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Abstract—Data-driven modeling plays an increasingly im-
portant role in different areas of engineering. For most of
existing methods, such as genetic programming (GP), the
convergence speed might be too slow for large scale prob-
lems with a large number of variables. Fortunately, in many
applications, the target models are separable in some sense.
In this paper, we analyze different types of separability and
establish a generalized separable model (GSM). In order to get
the structure of the GSM, a multi-level block search method
is proposed, in which the target model is decomposed into a
number of blocks, further into minimal blocks and factors.
Compare to the conventional GP, the new method can make
large reductions to the search space. The minimal blocks and
factors are optimized and assembled with a global optimization
search engine, low dimensional simplex evolution (LDSE). An
extensive study between the proposed method and a state-of-
the-art data-driven fitting tool, Eureqa, has been presented
with several man-made problems. Test results indicate that the
proposed method is more effective and efficient under all the
investigated cases.
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I. INTRODUCTION

Data-driven modeling has emerged as a powerful tech-

nique in different areas of engineering, such as industrial

data analysis [9], circuits analysis and design [13], signal

processing [14], system identification [5], etc. Data-driven

modeling aims to find a function that best explains the

relationship between independent variables and the objec-

tive value based on a given set of sample data. Among

the existing methods, genetic programming (GP) [7] is a

classical approach. GP can get an optimal solution provided

that the computation time is long enough. However, the

computational cost of GP for a large scale problem is still

very expensive. Hence, how to use a appropriate method to

solve such problem is considered as a kaleidoscope in this

research field [1].

In many scientific or engineering problems, the target

model are separable. Luo et al. [8] have presented a divide-

and-conquer (D&C) method for GP. The authors indicated

that the solving process could be accelerated by detecting

the correlation between each variable and the target function

[3]. In [8], a special method, bi-correlation test (BiCT),

was proposed to divide a concerned target function into

a number of sub-functions. Compared to conventional GP,

D&C method could reduce the computational effort by

orders of magnitude.

In this article, different types of separability are discussed,

and a generalized separable model (GSM) is established. In

order to get the structure of the GSM, a multi-level block

search method is proposed, in which the target model is

decomposed into a number of blocks, further into minimal

blocks and factors. The new method is an improved version

of [8] and [2]. The performance of the proposed method is

compared with the results of Eureqa, which is a state-of-the-

art data-driven fitting tool. Numerical results show that the

proposed method is effective, and is able to recover all the

investigated cases rapidly and reliably.

II. TYPES OF SEPARABILITY

In this section, three examples of real-world problems

are given as follows to illustrate several common types of

separability in practical problems.

Example 1. When developing a rocket engine, it is crucial
to model the internal flow of a high-speed compressible gas
through the nozzle. The closed-form expression for the mass
flow through a choked nozzle is

ṁ =
p0A

∗
√
T0

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

. (1)

In Eq. (1), the five independent variables, p0, T0, A∗, R and
γ are all separable. Eq. (1) can be called a multiplicatively
separable model, which can be re-expressed as follows

ṁ = f (p0, A
∗, T0, R, γ)

= ϕ1 (p0)× ϕ2 (A
∗)× ϕ3 (T0)× ϕ4 (R)× ϕ5 (γ) .

(2)

Example 2. In aircraft design, the lift coefficient of a whole
aircraft can be expressed as

CL = CLα (α− α0) + CLδeδe
SHT

Sref
, (3)

where the variable CLα, CLδe , δe, SHT and Sref are sepa-
rable. The variable α and α0 are not separable, but their
combination (α, α0) can be considered separable. Hence,
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Eq. (3) can be re-expressed as

CL = f (CLα, α, α0, CLδe , δe, SHT, Sref)

= ϕ1 (CLα)× ϕ2 (α, α0)

+ ϕ3 (CLδe)× ϕ4 (δe)× ϕ5 (SHT)× ϕ6 (Sref) .

