncertain aeroelastic state-space model with the premise of a 
given dynamic pressure q, namely, AI

as is robustly stable, possibly 
stable and absolutely unstable when maxi=1,2,...,n{λ̄ir(AI

as(q))} < 0, 
maxi=1,2,...,n{λir(AI

as(q))} < 0 while maxi=1,2,...,n{λ̄ir(AI
as(q))} ≥ 0

and maxi=1,2,...,n{λir(AI
as(q))} ≥ 0, respectively.

Obviously, the lower and upper bounds of eigenvalues of the 
concerned interval state matrix is changing with the dynamic pres-
sure q of the freestream. Hence, by changing the dynamic pressure, 
we can obtain a banded root locus of the uncertain aeroelastic 
system on the complex plane and determine the critical dynamic 
pressure q∗ and q̄∗ corresponding to the interval aeroelastic state 
matrix converting from robust stability to possible stability and 
from possible stability to absolute instability respectively, which 
satisfy

max
i=1,2,...,n

{
λ̄ir

(
AI

as

(
q∗))} = 0 and

max
i=1,2,...,n

{
λir

(
AI

as

(
q̄∗))} = 0 (49)

In general, the critical dynamic pressure q∗ and q̄∗ can be 
equivalently converted to the lower and upper bounds of the flut-
ter speed index V ∗

f and V̄ ∗
f respectively, which are crucial dimen-

sionless design parameters in the aeroelastic design of aircrafts.
Now, by means of the proposed stability analysis method, the 

robust flutter boundary of the aeroelastic state-space model con-
structed based on the aerodynamic ROM in presence of interval 
uncertainties can be conveniently predicted, and the flowchart 
is concisely illustrated in Fig. 1. In contrast to the deterministic 
aeroelastic system, the root locus of the interval state matrix of 
the uncertain aeroelastic system associated with different dynamic 
pressures is transformed from a simple curve into a banded re-
gion with a certain width, and the critical dynamic pressure and 
flutter speed index become interval numbers instead of determin-
istic numbers as well. Moreover, due to the impact of uncertainties, 
the state of the aeroelastic system of interest is divided into three 
types, namely robust stability, possible stability and absolute insta-
bility, by the lower and upper bounds of the flutter speed index. 
In practical engineering, both the situations of possible stability 
and absolute instability are not permitted in order to guarantee 
the safety of the aircraft structure. Hence, the lower bound of the 
flutter velocity is a greater concern to engineers compared to the 
upper bound.

4. Numerical examples

In this section, we apply the proposed method to the uncer-
tain aerodynamic ROM constructions and robust flutter bound-
ary predictions of the two-dimensional Isogai wing and three-
dimensional AGARD 445.6 wing. Computational results are com-
pared with those obtained by MCS as well as other numerical or 
experimental methods to assess the validity and accuracy of the 
developed algorithm.

4.1. Example I: Isogai wing

In this example, the two-dimensional Isogai wing model [41,
42], a numerical benchmark case for aeroelastic analysis, is se-
lected to validate the proposed method as shown in Fig. 2. This 
model has two degrees of freedom of plunging and pitching with 
a NACA 64A010 airfoil section. The structural parameters chosen 
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Fig. 1. Flowchart of robust flutter analysis based on the uncertain aerodynamic ROM with interval parameters.
Fig. 2. Isogai wing with two degrees of freedom.

for this model are xα = 1.8, r2
α = 3.48, a = −2.0, ωh = 100 rad/s, 

ωα = 100 rad/s, and μ = 60, where xα is the dimensionless dis-
tance of center of gravity behind stiffness center, rα denotes the 
dimensionless gyration radius of the airfoil around stiffness center, 
a stands for the dimensionless distance of elastic axis behind mid-
chord, ωh and ωα are the uncoupled natural frequencies of airfoil 
in plunge and pitch respectively, and μ is the mass ratio. These 
parameters were empirically chosen by Isogai in order to simu-
late the bending and torsion motions of an outboard section of a 
sweptback wing.

For the current example, the thickness of innermost layer of the 
body-fitted grid, the circumferential grid sizes of the airfoil and 
the outflow boundary condition of the flow field are chosen as un-
certain sources that may affect the aerodynamic responses in CFD 
simulation. As shown in Fig. 3, the flow field of the model is dis-
cretized using structured grids. The thicknesses of the innermost 
layers of the body-fitted grids are set at three levels, respectively, 
as 1 × 10−5 m, 5 × 10−5 m and 1 × 10−4 m. The three levels of 
circumferential grid numbers of the airfoil are 150, 200 and 250. 
The pressure far field and pressure outlet are treated as two types 
of outflow boundary conditions of the flow field. By the free com-
bination of the aforementioned mesh scales and boundary condi-
tions, we can obtain 18 flow field modeling schemes in total, all 
that are frequently used in aerodynamic numerical simulation.

