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We numerically investigate the flight dynamics and aerodynamics of a two-dimensional
model for the jellyfishlike ornithopter recently devised by Ristroph and Childress [L.
Ristroph and S. Childress, J. R. Soc. Interface 11, 20130992 (2014)]. This simplified model
is composed of two rigid thin foils which are forced to pitch in antiphase fashion. The
Navier-Stokes equations for the fluid and the dynamics equations for the flyer are solved
together in the simulations. We first consider the constrained-flying condition where the
flyer model is only allowed to move in the vertical direction. The influences of the control
parameters on the hovering performance are studied. With the variations in parameter values,
three different locomotion states, i.e., ascending, descending, and approximate hovering, are
identified. The wake structures corresponding to these three locomotion states are explored.
It is found that the approximate hovering state cannot persist due to the occurrence of wake
symmetry breaking after long-time simulation. We then consider the free-flying condition
where the motions in three degrees of freedom are allowed. We study the postural stability
of a flyer, with its center of gravity located at the geometric center. The responses of the flyer
at different locomotion states to physical and numerical perturbations are examined. Our
results show that the ascending state is recoverable after the perturbation. The descending
state is irrecoverable after the perturbation and a mixed fluttering and tumbling motion which
resembles that of a falling card emerges. The approximate hovering state is also irrecoverable
and it eventually transits to the ascending state after the perturbation. The research sheds
light on the lift-producing mechanism and stability of the flyer and the results are helpful
in guiding the design and optimization of the jellyfishlike flying machine.

DOI: 10.1103/PhysRevFluids.3.013102

I. INTRODUCTION

Flying and swimming animals are the sources of inspiration for devising biomimetic aerial and
underwater vehicles. Understanding the aerodynamics (or hydrodynamics) of animal locomotion in
air (or water) is essential for optimizing the biomimetic designs. To build an artificial flyer which
is capable of hovering, it is natural to mimic the insects which are able to generate sufficient lift
without a forward speed. Several different strategies have been observed in the hovering flights of
insects [1]: the lift-based stroke in a horizontal plane (also termed the normal mode), the drag-based
paddling stroke in a vertical plane, and the hybrid lift- and drag-based stroke in a tilted plane. Three
mechanisms were found to be responsible for the generation of large lift: leading-edge vortex [2],
wake capture [3], and rapid acceleration and fast pitching up [4]. For hovering insects operating at
ultralow Reynolds numbers, the clap-and-fling (interaction between two wings) mechanism can also
be used to supplement the lift production [5]. Although the aerodynamics of insects’ hovering flights
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FIG. 1. Schematic diagram (a) for the jellyfishlike ornithopter and (b) the simplified two-dimensional model.
Here P1 and P2 denote the pivot points of the two foils; Pcg denotes the center of gravity of the flyer; � is the
orientation angle of the flyer; L, L0, and d denote the chord length, the distance from the pivot point to the
leading end, and the distance between the two pivot points, respectively; θ0, θ (t), and Aθ denote the equilibrium
angle, the instantaneous pitching angle, and the flapping amplitude, respectively; and i and j denote the unit
vectors pointing in the x+ and y+ directions, respectively.

are now well understood, due to the inherent instability in the insect-based flapping-wing micro air
vehicles (MAVs), complex control systems are needed in the designs. Perhaps for this reason, only
a few MAVs capable of untethered hovering flight have been reported [6–12].

Recently, a jellyfishlike ornithopter which can achieve self-righting flight by opening and closing
its four wings [see Fig. 1(a)] has been reported [13]. It was shown that the robotic flyer can maintain a
stable body orientation during ascending, forward, and hovering flights. To some extent, this robotic
flyer shared some similarities with the rigid or flexible objects which were able to hover in oscillating
flows [14–18]. Although the promise of this design strategy has been demonstrated in test-flying the
prototype, the underlying physical mechanisms which govern its locomotion capabilities are still not
well understood.

Despite the term “jellyfishlike” [sic] used in [13] to describe the flying machine, there are some
apparent differences between the kinematics of its flapping wings and that of a jellyfish’s bell.
Jellyfish uses very complicated contract and extension of the soft deformable bell during swimming,
with some asymmetries in the contracting and expanding phases [19]. The kinematics employed by
the flying machine is actually very similar to the simple pitching motion (i.e., rotation about one
pivot point), although moderate wing flexion can be observed.

Motivated by the work in [13] and in light of the observation above, in this paper investigations
are conducted on a two-dimensional numerical model consisting of one pair of pitching foils [see
Fig. 1(b)]. Although the complicated three-dimensional effects and the wing flexion are excluded in
the model, this study can still shed light on the aerodynamic characteristics of the flying machine
reported in [13]. It should be noted that some investigations have been conducted before on the
dual pitching-foil system under either tethered or free-swimming condition [20,21]; however, the
performance of such system in flying against gravity has received little attention.

More recently, a similar two-dimensional model for the jellyfishlike flyer has been studied
numerically by using a vortex sheet method [22] and some results regarding the flyer’s postural
stability were found to be inconsistent with the experimental observations in [13]. Unlike the work
in [22], where the flows were in the limit of infinite Reynolds number, in the present work we focus
on the regime of intermediate Reynolds numbers by numerically solving the full Navier-Stokes
equations. Particular attention is given to the exploration of various wake structures associated with
different locomotion states, and the link between wake structure and hovering performance.

