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This study investigates the plastic behavior of the Al0.5CoCrCuFeNi high-entropy alloy at cryogenic

temperatures. The samples are uniaxially compressed at 4.2 K, 7.5 K, and 9 K. A jerky evolution of

stress and stair-like fluctuation of strain are observed during plastic deformation. A scaling relation-

ship is detected between the released elastic energy and strain-jump sizes. Furthermore, the dynami-

cal evolution of serrations is characterized by the largest Lyapunov exponent. The largest Lyapunov

exponents of the serrations at the three temperatures are all negative, which indicates that the dynami-

cal regime is non-chaotic. This trend reflects an ordered slip process, and this ordered slip process

exhibits a more disordered slip process, as the temperature decreases from 9 K to 4.2 K or 7.5 K.

Published by AIP Publishing. https://doi.org/10.1063/1.5004241

High-entropy alloys (HEAs) are new solid-solution alloys

that contain five or more principal elements in equimolar or

near-equimolar ratios and tend to have simple face-centered

cubic (FCC), body-centered cubic (BCC), and hexagonal-

closed-packed (HCP) structures.1–4 It has been reported that

HEAs exhibit many attractive properties, such as good ductil-

ity, high hardness, strong oxidation resistance, wonderful cor-

rosion resistance, superior resistance to temper softening,

super wear resistance, strong fatigue, and fracture resis-

tance.5–23 These remarkable properties make HEAs suitable

advanced structural materials for many industries, including

aerospace and ocean engineering.

For applications and basic materials sciences, it is

important to investigate the performance of HEAs in differ-

ent environments. The mechanical properties of HEAs are

usually tested at different temperatures or strain rates, and in

certain parameter regimes, serration behavior is found.2

Serrations can be defined as a saw-like appearance of the

stress-strain curves, a row of sharp or tooth-like jumps in

stress or strain. One or two large and a number of smaller

serrations were found on stress-strain curves during the plas-

tic deformation at the temperature of 77 K for AlCoCrFeNi

HEA.24 Zhang et al. conclude that at lower temperatures, the

serrations are more visible than at higher temperatures, and

the serrations at a strain rate of 10�3 s�1 seem to be greater

than those at a strain rate of 10�1 s�1 for the AlxCoCrCuFeNi

HEAs under compression.3 Carroll et al. propose a model

that predicts the statistics of the serrations and identify the

serrations as types-A, B, and C Portevin-Le Chatelier (PLC)-

bands as the temperature varies from 275 �C to 700 �C for

the CoCrFeMnNi HEA.25

Most of the published serrations stem from experiments

at room temperature or elevated temperatures. Here, we study

serrations at cryogenic temperatures where the deformation

mechanisms may be different. Antonaglia et al.26 found that

the largest stress drops of serrations decrease as the tempera-

ture increases from 7 K to 9 K for the Al0.5CoCrCuFeNi HEA.

A more detailed understanding of the serrated flow at these

temperatures has been missing so far. In this paper, we inves-

tigate the plastic dynamics of the Al0.5CoCrCuFeNi HEA for

cryogenic temperatures ranging from 4.2 K to 9 K. Jerky flows

(serrated flows) and stair-like fluctuations are found during the

evolution of stress and strain, respectively. The complex infor-

mation of plastic deformation is revealed by statistical and

dynamical analysis and modeling.

The samples, an Al0.5CoCrCuFeNi HEA, are fabricated

by arc-melting the mixtures of constituent metals (Al, Cu, Cr,

Co, Fe, and Ni) with purity higher than 99.9 weight percent

(wt. %) in a Ti-gettered high-purity argon atmosphere. The

process of melting and solidification is repeated at least five

times to obtain chemical homogeneity. Then, the molten alloy

is drop-cast into a water-cooled copper mold to form cylindri-

cal rods with a diameter of 2 mm and a length of 50 mm. The

specimens for compression tests are prepared by cutting the

rod into 4 mm pieces in length. Both compression ends are pol-

ished to be parallel. The specimens are uniaxially compressed

at a strain rate of 4� 10�4/s in a liquid helium environment,

which are 4.2 K, 7.5 K, and 9 K in the present study by cooling

the specimens with the helium steam. Loading of the
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specimens is terminated when deformation was �20%–30% in

the whole temperature range studied.

Stress and strain signals are obtained from the uniaxial

compression tests. Figure 1 shows the strain-time, stress-

time, and stress-strain curves at 4.2 K, 7.5 K, and 9 K, respec-

tively. To clearly observe the fluctuations of strain and stress

signals, we magnify the curves in Fig. 1. The magnified

strain-time, stress-time, and stress-strain curves at 4.2 K are

shown in Fig. 2 as an example.