For the two-dimensional aeroelastic model in this example, we 
consider the transonic freestream condition Ma = 0.825 at zero 
mean angle of attack and all of the calculations are in the dimen-
sionless form. Here, the “3211” multistep input signals of plunging 
and pitching displacements as illustrated in Fig. 4 are used as the 
modal excitations. An inviscid Euler equation-based unsteady CFD 
solver has the ability to simulate the transonic flow with shock 
waves, which will be used for unsteady flow computations during 
the training of the aerodynamic ROM in the numerical examples 
in this paper. The spatial discretization is accomplished by the 
first order upwind scheme while the physical time discretization 
is implemented by the second order implicit scheme. The dimen-
sionless time step size used for the training of the aerodynamic 
ROM in the current example is �τ = 0.3. Based on the forego-
ing 18 kinds of flow field modeling schemes, a series of unsteady 
generalized aerodynamic responses of the investigated model cor-
responding to the prescribed modal excitations are extracted from 
the CFD solver. The CFD-induced uncertainty of the obtained aero-
dynamic responses are quantified as interval numbers by use of 
the non-probabilistic quantification method proposed by Wang et 
al. [43]. The central values of the quantified intervals are treated as 
nominal aerodynamic responses and the percentage radii of the in-
terval responses corresponding to the prescribed modal excitations 
are demonstrated in Fig. 5. Among these percentage radii, the max-
imum values are used as percentage estimations of interval radii of 
the CFD-based generalized aerodynamic responses.

Then, the estimated interval generalized aerodynamic responses 
and the prescribed modal excitations are fed into Eq. (2) to con-
struct the ROM-UAR for approximating the uncertain aerodynamic 
subsystem of the Isogai wing in transonic regime while the con-
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Fig. 3. Different levels and types of mesh scales and outflow boundary conditions.

Fig. 4. Designed 3211 multistep input signal of generalized displacements (modal excitations).

Fig. 5. The percentage radii of intervals of generalized aerodynamic coefficients generated by the CFD solver.
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Fig. 6. Uncertain aerodynamic responses at Ma = 0.825 corresponding to the modal 
excitations presented in Fig. 4.

ventional ROM-DAR is used to represent the deterministic aero-
dynamic subsystem with nominal aerodynamic responses. As a 
comparison, the MCS is conducted where the uncertain generalized 
aerodynamic coefficients are assumed to satisfy a uniform distri-
bution within the estimated interval bounds. Here, we use 5000 
groups of generalized aerodynamic coefficients, which are gener-
ated randomly from the interval uncertain space, to construct a 
series of ROMs-DAR. The delay orders of outputs and inputs of the 
above ROM-DAR and ROM-UAR are taken as na = 4 and nb = 4, 
respectively, since the error of the ROM with the current orders 
is proved to be relatively small compared with that using other 
possible delay orders for this example. As shown in Fig. 6, the 
nominal values of generalized aerodynamic responses calculated 
by the ROM-DAR agree quite well with those directly produced 
by the CFD solver. It also can be seen from Fig. 6 that the interval 
range of the uncertain aerodynamic responses determined through 
MCS are slightly wider than those of the original CFD-generated 
aerodynamic responses due to a little over estimation of uncer-
tainties of primary CFD responses. Besides, the interval bounds of 
uncertain aerodynamic responses obtained by MCS absolutely con-
tain the counterparts of CFD results. These results indicate that the 
MCS can provide a reasonably accurate prediction for the uncertain 
aerodynamic responses corresponding to the prescribed modal ex-
citations and can be used as reference for the method developed 
in this paper. The lower and upper bounds of identified coefficients 
involved in the ROM-UAR estimated by Eq. (16) are almost consis-
tent with those determined via MCS and completely contain the 
identified coefficients of the nominal aerodynamic ROM as demon-
strated in Fig. 7, in which LB, UB and NV are the abbreviations of 
lower bound, upper bound and nominal value, respectively. Qual-
itatively, we can conclude that the proposed ROM-UAR can be 
employed to replace the CFD solver for the uncertain response 
calculation of a two-dimensional aerodynamic subsystem where 
CFD-induced uncertainties are considered.

The constructed ROM-UAR is coupled with the dimensionless 
structural dynamic equation without damping formulated in the 
modal basis coordinates to generate the uncertain aeroelastic sys-
tem of the Isogai wing. With the help of Eq. (46) and Eq. (47), 
we can estimate the lower and upper bounds of eigenvalues of 
the interval state matrix of the uncertain aeroelastic system at 
a specified dynamic pressure of the freestream. Fig. 8 gives the 
loci of interval bounds of eigenvalues for the uncertain aeroelastic 
system as well as the loci of eigenvalues for the nominal aeroe-
lastic system associated with dynamic pressures. As indicated in 
Fig. 8, the flutter of the wing is caused by the first mode for 
this particular condition. A detail view of the first root loci of the 
wing traversing the real axis of the complex plane is illustrated 
in Fig. 9. The interval bounds of the first root loci of the un-
certain aeroelastic system calculated by the proposed method are 
also compared with counterparts obtained by MCS in Fig. 9. Here, 
the results of MCS gained via repetitive deterministic aeroelastic 
analyses based on the conventional ROM-DAR for each sample are 
considered to be exact. Different from the deterministic circum-
Fig. 7. Comparison of interval estimations of identified coefficients involved in the reduced-order model of the uncertain aerodynamic subsystem calculated by ROM-UAR 
with counterparts obtained by MCS at Ma = 0.825.
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Fig. 8. Loci of interval bounds of eigenvalues for the Isogai wing varying with dy-
namic pressures at Ma = 0.825.