The arrangement of the rest of the paper is as follows. The problem description and numerical
method are introduced in Sec. II. The simulation results are presented in Sec. III. First, the influences
of some important control parameters on the hovering performance are investigated. Next, the
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emergent wake structures under the constrained-flying condition (where only the vertical motion
is permitted) are explored. Finally, the postural stability of the flyer under the free-flying condition
is studied. In Sec. IV, we summarize the conclusions and also discuss future research avenues.

II. PROBLEM DESCRIPTION AND NUMERICAL METHOD

A. Computational model

In this study, we consider one pair of rigid thin foils which pitch in antiphase fashion [see Fig. 1(b)].
The motions of the foils can be prescribed as

θ1,2(t) = ±[θ0 + Aθ cos(2πf t)], (1)

where θ1 and θ2 are the instantaneous pitching angles, θ0 is the equilibrium angle, and f and Aθ are
the flapping frequency and flapping amplitude, respectively.

The fluid flow is assumed to be two dimensional and laminar. The motion of the fluid is governed
by the incompressible Navier-Stokes equations, which can be written in a dimensionless form as

∂u
∂t

+ (u · ∇)u = −∇p′ + 1

Re
∇2u + f , (2a)

∇ · u = 0. (2b)

Here u is the fluid velocity, p′ is the summation of the pressure and the gravitational potential,
and f is the momentum source term, which represents the force exerted by the immersed foils.
The reference length, time, and velocity used in the nondimensionalization are L, 1/f , and Lf ,
respectively. The Reynolds number in Eq. (2a) is defined as Re = L2f/ν, where ν is the kinematic
viscosity of the fluid. Due to the absorption of the gravitational potential into the pressure term, the
gravitational force does not appear explicitly in Eq. (2a).

The dimensionless dynamics equations which govern the locomotion of the flyer are

β
d2 Xcg

dt2
=

∑
i

F(X i)�s − β

Fr2 j , (3a)

d

dt

(
I
d�

dt

)
=

∑
i

(X i − Xcg) × F(X i) · k�s, (3b)

where Xcg and � are the position vector of the center of gravity and the orientation angle, respectively,
F is the distributed Lagrangian force on the flapping foils as a result of the fluid-structure interaction,
�s is the width of the Lagrangian grid, k is the unit normal vector which points outward from the
x-y plane, and β = (ρsδ)/(ρf L) and I = β

∑
(X i − Xcg)·(X i − Xcg)�s are the mass ratio and

dimensionless moment of inertia, where ρs , ρf , and δ are the density of the foil, the density of the
air, and the thickness of the foil, respectively. Here the mass of the load is lumped into the mass of
the foils and not treated separately. In addition, Fr = f

√
L/g is the Froude number. Note that the

gravitational potential absorbed in p′ can result in a buoyancy force which is proportional to the
volume occupied by the foils. Since such volume is sufficiently small, the buoyancy force term is
not included in Eq. (3).

In this paper, two types of motion of the flyer, namely, constrained flying and free flying, are
considered. For the constrained-flying cases, the flyer is only allowed to move in the vertical
direction, while the lateral motion and rotation are prohibited. Under such a condition, only the
second component of the position vector in Eq. (3a) needs to be solved. In the situation of free flying,
Eqs. (3) need to be solved.
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TABLE I. Values of control parameters used in the simulation. (In searching
for cases which precisely satisfy the hovering condition, some additional values not
listed in the table are also used in the simulation.)

Parameters Values

β 0.1,0.2,0.25,0.3,0.4,0.5,0.7,1.0,1.5,2.0
d/L 0.5,0.6,0.8,1.0,1.2,1.4,1.6,2.0,2.5,3.0
L0/L 0.0,0.1,0.2,0.3,0.4,0.5
θ0 −π/12–π/6 (�θ0 = π/36)
Aθ π/36–π/6 (�Aθ = π/72)
Re 50–1600
Fr 0.5–15

B. Flow and dynamics solvers

The Navier-Stokes equations (2) are solved by using the direct-forcing immersed boundary method
based on the discrete stream function formulation [23]. The algebraic multigrid method is used to
solve the linear systems arising from the discretization. The code is parallelized using the message
passing interface protocol [24]. The dynamics equations (3) are solved by using the explicit Eulerian
scheme for the temporal discretization. The loosely coupled scheme is used for solving the fluid-
structure interaction problem.

Before performing the simulations of this work, the code is first validated by computing the
aerodynamic force in the hovering flight of a dragonfly wing model [1,25]. The comparisons of the
result with the reference solutions are detailed in Appendix A and the agreements are found to be
satisfactory.

III. SIMULATION RESULTS

A. Control parameters and numerical settings

The control parameters used in the simulations are listed in Table I. Some parameters such as
the Froude numbers, the density ratio, the flapping amplitude, the equilibrium angle, the pivot point
position, and the gap between the two pivot points are chosen to lie in a reasonable range which is
comparable to that of the flying machine presented in [13]. The Reynolds numbers in the simulations
are one order of magnitude smaller than those in [13]. The reasons for assigning smaller Re in the
simulations are twofold. First, due to the mesh resolution requirement for resolving the boundary
layer, systematic parametric studies at a higher Re around 104 are still prohibitive; second, a saturation
behavior in the locomotion performance with increasing Reynolds number has been found in the
range of Re = 102–103 (to be addressed later in Sec. III B).