For the strain-time curve, we find that it has stair-like

fluctuations, see Fig. 2(a). By taking a close look, small fluctu-

ations are detected on the horizontal direction, see a(i)! b(i)

in the ith large serration as an example. It means that the

Al0.5CoCrCuFeNi HEA undergoes small deformation with an

elastic nature, and the elastic energy is stored during this

stage. On the vertical direction of the stair-like structure,

b(i)! a(iþ 1), the suddenly increasing deformation is a plas-

tic event that releases some of the stored elastic energy. So,

there are discontinuities in the elastic-energy storage and

release during the deformation from a(i) to a(iþ 1).

Projecting the stair-like fluctuation of strain on the evolu-

tion of stress, we obtain the corresponding serrated flow, see

Fig. 2(c). As is known, the stress fluctuations in the stress-

strain curve are accompanied by changes in the elastic energy

in the solid. Hence, it is a useful approach to investigate serra-

tion behavior by analyzing the changes in the elastic energy.

The unit of stress is MPa¼N/m2¼ J/m3. The unit of strain is

m/m as the strain signal is recorded by the variation of the

length of the material, divided by the length of the sample.

From a(i) to b(i), we denote the stress increase with S1(i)
[MPa] and the strain change with d1(i). During this time, theFIG. 1. Strain-time, stress-time, and stress-strain curves at 4.2 K, 7.5 K, and 9 K.

FIG. 2. The amplified strain-time, stress-time, and stress-strain curves at

4.2 K.

251905-2 Guo et al. Appl. Phys. Lett. 111, 251905 (2017)



elastic energy is accumulated, i.e., the elastic energy accumu-

lates when the material undergoes small deformation, denot-

ing the average accumulated energy as

EacðiÞ ¼ jS1ðiÞ � d1ðiÞ � Vj=2; (1)

where V is the volume of the sample. From b(i) to a(iþ 1),

the strain suddenly increases, the stress sharply decreases,

and the accumulated elastic energy is released during this

process. The stress decreases by S2(i) [MPa], the correspond-

ing strain change is d2(i), and the released energy is

EreðiÞ ¼ jS2ðiÞ � d2ðiÞ � Vj=2: (2)

Figure 3(a) briefly shows the calculation of the accumulated

elastic energy and released elastic energy. The material exhib-

its plastic deformation under compression, and strain increases,

corresponding to the stress decrease. Then, we consider the

stress drop, S2, which should be a function of the correspond-

ing strain-jump size, d2, i.e., S2¼ S2(d2). With Eq. (2), we cal-

culate the released energy and strain variation, respectively,

and plot the power-law fit of the relation, see Fig. 3(b). Then,

we find that Ere satisfies the scaling behavior, Ere � dj
2, see

Table I for the values of j at different temperatures. It

can be seen that the values of j are approximately equal to 2,

as is to be expected from elasticity theory. In fact, according

to the generalized Hooke’s law, S2 and d2(i) should satisfy

S2¼ k� d2, where k is the elastic coefficient. Recalling the def-

inition of the released energy, we have the formula of

Ere � d2
2. Our experimental results are consistent with this

prediction.

To extract more complex underlying information, we

use tools from the chaotic time-series analysis to investigate

the stress signal and characterize the dynamic behavior of

serrations.

The evolution of stress is determined by the microstruc-

ture, slip form of slip bands, and other properties. Thus, the

complex information about those properties is covered by this

stress-evolution process. The property of the original system

can be obtained through analyzing the evolution of the stress.

According to the embedding dimension theorem developed by

Takens et al.,27,28 a time series can be embedded into a high

dimensional space by the delay-coordinate technique. This

high dimensional space is known as the reconstructed phase

space, and the trajectory in the new phase space is diffeomor-

phic to the track in the original system.

Let a time series, x1; x2; x3;…; xN , be embedded into an

m-dimensional phase space by delay vectors. In the recon-

structed phase space, a point is given as

YðtÞ ¼ ðxt; xtþs; xtþ2s;…; xtþðm�1ÞsÞ;
t ¼ 1; 2;…;N � ðm� 1Þs; (3)

where m is the embedding dimension, s is the time delay, m
and s are the positive integers. To completely illustrate the

attractor in its space, the choice of the time delay, s, and

embedding dimension, m, should be chosen appropriately. If

s is too small, xs and xtþs cannot be separated; and if s is too

large, some evolution information will be lost, i.e., xs and

xtþs will be less correlated. The new space cannot accurately

reflect the evolution rules about the attractor. If m is too

small, the attractor cannot be completely expanded, and a

large m will increase the computational work.