Fig. 9. Comparison of interval bounds of the first root loci for the Isogai wing calcu-
lated based on ROM-UAR with counterparts obtained by MCS at Ma = 0.825.

stance, the root locus of the uncertain aeroelastic system varying 
with dynamic pressures is transformed from a simple curve into a 
banded region consisting of a series of rectangular areas enclosed 
by the lower and upper bounds of the real and imaginary parts of 
eigenvalues. The lower and upper bounds of the flutter speed in-
dex are determined by using the robust stability criterion defined 
in subsection 3.2. The bounds of rectangular areas, in which the 
eigenvalues are distributed, corresponding to the lower and up-
per bounds of the flutter speed index calculated by the proposed 
method and MCS are highlighted in Fig. 9. In addition, Fig. 9 also 
indicates that the interval bounds of the root loci as well as the 
flutter speed index obtained through MSC are completely wrapped 
by those calculated by the proposed method due to the interval 
extension caused by interval operations. The proposed method can 
provide a reasonable prediction on the interval bounds of flutter 
speed index completely including the MCS bounds, the ROM-DAR-
based nominal values and deterministic computational results in 
references [44] and [45] as compared in Table 1.
Fig. 10. Time history of generalized structural displacements for the Isogai wing at 
Ma = 0.825 and V f = 0.613.

In order to reveal the impact of parametric uncertainty in-
volved in the ROM-UAR caused by the aerodynamic uncertainty 
on the stability of the aeroelastic system, we execute aeroelastic 
time-marching simulations of the Isogai wing for three different 
cases at Ma = 0.825 and V f = 0.613, which is equal to the nom-
inal value of flutter speed index. The identified coefficients of the 
ROM-UAR are set as the obtained lower bounds in case 1, nominal 
values in case 2 and upper bounds in case 3. As shown in Fig. 10, 
both of the plunging and pitching amplitudes diverge, decay and 
remain constant over time for case 1, case 2 and case 3, indicat-
Table 1
Comparison of flutter speed index for the Isogai wing calculated in this paper with results in references at Ma = 0.825.

NV-ROM-DAR MCS-ROM-DAR ROM-UAR Alonso et al. (1994) [44] Liu et al. (2001) [45]

LB UB LB UB

Flutter speed index 0.613 0.599 0.628 0.588 0.641 0.612 0.630
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Fig. 11. Planform view and structural FE model of the three-dimensional AGARD 445.6 wing.

Fig. 12. The first four modal shapes of the AGARD 445.6 wing.
ing that the aeroelastic systems are unstable, neutrally stable and 
stable, respectively. It means that due to aerodynamic uncertainty 
the aeroelastic system might be unstable under the nominal flut-
ter speed. Therefore, the proposed approach can provide a more 
robust and more conservative prediction on flutter boundary than 
the conventional aeroelastic analysis method based on determinis-
tic aerodynamic ROM.

Evidently, the uncertain parameters considered in this paper are 
far from covering all possible uncertainties involved in the aero-
dynamics. In addition to the above uncertain factors, the sources 
of aerodynamic uncertainties may also arise from simplifying as-
sumptions, difference of convergence precision, errors of turbu-
lence models if the viscosity is considered, different spatiotemporal 
discretization methods, unmodeled dynamics and so on. Hence, 
the uncertain factors chosen here are really a limited set of all 
possible uncertainties that influence the obtained aerodynamic re-
sponse. In fact, the quantification of uncertainty sources is not the 
focus of this paper, and the interval bounds of the aerodynam-
ics are only inputs of the proposed method. That is to say, the 
proposed method can be readily used to construct the uncertain 
aerodynamic ROM and predict the interval flutter boundaries as 
long as the interval information of the aerodynamics are quanti-
fied.

In addition, the time cost of a deterministic flutter speed pre-
diction based on the full order model for the Isogai wing is about 
1200 wall-clock hours run on a computer with a Intel i7-4790 
3.60 GHz 8-core CPU and 16GB RAM. However, the time spent 
on the training of the aerodynamic ROM-DAR and the subsequent 
deterministic flutter speed prediction based on the obtained ROM-
DAR are approximately 4 wall-clock hours and a few seconds, re-
spectively, where the length of the input signal used in the current 
example is 80 dimensionless time steps. For the uncertain case, 
the time cost of quantifying the interval bounds of the generalized 
aerodynamic coefficients is nearly 72 wall-clock hours. Once the 
interval bounds of the uncertain generalized aerodynamic coeffi-
cients are determined, it takes only a couple of seconds to obtain 
the lower and upper bounds of the flutter speed based on the pro-
posed ROM-UAR, while the computational cost of predicting such 
interval bounds through the MCS is a few hours.