A large rectangular computational domain of [−12L,12L] × [−24L,24L] is used in the simula-
tions of this study. The no-slip condition on the surface of the flyer is realized by using the immersed
boundary technique. It should be noted that the selected thickness value (through the prescribed
value of β) only affects the inertial terms in the dynamic equations. In solving the Navier-Stokes
equations, the two links of the flyer are treated as very slender bodies with “zero thickness” [23].
The slip-wall boundary condition is imposed on the four outer boundaries of the computational
domain. To reduce the total number of grid points while maintaining a sufficiently high resolution
near the body, we utilize multiblock Cartesian grids with hanging nodes [23]. The finest grids are
deployed in the subdomain of [−2L,2L] × [−16L,16L] for the constrained-flying simulations, with
the widths ranging from 0.01L to 0.02L, depending on the Reynolds numbers. For the free-flying
simulations, the subdomain with the finest grid is enlarged to [−8L,8L] × [−16L,16L] to deal
with possible larger lateral displacements of the flyer. The resolution of the Lagrangian grid on
the dual flapping foils is the same as that of the Eulerian grid. The time steps in the simulations
are chosen to be 0.001T for the ascending and descending cases and 0.0005T for the approximate
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hovering cases (the maximum Courant-Friedrichs-Lewy number never exceeds 0.2 for all cases). The
initial positions of the two foils are θ1(0) = θ0 + Aθ and θ2(0) = −θ0 − Aθ , respectively. The initial
velocity of the fluid is set to zero. Numerical tests are conducted to ensure that converged solutions
are obtained with the refinement of mesh and time-step sizes. The results of these tests are detailed in
Appendix B.

A comprehensive parametric study has been conducted under the constrained-flying condition
to investigate the influences of control parameters on hovering performance and wake structure.
Meanwhile, a limited number of free-flying cases are also simulated to probe the postural stability
of the flyer under perturbations.

B. Effects of parameters on hovering performance in constrained flying

In the constrained-flying cases, the flyer’s locomotion states can be divided into three categories,
i.e., ascending, descending, and approximate hovering. We use the terminal vertical velocity UT ,
which is defined as

UT = 1

t1 − t0

∫ t1

t0

[Ẋcg · j ]dt, (4)

to identify the locomotion state and quantify the performance of the flyer. The integrand limits in
Eq. (4) are chosen such that the averaging is performed within a time interval where the velocity is
(periodically) steady. In this paper, t0 = 10T is used to exclude the influence of the initial condition,
where T is the period of the pitching motion. For most of the cases studied here, t1 − t0 = 10T is
used in the averaging. For a few cases where multiperiodic behavior is exhibited in the velocity, the
time intervals used in the averaging may reach up to 30T .

The terms “ascending” and “descending” are used to describe the locomotion state when |UT | >

0.1 and UT is positive or negative, respectively. The term “approximate hovering” is used to describe
the locomotion state when |UT | � 0.1. Note that for the approximate hovering cases, the UT defined
here only reflects its temporary locomotion state due to the occurrence of wake symmetry breaking
after a long-time simulation (to be discussed later in Sec. III C).

To investigate the sensitivity of the performance to the variation of certain parameters, some base
cases are first selected. The criteria for selecting the base cases are that (a) the parameter values
should lie in a reasonable range and (b) the dynamic states are the ones that we intend to achieve. An
explanation of the reasonable range for the parameter values has been given in Sec. III A. An intended
dynamic state (i.e., ascending, hovering, or descending) can be achieved by adjusting the parameters
associated with the kinematics (such as Re, Fr, and Aθ ). This is done by following a cut-and-try
procedure. After the base case is selected, the sensitivity study is then conducted by allowing one or
more parameter values to vary while keeping others fixed.

1. Effect of Reynolds number

We first explore the influence of Reynolds number on the locomotion performance. A series
of simulations are conducted by varying Re in the range of 50–600 while keeping other control
parameters fixed.

The terminal vertical velocities as a function of Re for three sets of control parameters
corresponding to the ascending, descending, and approximate hovering states are shown in Fig. 2.
From this figure it can be seen that as long as Re is sufficiently high (larger than 200), the
Reynolds-number effect becomes insignificant. This observation can be used to further justify the
assigning of lower Re in the simulations (when comparing with those in the experiments). Here we
offer a caveat in interpreting the saturation behavior shown in Fig. 2. This behavior only confirms
that the performance of the flyer is no longer sensitive to the variation of viscosity if the viscosity
is sufficient small. The saturation behavior cannot be interpreted as the insensitivity of performance
with respect to size variation, because size variation will result in the simultaneous variations in Re,
Fr, and β.
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FIG. 2. Terminal vertical velocity as a function of Re. The bars on the curves symbolize the amplitudes of
velocity fluctuations. The fixed control parameters are Aθ = 15◦, β = 0.5, L0 = 0.2L, d = 1.0L, and θ0 = 0◦

for all cases, Fr = 2.89 for the ascending cases (�), Fr = 1.92 for the approximate hovering cases (♦), and
Fr = 0.96 for the descending cases (◦).