In this paper, the time delay is calculated by the mutual

information method.29 The mutual information between the

times, t and tþ s, is defined as

IðX; sÞ ¼
XN�s

t¼1

Pðxt; xtþsÞlog2

Pðxt; xtþsÞ
PðxtÞPðxtþsÞ

� �
; (4)

where X is a time series, fxtg; PðxtÞ;PðxtþsÞ, and P(xt, xtþs)

are the probabilities and joint probability of xt and xtþs appear-

ing in the time series, respectively. For a given time series,

{xt}, the mutual information, I, is only dependent on s, i.e., I(s).

I(s) reflects the correlation between {xt} and {xtþs}. When I(s)

first reaches its local minimum value, the corresponding time

delay, s0, is the optimal time delay to reconstruct the phase

space.29 Denote the acquisition time of the stress signal by h,

then the true time corresponding to s0 is st¼ s0� h.

For example, Fig. 4(a) shows the mutual information,

I(s), as a function of time delay, s, and the suitable time

FIG. 3. (a) Illustration of the stress increase, S1, the stress drop, S2, the strain

changes, d1, and d2, the accumulated energy, Eac, and the released energy,

Ere, on a large serration. (b) Power-law fit of the relation between the strain

variation, d2, and released energy, Ere, at 4.2 K, 7.5 K, and 9 K, respectively.

TABLE I. The values of j at 4.2 K, 7.5 K, and 9 K.

Temperature

Parameter 4.2 K 7.5 K 9 K

j 2.020 2.015 2.010

251905-3 Guo et al. Appl. Phys. Lett. 111, 251905 (2017)



delay, s0¼ 9, at 7.5 K. The values of s0, h, and st at different

temperatures are shown in Table II. Then, we focus on the

mean time intervals of large serrations, tM, and the frequency

of the large avalanches, v¼ 1/tM. Comparing the values of tM
and v to s0 at different temperatures (see Table II), we find

that st has an opposite change tendency with tM but the same

change tendency with v. So, st may be positively related to v.

Furthermore, the size of the resulting time delay, s0, reflects

the degree of correlations among the slip bands, during the

stress evolution. The smaller the optimal time delay, the

stronger the correlation that the slip bands have.

The embedding dimension is computed by the Cao

method.30 For a point

YiðtÞ ¼ ðxt; xtþs; xtþ2s;…; xtþðm�1ÞsÞ;

in the m-dimensional space, denotes its nearest neighbor

point (in the sense of Euclid Norm) by

Y�i ðtÞ ¼ ðx�t ; x�tþs; x
�
tþ2s;…; x�tþðm�1ÞsÞ:

The distance between these two points is dm
i ¼ jjYiðtÞ

�Y�i ðtÞjjðmÞ. While the embedding dimension increases to

mþ 1, the distance becomes dmþ1
i ¼ jjYi ðtÞ � Y�i ðtÞjjðmþ1Þ.

Let aði;mÞ ¼ dm
i

dmþ1
i

, where dm
i is the distance in m dimensional

space, and dmþ1
i is the distance in mþ 1 dimensional space.

a(i, m) reflects the change of distance with increasing the

dimension of phase space. Then, taking the average over all

points in the phase space, we have AðmÞ ¼ 1
N�ðm�1ÞsPN�ðm�1Þs

i¼1 aði;mÞ and A�ðmÞ ¼ 1
N�ðm�1Þs

PN�ðm�1Þs
i¼1 jxiþms

�x�iþmsj. The change of the average distance is defined as

E1ðmÞ ¼ AðmÞ
Aðm�1Þ and E2ðmÞ ¼ A�ðmÞ

A�ðm�1Þ, which are functions of

the embedding dimension, m. We obtain the embedding

dimension, m0, when E1(m) tends to be steady and E2(m)