4.2. Example II: AGARD 445.6 wing

The AGARD 445.6 wing, a standard aeroelastic configuration, 
is used herein to verify the applicability of the proposed method 
in dealing with complex three-dimensional aeroelastic problems. 
Several different models of AGARD wing 445.6 were tested in the 
Transonic Dynamics Tunnel (TDT) at NASA Langley Research Cen-
ter and the model designed as “Weakened 3” in reference [46]
is investigated in the current example. A planform view of the 
AGARD 445.6 wing is shown in Fig. 11, which has a quarter-chord 
sweep angle of 45 degrees, an aspect ratio of 1.65, a taper ratio 
of 0.66, a wing semispan of 0.76 meters, a wing root chord of 
0.56 meters, and a symmetric NACA 65A004 airfoil section. The 
wing employed is a semispan wind-tunnel-wall-mounted model 
constructed of laminated mahogany.

Anisotropic shell elements with variable thickness consistent 
with the airfoil section are adopted to generate the structural FE 
model as shown in Fig. 11. The material properties of the in-
vestigated model are as follows: E1 = 0.89 GPa, E2 = 1.54 GPa, 
ν = 0.31, G = 2.6 GPa and ρ = 381.98 kg/m3, in which E1 de-
notes the Young’s modulus in x-axial and z-axial direction, E2 is 
the Young’s modulus in y-axial direction, ν stands for the Poisson’s 
ratio, G represents the shear modulus and ρ is the density of the 
model respectively. As shown in Fig. 12, the first four modal shapes 
of the model, namely first bending mode, first torsion mode, sec-
ond bending mode and second torsion mode, are obtained by using 
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Table 2
Comparison of computed natural frequencies with measured and calculated values in references.

Mode 1 / Hz Mode 2 / Hz Mode 3 / Hz Mode 4 / Hz

Experimental data (Yates et al., 1963) [46] 9.60 38.10 50.70 98.50
Calculated values (Yates, 1987) [47] 9.60 38.17 48.35 91.54
Current paper 9.71 37.78 56.06 92.36
the structural mechanics solver. The computed natural frequencies 
ranging from 9.71 Hz for the first bending mode to 92.36 Hz for 
the second torsion mode in this paper match the experimental 
data and calculated counterparts in references [46] and [47] well 
as listed in Table 2. For the current example, the structural dy-
namic equation, in which no structural damping is considered, is 
formulated in the modal basis coordinates based on the first four 
modal shapes. The unsteady aerodynamic responses are generated 
by utilizing the inviscid Euler equation-based unsteady CFD solver 
where the flow field is discretized using unstructured/structured 
hybrid grids. The same as the first example, the spatial discretiza-
tion is accomplished by the first order upwind scheme while the 
physical time discretization is implemented by the second order 
implicit scheme. The physical time step size used for the training 
of the aerodynamic ROM in this example is �t = 0.001 s. The loca-
tion and velocity of the fluid-solid coupling interface are updated 
by virtue of the dynamic mesh technique at each physical time 
step to match with the structural deformation of the wing induced 
by modal excitations.

We firstly consider the freestream condition Ma = 0.901 at 
zero angle of attack. The “3211” multistep input signals of first 
four generalized structural displacements as illustrated in Fig. 4
are still selected as the modal excitations. The first four gener-
alized aerodynamic coefficients corresponding to the prescribed 
modal excitations in modal basis coordinates transformed from 
aerodynamic responses generated by the CFD solver in physical 
coordinates based on the modal shapes are considered to be nom-
inal values. Here, we assume that the generalized aerodynamic 
coefficients obtained by the CFD solver have 5 percent uncer-
tainties with regard to the nominal values and can be quanti-
fied by interval numbers. In this example, the proposed ROM-UAR 
is used to approximate the uncertain aerodynamic subsystem of 
the concerned AGARD 445.6 wing with interval aerodynamic re-
sponses while the conventional ROM-DAR is adopted to represent 
the deterministic aerodynamic subsystem with nominal aerody-
namic responses. As a comparison, the MCS is conducted based 
on 5000 groups of generalized aerodynamic coefficients generated 
randomly from the assumed interval uncertain space, in which the 
uncertain generalized aerodynamic coefficients are assumed to sat-
isfy a uniform distribution, to produce a series of ROMs-DAR. The 
delay orders of outputs and inputs of the ROM-DAR and ROM-
UAR in the current example are also taken as na = 4 and nb = 4, 
respectively, after comparing the errors of ROMs with different 
possible orders. As shown in Fig. 13, the first four nominal gen-
eralized aerodynamic responses calculated by the ROM-DAR agree 
quite well with those directly produced by the CFD solver, and the 
interval bounds of uncertain aerodynamic responses determined 
through MCS match well with the assumed interval bounds of 
CFD-generated aerodynamic responses as well. Hence, the MCS re-
sults will be used as reference for the proposed method in the 
subsequent discussion. The lower and upper bounds of identified 
coefficients involved in the ROM-UAR estimated by the presented 
method are almost consistent with those determined via MCS and 
completely include the identified coefficients of the nominal aero-
dynamic ROM as demonstrated in Fig. 14. These results indicate 
that the proposed ROM-UAR can take the place of the CFD solver 
considering uncertainties in simulations to provide a reasonable 
prediction of the uncertain aerodynamic responses of a three-
dimensional wing.