2. Effects of flapping frequency and amplitude

The flapping frequency f and amplitude Aθ are the two most important kinematic parameters
which affect the hovering performance. To isolate the effects of varying frequency and amplitude
while keeping other parameters unchanged, we construct a two-dimensional parameter space (Aθ,f̃ )
which is spanned by the flapping amplitude Aθ and the normalized frequency f̃ . The normalized
frequency is defined as f̃ = f/f0, where f0 is the reference frequency for the case with Re = 200
and Fr = 1.92. The reason for choosing this reference case is that this is an approximate hovering
case for β = 0.5. Since we are particularly interested in the hovering flight of the flyer, by choosing
this case as the reference one, we can easily figure out the sensitivity of the hovering performance to
the variations of frequency and amplitude. Actually, this choice is somewhat arbitrary and not unique
[any case on the black line in Fig. 3(a) can be a good candidate]. Provided that the chord length L is

FIG. 3. Influences of flapping frequency and amplitude on the locomotion performance: (a) a phase diagram
for the map of locomotion states across (Aθ,f̃ ) at β = 0.5 and (b) the scaling of f̃ with respect to Aθ , for cases
which approximately satisfy the hovering condition (i.e., cases with the minimal values of |UT |) at three different
values of β. The fixed control parameters are θ0 = 0◦, L0 = 0.2L, and d = 1.0L.
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fixed among all cases, f̃ = α thus corresponds to the case with Re = 200α and Fr = 1.92α, where
α is a positive real number.

A phase diagram for the locomotion states across the space of (Aθ,f̃ ) for β = 0.5 is shown in
Fig. 3(a). Note that for the cases marked in this figure, all control parameters are fixed, except Re,
Fr, and Aθ . The ascending cases are found in the upper right region, while the descending cases
are found on the lower left. The narrow band which separates these two regions corresponds to the
approximate hovering state. The values of Aθ and f̃ which satisfy the hovering condition can be
extracted from this figure. Such values extracted at three different values of β (0.25, 0.5, and 1.0)
are plotted in Fig. 3(b). It can be seen that f̃ obeys the scaling laws of f̃ ∼ Aθ

−2 and f̃ ∼ Aθ
−1

for Aθ < 10◦ and Aθ > 15◦, respectively. Thus, the weight-supporting capability of the flyer is
proportional to the foil’s trailing-end velocity at relatively large flapping amplitudes. At relatively
small flapping amplitudes, however, a higher trailing-end velocity is required to support the same
weight with decreasing amplitude. It should be noted that the universality of such a scaling law is
still not known (it may not be valid if the configuration parameters such as d/L, L0/L, and θ0 are
different).

3. Effects of other control parameters

Next, we study the influences of other control parameters, namely, the density ratio, the pivot point
position, the equilibrium angle, and the gap distance between the two foils, on the performance of
the flyer. A parametric study is carried out by only varying one parameter at a time while keeping the
other parameters fixed. The results of this study are summarized in Fig. 4, which shows the terminal
vertical velocity as a function of the varying parameters.

Figure 4(a) shows the terminal vertical velocity as a function of density ratio. It can be seen that
the approximate hovering state may transit to an ascending (or a descending) state if the density ratio
is reduced (or increased). This is consistent with our intuition, i.e., a lighter flyer tends to rise while
a heaver flyer tends to fall. In Fig. 4(b) it is shown that by moving the pivot point towards the leading
end (or trailing end), the approximate hovering state may transit to an ascending (or a descending)
state. In this scenario, the transition from approximate hovering to ascending (or descending) can
be attributed to increased (or decreased) trailing-end velocity. The effect of varying the equilibrium
angle on the performance is demonstrated in Fig. 4(c). It can be seen that in the vicinity of the
approximate hovering state, the increase of the equilibrium angle can result in the reduction of
the terminal vertical velocity. The reversal of this trend near θ0 = 5◦ is associated with the sudden
change of wake structure: the transformation from one vortex dipole trapped in between two foils
into two large vortices outside the two foils (to be addressed later in Sec. III C). Figure 4(d) shows
the influence of the gap distance between the two pivot points on the terminal vertical velocity. Since
the terminal vertical velocity is not very sensitive to the variation of gap distance in the vicinity of
the approximate hovering state, here attention is paid to the ascending state only. From Fig. 4(d) it
can be clearly seen that the terminal vertical velocity decreases with increased gap distance. The
influences of the equilibrium angle and the gap distance on the performance can be interpreted as
the enhancement (or reduction) of the mutual interaction between two foils in close proximity (or
inviscid ground effect due to symmetry [26]).

C. Wake structures under the constrained-flying condition

We now look at the wake structures that emerge under the constrained-flying condition. The
typical wake structures corresponding to the three locomotion states are shown in Fig. 5. For the
ascending state [Fig. 5(a)], two vortices with opposite signs form a dipole and are shed from the two
trailing ends during one flapping cycle. These dipoles induce downward jet flows with the lateral
velocity components pointing outward from the centerline. Owing to the steadily ascending motion,
the vortices shed in the previous flapping cycles are kept away from the flyer. This wake structure
resembles the one produced by a swimming two-dimensional jellyfish model [19]. For the descending
state [Fig. 5(b)], the emergent wake structure is composed of two parallel von Kármán vortex streets,
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FIG. 4. Terminal vertical velocity as a function of (a) density ratio, (b) pivot point position, (c) equilibrium
angle, and (d) gap distance between the two pivot points. The closed and open circles denote the cases with
and without the occurrence of wake symmetry breaking, respectively. The control parameters for the cases
denoted by a star on the curves in (a)–(c) are Re = 200, Fr = 1.92, Aθ = 15◦, β = 0.5, θ0 = 0◦, L0 = 0.2L,
and d = 1.0L. The control parameters for the case denoted by a star on the curve in (d) are Re = 300, Fr = 2.89,
Aθ = 15◦, β = 0.5, θ0 = 0◦, L0 = 0.2L, and d = 1.0L.

which are the typical footprints left by free-falling objects. In the vortex streets, vortices shed in
sequential order are arranged in a staggered fashion.