(4)

Example 3. The flow past a circular cylinder is a classical
problem in fluid dynamics. A valid stream function for the
inviscid, incompressible flow over a circular cylinder of
radius R is

ψ = (V∞r sin θ)
(
1− R2

r2

)
+

Γ

2π
ln
r

R
, (5)

which can be re-expressed as

ψ = f (V∞, sin θ,R, r,Γ)

= ϕ1 (V∞)× ϕ2 (sin θ)× ϕ3 (r,R)

+ ϕ4 (Γ)× ϕ5 (r,R) .

(6)

Eq. (5) can be considered as a qusi-separable model.
Note that the variable r and R appear twice. In other
words, variable r and R have two sub-functions, namely
ϕ3 (r,R) =

(
1−R2

/
r2

) · r and ϕ5 (r,R) = ln (r/R).

The models of Example 1 and 2 have been well studied

in [8] and [2], respectively. The authors indicated that

detecting the correlation between each variable and the target

function could accelerate the solving process. This article

aims to establish the mathematical model of a qusi-separable

function, which is given in Example 3.

III. GENERALIZED SEPARABLE MODEL

The definition of a generalized separable model is given

as follows.

Definition 1. The Generalized separable model f (X) with
n continuous variables X = {xi : i = 1, 2, · · · , n}, (f :
R

n �→ R, X ⊂ Ω ∈ R
n, where Ω is a closed bounded

convex set, such that Ω = [a1, b1]× [a2, b2]× · · · × [an, bn])
is defined as

f (X) = f
(
Xr, X̄r

)
= c0 +

m∑
i=1

ciϕi

(
Xr

i , X̄
r
i

)

=
m∑
i=1

ciω̃i (X
r
i ) ψ̃i

(
X̄r

i

)

= c0 +
m∑
i=1

ci

pi∏
j=1

ωi,j

(
Xr

i,j

) qi∏
k=1

ψi,k

(
X̄r

i,k

)
,

(7)

where the variable set Xr = {xi : i = 1, 2, · · · , l} is a
proper subset of X , such that Xr ⊂ X , and the cardinal
number of Xr is card (Xr) = l. X̄r is the complementary
set of Xr in X , i.e. X̄r = �XXr, where card

(
X̄r

)
= n− l.

Xr
i is the subset of Xr, such that Xr

i ⊆ Xr, where
card (Xr

i ) = ri. Xr
i,j ⊆ Xr

i , such that
⋃pi

j=1X
r
i,j = Xr

i ,⋂pi

j=1X
r
i,j = ∅, where card

(
Xr

i,j

)
= ri,j , for i =

1, 2, · · · ,m, j = 1, 2, · · · , pi and
∑pi

j=1 ri,j = ri. X̄r
i ⊂ X̄r

(X̄r
i 	= ∅), such that

⋃m
i=1 X̄

r
i = X̄r,

⋂m
i=1 X̄

r
i = ∅,

where card
(
X̄r

i

)
= si, for si � 1,

∑m
i=1 si = n − l.

X̄r
i,k ⊆ X̄r

i , such that
⋃qi

k=1 X̄
r
i,k = X̄r

i ,
⋂qi

k=1 X̄
r
i = ∅,

where card
(
X̄r

i,k

)
= si,k, for k = 1, 2, · · · , qi and∑qi

k=1 si,k = si. Sub-functions ϕi, ω̃i, ψ̃i, ωi,j and ψi,k are
scalar functions, such that ϕi : R

ri+si �→ R, ω̃i : R
ri �→ R,

ψ̃i : R
si �→ R, ωi,j : R

ri,j �→ R and ψi,k : Rsi,k �→ R,
respectively. c0, c1, · · · , cm are constant coefficients.

The function structure of GSM is defined as follows.

Definition 2. In Eq. (7), the variables belong to Xr and X̄r

are called repeated variables and non-repeated variables,
respectively. The sub-function ϕi (·) is called the i-th mini-
mal block of f (X), for i = 1, 2, · · · ,m. Any combination
of the minimal blocks is called a block of f (X). The sub-
functions ωi,j (·) and ψi,k (·) are called the j-th and k-th
factors of the repeated variables and non-repeated variables
in i-th minimal block ϕi (·), respectively, for j = 1, 2, · · · , pi
and k = 1, 2, · · · , qi.