The constructed ROM-UAR is coupled with the preceding struc-
tural dynamic equation to formulate the uncertain aeroelastic sys-
tem of the AGARD 445.6 wing. Fig. 15 gives the loci of interval 
bounds of eigenvalues for the uncertain aeroelastic system as well 
as the loci of eigenvalues for the nominal aeroelastic system as-
sociated with dynamic pressures. It shows that the flutter branch 
of the uncertain aerodynamic elastic system is dominated by the 
first bending mode for the current condition. A detail view of the 
first root loci of the wing traversing the real axis of the complex 
plane is illustrated in Fig. 16. The interval bounds of the first root 
loci of the uncertain aeroelastic system calculated by the proposed 
method are also compared with counterparts obtained by MCS in 
Fig. 16. The lower and upper bounds of the flutter speed index 
calculated by the proposed method and MCS are highlighted in 
Fig. 16. We can obtain the same result as the first example that the 
interval bounds of the root loci as well as the flutter speed index 
obtained through MSC are completely wrapped by those calculated 
via the proposed method due to the interval extension induced by 
interval operations.

Using the aforementioned approach, we predict the robust flut-
ter boundary of the AGARD 445.6 wing over the flight Mach 
number ranging from 0.499 to 1.141 experimentally measured by 
Yates et al. [46]. The calculated flutter characteristics are shown 
in Fig. 17, together with the experimental data, those obtained 
by MCS and other deterministic numerical methods. Qualitatively, 
the bounds of flutter speed index predicted by the developed ro-
bust flutter analysis method based on the ROM-UAR match well 
with the experimental values, MCS results and other deterministic 
computational results in the subsonic and transonic ranges. In the 
supersonic range, although a premature rise in the computational 
robust flutter boundary as compared with the experimental result 
is presented, Lee-Rausch et al. [48] and Zhang et al. [35] also over-
predicted the flutter boundary by a similar amount compared to 
the central values of our interval results. In general, the proposed 
robust flutter analysis method can provide a reasonable predic-
tion on the interval bounds of flutter speed index that includes 
the whole MCS bounds and nominal values determined based on 
the ROM-DAR as well as most of the experimental data and other 
deterministic numerical results. As illustrated in Fig. 17, the state 
of aeroelastic stability for the wing of interest is divided into three 
types, namely robust stability, possible stability and absolute insta-
bility, by the lower and upper bounds of the flutter speed index 
due to the influence of aerodynamic uncertainties. In terms of 
aeroelastic design, we should ensure the flight speed always in 
the robust stability region to avoid the occurrence of flutter. In 
this sense, the proposed approach may provide a more robust and 
conservative prediction on flutter boundary than the conventional 
aeroelastic analysis method based on deterministic aerodynamic 
ROM.

In terms of the computational efficiency, the time cost of a de-
terministic flutter speed prediction based on the full order model 
for the AGARD 445.6 wing is about 2280 wall-clock hours run on 
the same computer used in the first example. However, the time 
spent on the training of the aerodynamic ROM-DAR and the subse-
quent deterministic flutter speed prediction based on the obtained 
ROM-DAR are approximately 37 wall-clock hours and a few sec-
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Fig. 13. Uncertain aerodynamic responses at Ma = 0.901 corresponding to the modal excitations presented in Fig. 4.

Fig. 14. Comparison of interval estimations of identified coefficients involved in the reduced-order model of the uncertain aerodynamic subsystem calculated by ROM-UAR 
with counterparts obtained by MCS at Ma = 0.901.
onds, respectively, where the length of the input signal used in 
this example is 130 physical time steps. Moreover, for an uncer-
tain case, it still takes only a couple of seconds to obtain the 
lower and upper bounds of the flutter speed based on the pro-
posed ROM-UAR, while the computational cost of predicting such 
interval bounds through the MCS is a few hours once the inter-
val bounds of the uncertain generalized aerodynamic coefficients 
are given. It is worth noting that quantifying the interval bounds 
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Fig. 15. Loci of interval bounds of eigenvalues for the AGARD 445.6 wing varying 
with dynamic pressures at Ma = 0.901.