For the approximate hovering state, one salient feature is the lingering of large chunks of vorticity
near the body. Due to the lack of a steady translational motion, the vorticity produced by the successive
flapping is continuously fed into certain wake structures and also accumulated within these structures.
The visual appearance of the wake structure may differ significantly for different equilibrium angles.
In the case of θ0 = 0◦, a large vortex dipole is trapped in between the two flapping foils [see Fig. 5(c)].
This dipole possesses very strong vorticity intensity and induces an upward velocity. Besides that, a
series of weaker vortex dipoles which induce downward velocity are also found below the strongest
dipole. Unlike the dipoles in the ascending and descending states, all dipoles are now squeezed near
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)c()a(

(d)

(b)

FIG. 5. Wake structures corresponding to different locomotion states: (a) ascending, (b) descending,
(c) approximate hovering at θ0 = 0◦, and (d) approximate hovering at θ0 = 15◦. Vorticity contours and
streamlines are plotted for visualizing the vortical structures. The control parameters used in the simulations
are Aθ = 15◦, β = 0.5, d = 1.0L, and L0 = 0.2L for all cases and (a) Re = 300, Fr = 2.89, and θ0 = 0◦, (b)
Re = 100, Fr = 0.96, and θ0 = 0◦, (c) Re = 200, Fr = 1.92, and θ0 = 0◦, and (d) Re = 216, Fr = 2.07, and
θ0 = 15◦. Movies S1–S4 which show the animations of vortex structure evolution in the wakes corresponding
to (a)–(d) are available as Supplemental Material [27].

the centerline because the lateral components of the dipole-induced velocities are almost zero. In the
case of θ0 = 15◦, two large vortex cores are found outside the two flapping foils and the far wake
is clear of any concentrated vorticity [see Fig. 5(d)]. In the two cases above, the lingering of vortex
structures near the flyer can result in strong vortex-body interaction, which in turn has a critical
influence on the hovering performance.

Another distinct feature of the approximate hovering state is that its wake is susceptible to the
(left-right) symmetry-breaking instability. The occurrence of wake symmetry breaking eventually
leads to an irregular (or a chaoticlike) wake pattern as shown in Fig. 6. This instability is an intrinsic
property of the system and the symmetry breaking can be triggered by either physical or numerical
perturbations. Figure 7 shows the time histories of the vertical velocity and lateral force, with and
without the application of a physical perturbation. The physical perturbation considered here is a
Gaussian pulse of vertical force (which can be either positive or negative in sign). It can be seen that
the ascending and descending states can be recovered some time after the perturbation is applied
[see Figs. 7(a) and 7(b)], whereas the approximate hovering state cannot be recovered. For the
approximate hovering state, after a long-time simulation the tendency of falling can be clearly seen
and large lateral forces are also visible [see Figs. 7(c)–7(f)].

(a) (b) (c) (d) (e)

FIG. 6. Asymmetric wake structure corresponding to the approximate hovering state after a long-time
simulation at (a) t = 18T , (b) t = 20T , (c) t = 24T , (d) t = 28T , and (e) t = 32T . The control parameters are
the same as those for Fig. 5(c).
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FIG. 7. Time histories of the vertical velocities and lateral forces, with and without the application of physical
perturbations: (a) time history of the vertical velocity at the ascending state, (b) time history of the vertical velocity
at the descending state, (c) and (d) short- and long-time histories of the vertical velocity at the approximate
hovering state, and (e) and (f) short- and long-time histories of the lateral forces at the approximate hovering
state. The control parameters used in (a)–(c) are the same as those for Figs. 5(a)–5(c), respectively. The physical
perturbations imposed are Gaussian pulses of vertical force in the form of Fp = ±Af exp[−(t − tc)2/2τc

2],
which are shown in the inset of (a). The parameters in the Gaussian pulses of vertical force are Af = 5.0,
tc = 5.0, and τc = 0.05. The thin lines and thick lines in (a)–(d) represent the instantaneous vertical velocities
and the average vertical velocities over one flapping cycle, respectively. The thick lines in (e) and (f) represent
the instantaneous lateral forces.

From Figs. 7(e) and 7(f) it can also be seen that the wake symmetry breaking eventually occurs
after a long-time simulation even without any physical perturbation and the amplitude of the lateral
force developed is of the same order as those with the physical perturbations. In this scenario, the only
source of perturbation is the round-off error due to machine precision. (To avoid the grid-induced
asymmetry, special care is taken in the placement of the two foils on the background Eulerian grid.)
Further numerical experiments indicate that after the symmetry breaking is triggered, the evolution
of the lateral force becomes very sensitive to the numerical settings such as time step and grid width
(results not shown here for brevity). Thus, the so-called mesh-independent and time-step-independent
solutions are not achievable for these cases. For the purpose of avoiding uncertainty in evaluating the
terminal vertical velocity for the approximate hovering state, the starting and ending time points for
performing the averaging in Eq. (4) are selected to ensure that the periodicity in velocity has been
fully established already and the wake symmetry breaking has not been triggered yet.