IV. SEPARABILITY DETECTION AND MODEL

DETERMINATION

In order to detect the separability of the GSM, we aim to

divide GSM into a suitable number of minimal blocks, and

further into factors as the typical Example 3. This technique

can be considered as an improved version of [8] and [2].

The modeling process of GSM mainly includes two parts,

namely inner optimization and outer optimization. The inner

optimization will be invoked to determine the function model

and coefficients of the factors ωi,j

(
Xr

i,j

)
and ψi,k

(
X̄r

i,k

)
.

Fortunately, many state-of-the-art optimization techniques,

e.g., parse-matrix evolution [11], low dimensional simplex

evolution [10], artificial bee colony programming [6], etc.

can all be easily used to optimize the factors. Then, the

optimized factors of each minimal block are multiplied

together to produce minimal blocks. The outer optimization

aims at combining the minimal blocks together with the

proper global parameters ci. The whole process for modeling

a GS system can be briefly described as follows:

1) (Minimal block detection) Partition a GS system into

a number of minimal blocks with all the repeated

variables fixed;

2) (Factor detection) Divide each minimal block into

factors;

3) (Factor determination) Determine the factors by em-

ploying an optimization engine;

4) (Global assembling) Combine the optimized factors

into minimal blocks multiplicatively, further into an

optimization model linearly with proper global param-

eters.

The flowchart of the modeling process could be briefly

illustrated in Fig. 1. The proposed technique is described

201202



with functions with explicit expressions. While in practical

applications, no explicit expression is available. In fact, for

data-driven modeling problems, a surrogate model [4] of

black-box type could be established as the underlying target

function in advance.

Figure 1. Flowchart of modeling process.

V. NUMERICAL RESULTS AND DISCUSSION

In our implementation, a kind of global optimization

method, low dimensional simplex evolution (LDSE) [10],

is chosen as the optimization engine. LDSE is a hybrid evo-

lutionary algorithm for continuous global optimization. The

performances including ‘structure optimization’ and ‘coef-

ficient optimization’ capabilities of the proposed method

are tested by comparing with a state-of-the-art software,

Eureqa [12], which is a data-driven fitting tool based on

genetic programming (GP). Eureqa was developed at the

Computational Synthesis Lab at Cornell University by H.

Lipson. 10 test cases are taken into account.

The calculation conditions are set as follows. The number

of sampling points for each independent variable is 200. The

regions for cases 1-5 and 7-10 are chosen as [3, 3], while case

6 is [1, 3]. The control parameters in LDSE are set as follows.

The upper and lower bounds of fitting parameters is set as

50 and 50. The population size Np is set to Np = 10+10d,

where d is the dimension of the problem. Sequence search

and optimization method is suitable for global optimization

strategy. The search will exit immediately if the mean square

error is small enough (MSE � εtarget), and the tolerance

(fitting error) is εtarget = 10−6. In order to reduce the effect

of randomness, each test case is executed 20 times.

The computing time (CPU time) consists three parts,

t = t1 + t2 + t3, where t1 is for the separability detection,

t2 for factors modeling, and t3 for global assembling. In

[8], authors have demonstrated that both the separability de-

tection and function recover processes are double-precision

operations and thus cost much less time than the factor

determination process. That is, t ≈ t2. It is very easy to see

that the computational efficiency of the proposed method is

higher than Eureqa’s. Note that our method is executed on

a single processor, while Eureqa is executed in parallel on

8 processors.

VI. CONCLUSION

In this article, different types of separability are discussed,

and a generalized separable model (GSM) is established. In

order to get the structure of the GSM, a multi-level block

search method is proposed, in which the target model is

decomposed into a number of blocks, further into minimal

blocks and factors. Compare to the conventional GP, the new

method can make large reductions to the search space. The

proposed method is an improved version of [8] and [2]. The

minimal blocks and factors are optimized and assembled

with a global optimization search engine, low dimensional

simplex evolution (LDSE). The proposed method is tested

on 10 man-made test cases. Remarkable performance is

concluded after comparing with a state-of-the-art data-driven

fitting tool, Eureqa. Numerical results show the algorithm is

effective, and can get the target function more rapidly and

reliably.
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