Fig. 16. Comparison of interval bounds of the first root loci for the AGARD 445.6 
wing calculated by the proposed method with counterparts obtained by MCS at 
Ma = 0.901.

of the generalized aerodynamic coefficients are time consuming as 
well. The time cost of this process depends on the quantification 
method employed and is not considered in the evaluation of the 
computational efficiency of the proposed method.
5. Conclusion

This paper developed an uncertain CFD-based model reduction 
method for aerodynamic subsystems considering bounded uncer-
tainties associated with CFD simulation with the help of the sys-
tem identification theory and the interval perturbation approach. 
A new stability criterion for interval aeroelastic state matrices was 
defined to predict the robust flutter boundary of the concerned 
uncertain aeroelastic system based on the constructed uncertain 
aerodynamic ROM by using the standard interval eigenvalue solv-
ing algorithm. Synthesizing computational results of the aforemen-
tioned two numerical examples, some conclusions are summarized 
here:

1) The major characteristic of the proposed model reduction 
method is that the uncertain aerodynamic ROM, in which the co-
efficients are interval numbers instead of fixed numbers, obtained 
by this way is as uncertain as the original aerodynamic subsystem 
with CFD-induced uncertainties and can be used for aeroelastic un-
certainty analysis.

2) Different from the deterministic circumstance, the root lo-
cus of the uncertain aeroelastic system associated with dynamic 
pressures is transformed from a simple curve into a banded region 
consisting of a series of rectangular areas enclosed by the lower 
and upper bounds of the real and imaginary parts of eigenvalues 
on the complex plane.

3) The state of stability for the aeroelastic system is divided into 
three types, namely robust stability, possible stability and absolute 
instability, by the lower and upper bounds of the flutter bound-
ary due to the influence of aerodynamic uncertainties. In terms of 
aeroelastic design, the flight speed of the aeroelastic system must 
be kept in the robust stability region to avoid the occurrence of 
flutter.

In summary, by considering CFD-induced uncertainties, the pro-
posed method can provide a more robust and conservative predic-
tion on flutter boundary compared with the conventional aeroe-
lastic analysis method based on the deterministic aerodynamic 
ROM. As a further research, the proposed model reduction method 
would be extended into the servo-aeroelasticity stability analysis, 
the active flutter suppression and the dynamic nonlinear aerody-
namic model in the future work.

Conflict of interest statement

There is no conflict of interest.
Fig. 17. Comparison of flutter boundary predictions for the AGARD 445.6 wing obtained by the proposed method with those attained by other numerical or experimental 
methods.



230 X. Chen et al. / Aerospace Science and Technology 71 (2017) 214–230
Acknowledgements

This work was supported by the National Nature Science Foun-
dation of the P.R. China (No. 11432002 and No. 11572024), the Ma-
jor Research Project (No. MJ-F-2012-04), the National Key Research 
and Development Program (2016YFB0200704), the Defense Indus-
trial Technology Development Program (No. JCKY2013601B001 and
No. JCKY2016601B001) and the 111 Project (No. B07009). Besides, 
the authors wish to express their many thanks to the reviewers for 
their useful and constructive comments.

References

[1] J.R. Wright, J.E. Cooper, Introduction to Aircraft Aeroelasticity and Loads, John 
Wiley & Sons, Ltd, 2007.

[2] D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for 
computational physics, Prog. Aerosp. Sci. 40 (1–2) (2004) 51–117.

[3] P.S. Beran, D.J. Lucia, C.L. Pettit, Reduced-order modelling of limit-cycle oscilla-
tion for aeroelastic systems, J. Fluids Struct. 19 (2004) 575–590.

[4] T.J. Cowan, A.S. Arena, K.K. Gupta, Accelerating computational fluid dynamics 
based aeroelastic predictions using system identification, J. Aircr. 38 (1) (2001) 
81–87.

[5] W.A. Silva, Recent Enhancements to the Development of CFD-Based Aeroelastic 
Reduced Order Models, AIAA Paper 2007-2051, 2007.

[6] W.A. Silva, Identification of nonlinear aeroelastic systems based on the Volterra 
theory: progress and opportunities, Nonlinear Dyn. 39 (1–2) (2005) 25–62.

[7] A. Mannarino, P. Mantegazza, Nonlinear aerodynamic reduced order model-
ing by discrete time recurrent neural networks, Aerosp. Sci. Technol. 47 (2015) 
406–419.

[8] J.P. Thomas, E.H. Dowell, K.C. Hall, Three-dimensional transonic aeroelasticity 
using proper orthogonal decomposition-based reduced-order models, J. Aircr. 
40 (3) (2003) 544–551.

[9] M. Dardel, F. Bakhtiari-Nejad, A reduced order of complete aeroelastic model 
for limit cycle oscillations, Aerosp. Sci. Technol. 14 (2) (2010) 95–105.

[10] Q. Zhou, G. Chen, A. Da Ronch, Y. Li, Reduced order unsteady aerodynamic 
model of a rigid aerofoil in gust encounters, Aerosp. Sci. Technol. 63 (2017) 
203–213.