D. Recoverability of the locomotion states under the free-flying condition

In this section, the recoverability of the locomotion states under the free-flying condition will be
explored. Unlike the constrained-flying cases, now the postural stability becomes a crucial factor in
determining the recoverability of the locomotion state. Like that pointed out in [22], the appropriate
placement of the center of gravity is essential for maintaining postural stability. The top-heavy
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FIG. 8. Response of a flyer at the ascending state under the free-flying condition to the application of a
physical perturbation: (a) trajectory of the center of gravity, (b) time history of the tilting angle, and (c) time
history of the tilting angular velocity. The change of color on the trajectory from light to dark represents the
increase of time. The arrows on the trajectory represent the orientations of the flyer. The control parameters
used are the same as those for Fig. 5(a). The physical perturbation applied is a Gaussian pulse of torque in the
form of Tp = −Atexp[−(t − tc)2/2τc

2], where At = 1.0, tc = 10.0, and τc = 0.05. Movie S5, which shows the
animation of vortex structure evolution in the wake, is available as Supplemental Material [27].

design is not desirable since it can easily lead to flipping over (postural instability). However, for an
object which hovers passively in oscillating flows, it has been found that the top-heavy arrangement
is intrinsically stable [15]. In the computational model of this paper, the center of gravity always
coincides with the geometric center. This is because the mass of the load is lumped into the mass of the
flapping foils. We study the postural stability of the flyer at different locomotion states by examining
its response to physical and numerical perturbations. The ascending and descending states are found
to be very robust against numerical perturbations. Thus, for the ascending and descending states, we
only focus on the flyer’s response to physical perturbation.

Figure 8 shows the response of an ascending flyer to a Gaussian pulse of torque. It can be seen that
after being perturbed at t = 10T , the tilting angle increases sharply and reaches its maximal value of
24◦ after an elapse of six flapping cycles. The tilting angle then gradually diminishes and approaches
zero after an elapse of another 12 flapping cycles. At this moment, the lateral displacement reaches
its maximal value of roughly four body lengths. Although small fluctuations in the tilting angle and
the tilting angular velocity are still observed afterward, it is reasonable to believe that the steadily
ascending state can eventually be recovered. It is also worth pointing out that the alignment of the
body orientation with the velocity vector (or the tangential vector along the trajectory) is clearly
revealed in Fig. 8. This “weathercocking” phenomenon has previously been observed in top-heavy
and bottom-heavy jellyfishlike flyers during ascending [22].

Figure 9 shows the response of a descending flyer to a Gaussian pulse of torque. The descending
flyer’s response is more complex than that of the ascending one and the descending state seems to be
irrecoverable after being perturbed at t = 5T . From the zigzag trajectory, we can see that the flyer has
experienced three sharp turns. During the first two turns, the flyer flips over by tilting more than 150◦
in the clockwise and counterclockwise directions, respectively. At the end of the simulation when
the flyer just finishes its third turn, the upright orientation is recovered. However, since a significant
negative angular velocity still exists at this time instant, the flyer may flip over again if the simulation
continues for an extra time. This motion of the flyer resembles the mixed fluttering and tumbling
motion that was previously observed in falling cards [28].
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FIG. 9. Response of a flyer at the descending state under the free-flying condition to the application of a
physical perturbation: (a) trajectory of the center of gravity, (b) time history of the tilting angle, and (c) time
history of the tilting angular velocity. The change of color on the trajectory from light to dark represents the
increase of time. The arrows on the trajectory represent the orientations of the flyer. The control parameters
used are the same as those for Fig. 5(b). The physical perturbation applied is a Gaussian pulse of torque in the
form of Tp = −Atexp[−(t − tc)2/2τc

2], where At = 1.0, tc = 5.0, and τc = 0.05. Movie S6, which shows the
animation of vortex structure evolution in the wake, is available as Supplemental Material [27].

Figure 10 shows the responses of a flyer at the approximate hovering state to a Gaussian pulse of
torque and to the numerical perturbation. From this figure we can see that both the applied physical
perturbation [Fig. 10(a)] and the numerical perturbation [Fig. 10(b)] can result in the breakdown of the
approximate hovering state. In both cases, the flyer experiences several sharp turns before the upright
orientation is finally restored. Although the postural stability is preserved after the perturbation, the
approximate hovering state is still irrecoverable in the sense that the locomotion state finally transits
from hovering into ascending. Interestingly, after examining several cases of approximate hovering,
with either a slightly positive or a slightly negative UT , the only outcome after the perturbations is the
transition from hovering to ascending (the transition from hovering to descending is never observed).
In the absence of physical perturbation, the spontaneous occurrence of wake symmetry breaking can
be regarded as the first stage during such a transition. When comparing with the constrained-flying
cases, we find that the lateral forces developed under the free-flying condition are much smaller in
magnitude. This can be explained by the fact that the free-flying condition actually allows the evasion
of the body-vortex collision and also mitigates the excessive accumulation of vorticity near the body.

Figure 11 shows the time histories of the vertical velocities for the two cases of Fig. 10. From
this figure it can be seen that after the upright posture of the flyer is almost restored (t > 55T ),
the ascending speeds for both cases are approximately 0.6. Intriguingly, this ascending speed can
also be achieved if the flapping frequency for the cases of Fig. 10 is slightly increased (by less than
10%). It is thus suggested that an ascending state with relatively small terminal speed can possibly
be achieved with different sets of kinematics.

