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Based on the concepts of niche count and crowding distance, a modified multi-objective particle swarm optimization
(MPSO) is introduced. The niche count and crowding distance are used to determine the globally best particle across four
test cases using an external file. A comparative analysis was carried out between MPSO and non-dominated sorting multi-
objective adaptive genetic algorithms, both real-coded and binary-coded. The results show that MPSO based on the crowding
distance is best for getting the Pareto front, especially for problems with high-dimensional and non-continuous Pareto fronts.
In order to verify the efficiency of MPSO in solving engineering problems, the optimal design of the aerodynamic nose shape
of high-speed trains was undertaken using a modified vehicle modeling function (MVMF) parametric method. Taking the
aerodynamic drag of the whole train (Cd) and the aerodynamic lift of the trailer car (Cl) as the optimization goals, the Krig-
ing surrogate model was introduced to reduce the computational time, and the MPSO based on crowding distance was used
to find the Pareto front. The optimization results show that MPSO is efficient at getting the Pareto front; compared to the
original shape, the Cd and Cl of the optimal shape are reduced by 1.6% and 29.74%, respectively.

Keywords: multi-objective particle swarm optimization; crowding distance; VMF parameterization; aerodynamic shape;
high-speed trains

1. Introduction
The multi-objective optimization problem is very common
in many areas of engineering design, and it becomes dif-
ficult to meet the needs of practical problems using the
traditional gradient algorithm as the complexity of the
problems increases. In order to overcome the disadvantage
of gradient algorithms that are highly sensitive to the ini-
tial values and difficult to use to obtain global optimization,
scholars have proposed many global optimization algo-
rithms based on population search (Deb, Mohan, & Mishra,
2005; Fonseca & Fleming, 1994; Pratab & Deb, 2000;
Srinivas & Dep, 1994). Inspired by the foraging behavior
of a flock of birds, Kennedy and Eberhart (1995) pro-
posed particle swarm optimization (PSO), which is simple
and easy to implement and has been developing rapidly
in recent years. Moore and Chapman (1999) used PSO to
solve the multi-objective optimization problem for the first
time; since then, there have been many different versions of
the multi-objective particle swarm optimization algorithm
(Coello, Pulido, & Lechuga, 2004; Hu & Eberhart, 2002;
Li, 2003; Parsopoulos & Vrahatis, 2002). Coello et al.
(2004) used an external file to save every flight experience
of particles, divide the search space into a hypercube, the
fitness of which is determined by the number of particles
it contains, choose one hypercube through the roulette

*Corresponding author. Email: sunzhenxu@imech.ac.cn

method based on hypercube fitness, and then select a par-
ticle from the hypercube randomly to be the global best
particle. Li (2003) proposed an Non-dominated Sorting
Particle Swarm Optimization (NSPSO) based on the idea
of non-dominated sorting, and the niche count and crowd-
ing distance are introduced into NSPSO. Test results show
that the performance of NSPSO is better than that of Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2005).

Based on the findings of the above literature, this paper
proposes a modified PSO for which the global best particle
is determined by feeding the niche count and crowding dis-
tance into an external file. The niche count and crowding
distance are both used to describe the particle distribution,
and in most cases different particles have the same niche
count. Therefore, we use three methods to select the global
best particles in an external file. The first method com-
putes the niche count of every particle and is named the
modified PSO with niche count (MPSO-NI). The second
approach computes the crowding distance of every parti-
cle and is named the modified PSO with crowding distance
(MPSO-CR). The third method computes the niche count
and crowding distance of every particle simultaneously, but
taking the niche count as the first criteria, and is named
the modified PSO with niche count and crowding distance

© 2015 Taylor & Francis
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(MPSO-NC). With the comparison of test functions, it was
found that the crowding distance can guide particles to the
optimal solution more efficiently, that MPSO-CR performs
better than the other two algorithms, and that MPSO-NC
performs better than MPSO-NI. Compared to the adaptive
binary-range genetic algorithms (ABGAs) and the adaptive
real-range genetic algorithms (ARGAs; Arakawa & Hagi-
wara, 1998; Yang, Chen, & Cui, 2009), MPSO performs
better in terms of obtaining the Pareto front.