[11] B.P. Danowsky, P.M. Thompson, C. Farhat, T. Lieu, C. Harris, J. Lechniak, Incor-
poration of feedback control into a high-fidelity aeroservoelastic fighter aircraft 
model, J. Aircr. 47 (4) (2010) 1274–1282.

[12] A.R. Crowell, J.J. McNamara, K.M. Kecskemety, T.W. Goerig, A Reduced Order 
Aerothermodynamic Modeling Framework for Hypersonic Aerothermoelasticity, 
AIAA Paper 2010-2969, 2010.

[13] Q. Zhou, D. Li, A. Da Ronch, G. Chen, Y. Li, Computational fluid dynamics-based 
transonic flutter suppression with control delay, J. Fluids Struct. 66 (2016) 
183–206.

[14] P. Marques, A. Da Ronch, Advanced UAV Aerodynamics, Flight Stability and 
Control: Novel Concepts, Theory and Applications, Wiley–Blackwell, 2017.

[15] S. Timme, K.J. Badcock, A. Da Ronch, Gust load analysis using computational 
fluid dynamics derived reduced order models, J. Fluids Struct. 71 (2017) 
116–125.

[16] M. Ghoreyshi, R.M. Cummings, A. Da Ronch, K.J. Badcock, Transonic aerody-
namic loads modeling of x-31 aircraft pitching motions, AIAA J. 51 (10) (2013) 
2447–2464.

[17] C.L. Pettit, Uncertainty quantification in aeroelasticity: recent results and re-
search challenges, J. Aircr. 41 (5) (2004) 1217–1229.

[18] Y. Dai, C. Yang, Methods and advances in the study of aeroelasticity with un-
certainties, Chin. J. Aeronaut. 27 (3) (2014) 461–474.

[19] D.M. Pitt, D.P. Haudrich, M.J. Thomas, Probabilistic Aeroelastic Analysis and Its 
Implications on Flutter Margin Requirements, AIAA Paper 2008-2198, 2008.

[20] C. Scarth, J.E. Cooper, P.M. Weaver, G.H.C. Silva, Uncertainty quantification of 
aeroelastic stability of composite plate wings using lamination parameters, 
Compos. Struct. 116 (2014) 84–93.
[21] J. Deng, C. Anton, Y.S. Wong, Stochastic collocation method for secondary bi-
furcation of a nonlinear aeroelastic system, J. Sound Vib. 330 (13) (2011) 
3006–3023.

[22] X. Wang, Z. Qiu, Interval finite element analysis of wing flutter, Chin. J. Aero-
naut. 21 (2) (2008) 134–140.

[23] R.M. Lind, M. Brenner, Robust Aeroservoelastic Stability Analysis: Flight Test 
Applications, Springer-Verlag, 1999.

[24] H. Yun, J. Han, Robust flutter analysis of a nonlinear aeroelastic system with 
parametric uncertainties, Aerosp. Sci. Technol. 13 (2–3) (2009) 139–149.

[25] B. Moulin, M. Idan, M. Karpel, Aeroservoelastic structural and control optimiza-
tion using robust design schemes, J. Guid. Control Dyn. 25 (1) (2002) 152–159.

[26] B.P. Danowsky, J.R. Chrstos, D.H. Klyde, C. Farhat, M. Brenner, Evaluation of 
aeroelastic uncertainty analysis methods, J. Aircr. 47 (4) (2010) 1266–1273.

[27] S. Heinze, D. Borglund, Robust flutter analysis considering mode shape varia-
tions, J. Aircr. 45 (3) (2008) 1070–1074.

[28] R. Lind, M. Brenner, Analyzing Aeroservoelastic Stability Margins Using the μ
Method, AIAA Paper 1998-1895, 1998.

[29] B. Moulin, Modeling of aeroservoelastic systems with structural and aerody-
namic variations, AIAA J. 43 (12) (2005) 2503–2513.

[30] C.L. Martin, K. Anders, Industrial application of robust aeroelastic analysis, J. 
Aircr. 48 (4) (2011) 1176–1183.

[31] Y. Gu, Z. Yang, Robust Flutter Analysis of an Airfoil with Flap Freeplay Uncer-
tainty, AIAA Paper 2008-2201, 2008.

[32] M. Karpel, B. Moulin, M. Idan, Robust aeroservoelastic design with structural 
variations and modeling uncertainties, J. Aircr. 40 (5) (2003) 946–954.

[33] T. Lieu, C. Farhat, M. Lesoinne, Reduced-order fluid/structure modeling 
of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng. 
195 (41–43) (2006) 5730–5742.

[34] H. Liu, H. Hu, Y. Zhao, R. Huang, Efficient reduced-order modeling of unsteady 
aerodynamics robust to flight parameter variations, J. Fluids Struct. 49 (2014) 
728–741.