approaches 1. Figure 4(b) shows E1(m) and E2(m) as a func-

tion of the embedding dimension, m, and the optimal embed-

ding dimension, m0¼ 12, is obtained at 7.5 K. The embedding

dimension, m, is the dimension of the reconstructed phase

space. The appropriate embedding dimensions at 4.2 K and

9 K are shown in Table II.

After reconstructing the phase space, we calculate the

largest Lyapunov exponent (LLE) of the stress signal, which

quantifies the rate of divergence of the trajectories in the

phase space. It reflects how the orbit moves together or apart

with the evolution of the stress signal. A positive LLE would

suggest that the dynamic follows chaotic behavior, while a

negative LLE indicates a stable state. Here, we use Wolf’s

method to calculate the largest Lyapunov exponent.31–35 We

take an initial point, Y (t0), and its nearest neighbor point,

Y�0ðt0Þ, in the reconstructed phase space. Then, the distance

between these two points is L0 ¼ jYðt0Þ � Y�0ðt0Þj. Tracking

the evolution of these two points till time, t1, the two points

evolve to be Y(t1) and Y�0ðt1Þ, and the distance, L0, changes

to be L00 ¼ jYðt1Þ � Y�0ðt1Þj > x, where x is a given con-

stant, which is slightly larger than the minimum distance of

each two points in the reconstructed phase space. At the

time, t1, Y�0ðt1Þ may not be the nearest neighbor point of

Y (t1). Thus, we find another point, Y�1ðt1Þ, which is the near-

est neighbor point to Y(t1). The distance between these two

points is L1 ¼ jYðt1Þ � Y�1ðt1Þj, and we set the angle between

L00 and L1 as small as possible to ensure that the influence on

orbit evolution is small, when we choose the nearest neigh-

bor point. Then, tracking the evolution to obtain L01 and

repeating the above process until the end of the time series,

we obtain the number of these iterations, K. Here, we have

Li ¼ jYðtiÞ � Y�i ðtiÞj; L0i ¼ jYðtiþ1Þ � Y�i ðtiþ1Þj;
i ¼ 0; 1;…;K: (5)

FIG. 4. (a) The mutual information, I(s), as a function of the time delay, s,

at 7.5 K. The inset shows the magnification near s¼ 9. (b) E1(m) and E2(m)

as a function of the embedding dimension, m, at 7.5 K.

TABLE II. The optimal time delay, s0, acquisition time, h, true time corre-

sponding to s0, st, mean time interval of large serrations, tM, frequency of

large avalanches, v, optimal embedding dimension, m0, and largest

Lyapunov exponent, k, at 4.2 K, 7.5 K, and 9 K.

Temperature

Parameter 4.2 K 7.5 K 9 K

s0 26 9 9

h (s) 0.145 0.150 0.130

st (s) 3.77 1.35 1.17

tM (s) 5.2834 5.6479 8.4823

v (Hz) 0.1893 0.1771 0.1179

m0 6 12 16

k �7.3420e-4 �4.4502e-4 �0.0197

251905-4 Guo et al. Appl. Phys. Lett. 111, 251905 (2017)



The largest Lyapunov exponent is

k ¼ 1

tK � t0

XK

i¼0

ln
L0i
Li
: (6)

A positive value of k reflects that the dynamical behav-

ior of the serrated flow is chaotic, the orbits in the phase

space move apart, and the evolution of orbits is long-range

unpredictable. A chaotic system is sensitive to the initial

point, and the system is unstable. Projecting a chaotic system

onto a one-dimensional stress signal, the evolution of the

stress signal presents the diffeomorphism to the development

of orbits in a chaotic system. Hence, the serrations under a

chaotic regime appear disordered because the orbit in the

chaotic system spreads apart.

A negative value of k indicates that the dynamic behav-

ior is stable, and the trajectories in the phase space move

together. The serrations in a stable dynamical regime appear

ordered as the orbit in the stable system is convergent. The

appearance of slip bands can be reflected by the evolution of

the serrated flow. Thus, the slip dynamics of plastic deforma-

tion under the stable regime is ordered.

The values of the largest Lyapunov exponents at differ-

ent temperatures are shown in Table II. The values are nega-

tive, but the moduli of the values at 4.2 K and 7.5 K are very

small, apparently approaching zero. From these values, we

can say that the dynamic regime of the stress evolution is sta-

ble, and the slip form of plastic deformation is ordered at

9 K. Remarkably at 4.2 K and 7.5 K, the stability of the sys-

tem weakens, and the slip dynamics appears to tend towards

being disordered.

In summary, serrations and stair-like fluctuations are

found in the evolution of stress and strain, respectively. A

scaling relationship between the released elastic energy and

strain-jump sizes is detected by statistical analysis and

modeling. The dynamical regimes of the serration behavior

at 4.2 K, 7.5 K, and 9 K are characterized by the largest

Lyapunov exponents (negative), which shows that the

dynamics are stable, and the slip process of the plastic defor-

mation is ordered. Remarkably, this stability weakens and

the slip process has a trend towards being disordered when

the temperature changes from 9 K to 7.5 K or 4.2 K.
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