In order to verify the efficiency of MPSO in engineer-
ing problems, the multi-objective optimization design of
the aerodynamic nose shape of high-speed trains (Ku et al.,
2010) is performed using MPSO-CR. The aerodynamic
drag of the whole train (with a leading car, a middle car
and a trailing car included) and the aerodynamic lift of
the trailing car are treated as the optimization objectives
so as to improve the operational safety and energy-saving
ability of trains. The Kriging surrogate model is used in
place of the numerical simulation in order to reduce the
computation time. A modified vehicle modeling function
parametric approach is proposed to describe the complex
three-dimensional geometry (Ku et al., 2010; Rho et al.,
2009). The optimization results show that MPSO-CR can
be applied to the task of solving complex engineering prob-
lems. The optimization processes proposed in this paper
can shorten the design cycle of the aerodynamic shape of
high-speed trains, improve design efficiency and provide a
reference for the multi-objective optimization design of the
aerodynamic shape of high-speed trains.

2. Modified multi-objective non-dominated sorting
particle swarm optimization

As to the basic PSO, the personal best particle pbest and
the global best particle gbest are used to update the position
and flight speed of each particle, and guide other particles
to move to pbest and gbest. The position vector of a sin-
gle particle takes the form of Xi = (xi,1, xi,2, . . . , xi,d), and
its flight speed is Vi = (vi,1, vi,2, . . . , vi,d). The formulas of
particle position and velocity updating are as follows:

vi,j (t + 1) = wvi,j (t) + c1r1(pbesti,j − xi,j (t))

+ c2r2(gbestj − xi,j (t))

xi,j (t + 1) = xi,j (t) + vi,j (t + 1) (1)

where, i = 1, 2, . . . , N , j = 1, 2 . . . , D, N is the size of the
particle population, D is the component size of the particle
position vector (the dimension size of the design space), w
is the inertia weight, c1 and c2 are two coefficients, and r1
and r2 are two random numbers within the range [0,1]. In
order to prevent particles from flying too fast and affecting
the convergence of the algorithm, a maximum flight speed
vmax is usually given. If vi,j (t + 1) is greater than vmax, the
value of vi,j (t + 1) should be resized as vmax. PSO has been
applied in many fields for single objective optimization,

and has achieved many perfect results (Dehuri, Roy, Cho,
& Ghosh, 2012).

When comparing multi-objective PSO with single-
objective PSO, the obvious difference is how to determine
gbest. The solution for the multi-objective optimization
problem is a Pareto front set in which none of the particles
are better than others. Thus, the key factor in determining
the performance of multi-objective PSO is how to select
gbest from the Pareto front. The particle gbest should be
able to ensure the diversity of the population so as to ade-
quately guide other particles moving to the Pareto front
in the design space. So gbest should be a particle in the
Pareto front of every iteration and be at the sparse area of
the design space.

As the number of objectives increases, the number
of non-dominated solutions increases dramatically, which
reduces the selection pressure inside the population. It
is difficult to determine the suitable gbest if the multi-
objective PSO only takes the non-dominated relationship
among Pareto solutions as the criterion, which may have a
bad effect on the optimization trajectory of particles and
the diversity of the population, and then deteriorate the
convergence of the algorithm. In order to keep appropri-
ate selection pressure and the diversity of population, gbest
and pbest are determined according to an external file, the
niche count and the crowding distance of the Pareto front
in this paper.

2.1. Niche count
The niche count is firstly introduced by genetic algorithms,
the main idea of which is as follows. The population of
each generation is divided into several categories, then a
number of outstanding individuals are selected to compose
a new population according to the fitness of each individ-
ual. After this, the original population is updated through
genetic manipulation among the new populations. The
niche count can maintain the diversity of the population
and may improve the global optimization capability and
the convergence rate of genetic algorithms. The key vari-
able of the niche count is the niche radius. The niche count
with sharing mechanism is usually used in genetic algo-
rithms and the niche radius should be determined manually,
which is hard to achieve. Based on the position variation of
the particles in the iterative process, the following formula
to determine the niche radius can be obtained:

σs =
∑m

i=1 (ui − li)
n − 1

;

where ui is the maximum value of the objective function
of the population, li is the minimum value of the objec-
tive function and n is the number of particles. As shown
in Figure 1, the nicount of a particle is calculated within a
circle with the position of this particle as its center and the
niche radius as its radius. The distance between adjacent
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Figure 1. Schematic drawing for niche count.

particles is obtained by the Euclidean distance. It can be
seen that nicount can be the same for different particles on
some occasions, which decreases the judgment ability. The
greater the nicount value, the shorter the distance between
the particles and the less diversity of the population. As a
result, the optimal value of nicount should be the minimum
value of all particles in the population.