[35] W. Zhang, K. Chen, Z. Ye, Unsteady aerodynamic reduced-order modeling of 
an aeroelastic wing using arbitrary mode shapes, J. Fluids Struct. 58 (2015) 
254–270.

[36] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. 
Mavriplis, CFD Vision 2030 Study: A Path to Revolutionary Computational Aero-
sciences, NASA TR NASA/CR-2014-218178, NF1676L-18332, 2014.

[37] L. Eça, M. Hoekstra, A procedure for the estimation of the numerical uncer-
tainty of CFD calculations based on grid refinement studies, J. Comput. Phys. 
262 (2014) 104–130.

[38] T. Barth, On the propagation of statistical model parameter uncertainty in CFD 
calculations, Theor. Comput. Fluid Dyn. 26 (5) (2012) 435–457.

[39] Z. Qiu, P.C. Müller, A. Frommer, An approximate method for the standard in-
terval eigenvalue problem of real non-symmetric interval matrices, Commun. 
Numer. Methods Eng. 17 (4) (2001) 239–251.

[40] L. Meirovitch, Computational Methods in Structural Dynamics, Sijthoff & No-
ordhoff, 1980.

[41] K. Isogai, On the transonic-dip mechanism of flutter of a sweptback wing, AIAA 
J. 17 (7) (1979) 793–795.

[42] K. Isogai, Transonic dip mechanism of flutter of a sweptback wing: part II, AIAA 
J. 19 (9) (1981) 1240–1242.

[43] X. Wang, L. Wang, Uncertainty quantification and propagation analysis of struc-
tures based on measurement data, Math. Comput. Model. 54 (11–12) (2011) 
2725–2735.

[44] J.J. Alonso, A. Jameson, Fully-Implicit Time-Marching Aeroelastic Solutions, 
AIAA Paper 1994-0056, 1994.

[45] F. Liu, J. Cai, Y. Zhu, H.M. Tsai, A.S.F. Wong, Calculation of wing flutter by a 
coupled fluid–structure method, J. Aircr. 38 (2) (2001) 334–342.

[46] E.C. Yates Jr., N.S. Land, J.T. Foughner Jr., Measured and Calculated Subsonic and 
Transonic Flutter Characteristics of a 45◦ Swepteback Wing Planform in Air and 
in Freon-12 in the Langley Transonic Dynamics Tunnel, NASA TN D-1616, 1963.

[47] E.C. Yates Jr., AGARD Standard Aeroelastic Configurations for Dynamic Re-
sponse I. – Wing 445.6, NASA TM 100492, 1987.

[48] E.M. Leerausch, J.T. Batina, Wing flutter boundary prediction using unsteady 
Euler aerodynamic method, J. Aircr. 32 (2) (1995) 416–422.

http://refhub.elsevier.com/S1270-9638(17)30329-2/bib31s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib31s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib32s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib32s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib33s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib33s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib34s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib34s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib34s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib35s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib35s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib36s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib36s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib37s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib37s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib37s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib38s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib38s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib38s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib39s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib39s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3130s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3130s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3130s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3131s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3131s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3131s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3132s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3132s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3132s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3133s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3133s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3133s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3134s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3134s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3135s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3135s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3135s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3136s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3136s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3136s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3137s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3137s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3138s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3138s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3139s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3139s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3230s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3230s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3230s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3231s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3231s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3231s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3232s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3232s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3233s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3233s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3234s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3234s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3235s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3235s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3236s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3236s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3237s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3237s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3238s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3238s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3239s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3239s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3330s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3330s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3331s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3331s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3332s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3332s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3333s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3333s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3333s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3334s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3334s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3334s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3335s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3335s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3335s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3336s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3336s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3336s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3337s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3337s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3337s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3338s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3338s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3339s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3339s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3339s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3430s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3430s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3431s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3431s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3432s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3432s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3433s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3433s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3433s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3434s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3434s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3435s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3435s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3436s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3436s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3436s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3437s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3437s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3438s1
http://refhub.elsevier.com/S1270-9638(17)30329-2/bib3438s1

	Uncertain reduced-order modeling for unsteady aerodynamics with interval parameters and its application on robust ﬂutter boundary prediction
	1 Introduction
	2 Uncertain reduced-order modeling for aerodynamic subsystems with interval parameters
	2.1 Reduced-order modeling suitable for deterministic aerodynamic responses (ROM-DAR)
	2.2 Reduced-order modeling suitable for uncertain aerodynamic responses (ROM-UAR)

	3 Robust ﬂutter analysis based on the aerodynamic ROM in presence of interval uncertainties
	3.1 Aeroelastic state-space model construction based on the uncertain ROM
	3.2 Robust ﬂutter boundaries prediction for interval aeroelastic state-space model

	4 Numerical examples
	4.1 Example I: Isogai wing
	4.2 Example II: AGARD 445.6 wing

	5 Conclusion
	Conﬂict of interest statement
	Acknowledgements
	References