Figure 12 shows the instantaneous vorticity fields corresponding to the free-flying cases after
physical perturbations. For the ascending case [Fig. 12(a)], the vorticity field looks very similar to
the steadily ascending case under the constrained-flying condition [Fig. 5(a)], despite the vortices
being arranged along a curved path. For the descending case [Fig. 12(b)], the vorticity field is
dissimilar to that of the steadily descending case under constrained-flying condition [Fig. 5(b)].
The vorticity field actually resembles that produced by two falling cards [28]. For the approximate
hovering case [Figs. 12(c)–12(e)], initially the vorticity field is the same as that under the
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FIG. 10. Responses of a flyer at the approximate hovering state under the free-flying condition to physical
and numerical perturbations: (a) trajectory of the center of gravity with a physical perturbation applied, (b)
trajectory of the center of gravity without the physical perturbation, (c) time histories of the tilting angles,
and (d) time histories of the tilting angular velocities. The change of color on the trajectory from light to
dark represents the increase of time. The arrows on the trajectory represent the orientations of the flyer. The
control parameters used are the same as those for Fig. 5(c). The enlargements of the early-time portions of
the trajectories are shown in the insets of (a) and (b). The physical perturbation applied is a Gaussian pulse of
torque in the form of Tp = −Atexp[−(t − tc)2/2τc

2], where At = 1.0, tc = 10.0, and τc = 0.05. In the absence
of physical perturbation, the transition from the approximate hovering state to the ascending state is triggered
by the numerical perturbation. Movies S7 and S8, which show the animations of vortex structure evolution in
the wakes corresponding to (a) and (b), respectively, are available as Supplemental Material [27].

constrained-flying condition. When the symmetry breaking sets in, the vorticity field first looks
like those shown in Fig. 6. After experiencing a few sharp turns (when the upright orientation is
restored), the vorticity field becomes similar to the one shown in Fig. 12(a).

FIG. 11. Time histories of the average vertical velocity over one flapping cycle, for the two approximate
hovering cases under the free-flying condition with and without the physical perturbation [corresponding to
Figs. 10(a) and 10(b)].

013102-13



XIANG ZHANG, GUOWEI HE, SHIZHAO WANG, AND XING ZHANG

FIG. 12. Instantaneous vorticity contours for the free-flying cases after (numerical or physical) perturba-
tions: (a) the ascending case of Fig. 8 at t = 28T , (b) the descending case of Fig. 9 at t = 30T , and (c)–(e) the
approximate hovering case of Fig. 10(a) at (c) t = 10T , (d) t = 24T , and (e) t = 46T .

IV. CONCLUSIONS

We numerically investigated the locomotion of a two-dimensional jellyfishlike flyer by solving
the Navier-Stokes equations together with the dynamics equations. We studied the influences of some
control parameters on the locomotion performance and examined the wake structures associated with
different locomotion states. The symmetry-breaking instability of the wake and the postural stability
of the flyer were also explored. These results provide us with some useful insights into the future
design of flapping-based micro air vehicles.

A systematic parametric study has been conducted under the constrained-flying condition where
the flyer is only allowed to move in the vertical direction. The dependence of the weight-supporting
capacity on some control parameters was studied. With the variations in parameter values, three
different locomotion states, namely, ascending, descending, and approximate hovering, were
identified. The wake structures for the ascending and descending states are characterized by two
columns of thrust-producing dipoles and two parallel drag-producing von Kármán vortex streets,
respectively. The wake structure corresponding to the approximate hovering state is characterized by
the large chunks of vorticity which linger near the flyer. The wake for the approximate hovering state
was found to be susceptible to the symmetry-breaking instability. The occurrence of wake symmetry
breaking can be attributed to the vorticity accumulation near the flyer due to the lack of a translation
velocity. We notice that an asymmetric wake was also reported in the swimming of a two-dimensional
jellyfish model when the Reynolds number exceeded 1000 [19]. Obviously, the physical mechanisms
behind these two types of wake symmetry breaking are not the same.

We also conducted several case studies to explore the postural stability of a flyer, with its center of
gravity located at the geometric center. The flyer’s responses to physical and numerical perturbations
were examined under the free-flying condition. The ascending state was found to be recoverable
after the application of a strong physical perturbation, although a large lateral displacement arises.
The descending state of the flyer is irrecoverable and it transits into a mixed fluttering and tumbling
motion which resembles that observed previously in falling cards. The approximate hovering state
is also irrecoverable, with or without a physical perturbation. For all cases studied in this work, the
approximate hovering state eventually transits into the ascending state with a relatively small terminal
speed. In the absence of physical perturbation, the spontaneous occurrence of the wake symmetry
breaking can be regarded as the first stage during such a transition.

The wake structures that emerge in this study have some similarities to those obtained by using
the inviscid vortex-sheet method [22]. The flyer’s capability of preserving postural stability during
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ascending and hovering is also consistent with the observations in [22]. An interesting finding in
this study is that symmetry breaking can spontaneously occur in the wake of a hovering flyer after a
long-time simulation, under constrained-flying or free-flying conditions. Due to the limitation of the
numerical method, the inviscid simulation in [22] is not capable of predicting the long-time behavior
of the wake. The finding of the present study regarding the wake symmetry breaking remains to be
experimentally confirmed, using the flying tests together with the flow visualization technique.

The jellyfishlike flapping strategy can produce a vertical force which is comparable to those
produced by the insectlike flapping strokes. If the self-righting capability for maintaining postural
stability is also taken into account, the jellyfishlike flapping strategy is promising in the future design
of ornithopters. However, the irrecoverability of the approximate hovering state after perturbations
can be a potential pitfall. Perhaps this also explains why such a strategy has not been adopted by
insects to perform hovering flights. For a jellyfishlike flyer to maintain a stable hovering position
for a long time, some active control measures, such as the adjustments of flapping frequency and
amplitude, have to be taken.

One apparent difference exists between the hovering stability of the two-dimensional flyer studied
here and that of the experimental device in [13]. In the experiment of [13], the device can wander
around in a horizontal plane and keep a relatively constant height. We believe that this apparent
difference can probably be attributed to the three-dimensional effect, i.e., the device in the experiment
is able to evade the vortices generated during hovering while the hovering two-dimensional flyer is
unavoidably subjected to strong vortex-body interactions.

There are several avenues for future research. The influence of the location of the center of gravity
(such as the bottom-heavy or top-heavy designs) on the postural stability remains unexplored. The
power consumption and efficiency and the effect of passive flexibility on hovering performance also
need to be investigated. To aid the practical design, the weight-supporting capability and postural
stability of a more realistic three-dimensional model should be assessed.
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APPENDIX A: CODE VALIDATION

To check the accuracy of the Navier-Stokes solver in handling moving boundary problems, we
simulate the flow around one cross section of a dragonfly wing during hovering flights. The idealized
kinematics shown in Fig. 13 can be prescribed as

[x(t),y(t)] = A0

2
[1 − cos(2πf t)][1,0], (A1a)

α(t) = π

2
− B sin(2πf t). (A1b)

Here [x(t),y(t)] is the location of the center of the chord, α(t) is the orientation angle of the wing with
respect to the x+ direction, f is the frequency, and A0 and B are the amplitudes of the translation and
rotation, respectively. The control parameters in the simulation are f = 1, B = π/4, and A0 = 2.5c.
The Reynolds number based on the maximum velocity of the wing is defined as Rem = Umaxc/ν =
πA0f c/ν. We compare our result at Rem = 150 with the existing numerical data in Refs. [1,25].
The time histories of the vertical force coefficient CV and the horizontal force coefficient CH are
shown in Fig. 14.
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FIG. 13. Schematic diagram for the idealized kinematics of one cross section of a dragonfly’s wing. The
solid line represents the cross section and the closed circle represents the leading edge. The arrow denotes the
direction of the translational motion during each half stroke.

Overall, the result of the present simulation agrees well with previous numerical studies, except
for some differences near the crests and troughs when compared with Ref. [25] and a phase lag
when compared with Ref. [1]. These discrepancies are attributed to the differences in the numerical
models. The numerical model considered here is a thin rigid plate, whereas the model in [25] is a
rigid ellipse and the model in [1] is a thin flexible plate.

APPENDIX B: GRID AND TIME-STEP CONVERGENCE STUDY

To test the convergence of the solutions to the refinement of grids, two cases corresponding
to the ascending and descending states are simulated by using three effective mesh resolutions,
where the finest grids near the flyer are 0.04L,0.02L and 0.01L in spacing, respectively. The control
parameters for the ascending case are Re = 300, Fr = 2.89,β = 0.5,Aθ = π/12, θ0 = 0◦,d = 1.0L,

Ref. [1] Ref. [25]

FIG. 14. Comparisons of the present result with the data from previous numerical simulations: (a) time
histories of the vertical force coefficient CV and (b) time histories of the horizontal force coefficient CH .

013102-16



LOCOMOTION OF A BIOINSPIRED FLYER POWERED BY …

FIG. 15. Grid and time-step convergence behaviors in the time histories of the vertical speed U and the
vertical force coefficient CV : (a) grid convergence behaviors for the ascending state, (b) grid convergence
behaviors for the descending state, and (c) time-step convergence behaviors for the ascending state.

and L0 = 0.2L. For the descending case, the parameters used are Re = 100, Fr = 0.96, β = 0.5,
Aθ = π/12, θ0 = 0◦, d = 1.0L, and L0 = 0.2L.

Figures 15(a) and 15(b) show the time histories of the vertical force coefficient CV and the vertical
speed U which are obtained at different mesh resolutions and the grid convergence behaviors can be
clearly seen from this figure. Since the difference between the solutions obtained with �x = 0.02L

and �x = 0.01L is sufficiently small, the grid width of �x = 0.02L is used in the simulations. For
cases with higher Re numbers, finer grids are used and similar tests are also conducted to ensure the
grid convergence of the solutions.

In the tests above, the time step is fixed to �t = 0.001T. Here simulations are also conducted to
test the effect of the time-step size on the solution. Figure 15(c) shows the time histories of the vertical
force coefficient CV and the vertical speed U for the ascending case, which are obtained at three
time-step sizes of 0.002T, 0.001T, and 0.0005T (the grid spacing is fixed to �x = 0.02L). It can be
seen that �t = 0.001T is sufficient to obtain a time-step-independent solution. In the simulations of
this study, �t = 0.001T is used for the ascending and descending cases. Since the stability property
of the approximate hovering cases is very sensitive to the numerical settings, �t = 0.0005T is used
to capture the dynamics more precisely.
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