2.2. Crowding distance
The crowding distance (Pratab & Deb, 2000) is used to cal-
culate the distance between a particle in a non-dominated
front solution set with the other particles of the front so as
to characterize the degree of congestion between particles.
Obviously, the greater the value of congestion distance, the
lower the degree of congestion between the particles and
thus the better the diversity of the population.

As shown in Figure 2, the crowding distance of particle
i can be calculated by

Idis =
m∑

k=1

(fk(i − 1) − fk(i + 1)),

and as shown above, the greater Idisis, the greater the dis-
tance between particles is and the better the diversity of
the population which can be obtained. In NSGA-II, the
crowding distance of the particles which are on the non-
dominated boundary is set to infinity to ensure that these
particles could not be eliminated. However, in MPSO, if

Figure 2. Schematic drawing for crowding distance.

the above strategy is still utilized, gbest would always be
a particle in the initial non-dominated front. As a result,
the crowding distance will no longer determine gbest. With
the use of external files, the boundary particles in the ini-
tial non-dominated front will be preserved in the external
file automatically, which will not be eliminated due to the
short crowding distance. Meanwhile, little influence on the
calculated Pareto optimal set could be exerted by other
non-dominated front sets. As a result, a relatively small
value is given to each non-dominated boundary particle in
this paper.

2.3. External files
An external file (Coello et al., 2004) is used to store the
Pareto front during the searching process. All the parti-
cles in the external file should be non-dominated with each
other, therefore the particles in the external file need to
be re-sorted according to the non-dominated rank after
each iteration, so that only the particles in the first non-
dominated rank are saved in the external file. Then, gbest
is determined according to the niche count and crowding
distance of the Pareto front in the external file. After the
introduction of an external file, the number of particles
in the Pareto front is free from the size of the initial par-
ticle population, which may obtain more Pareto-optimal
solutions.

Figure 3 shows the basic MPSO flow. First, the parti-
cle population is initialized to get the position and velocity

Initial
Population

Update
Population

Update
External Repository 

Sort
Population

Calculate
Niche Count 

Calculate
Crowding Distance 

Maximum
Iteration

Yes
Pareto 
Front

No

Figure 3. MPSO algorithm flowchart.
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of the particles in the initial population, and the parti-
cle position is set as the initial value of pbest. Next, the
non-dominated rank of the population is sorted according
to the fitness of the particle. Then the niche count and
crowding distance of each particle are calculated. Based
on nicount and Idis, gbest and the external file are initial-
ized. Based on pbest and gbest, the population is updated
and the descendant population is obtained. Then a reorder
of the descendant population is performed and the Pareto
front is added to the external file. The particles in the exter-
nal files are also sorted, with the Pareto front preserved
while others are deleted, and gbest is obtained according
to nicount and Idis. If iteration steps reach the maximum,
the Pareto optimal solution set in the external file will be
outputted, otherwise the algorithm will step into the next
iteration.

3. Experiments
3.1. Test functions
In order to verify the efficiency of the optimization
algorithm, four test functions (all functions are minimized;
see Li, 2003; Pratab & Deb, 2000) are used to test the
algorithms introduced in this paper:

TEST1 :

{
f1(x) = x1

f2(x) = g(x)h(x);

0 ≤ x1 ≤ 1, −30 ≤ x2 ≤ 30;

g(x) = 11 + x2
2 − 10 cos(2πx2);

h(x)

⎧⎪⎪⎨
⎪⎪⎩

1 −
√

f1(x)
g(x)

f1(x) ≤ g(x)

0, otherwise

.

TEST2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(x) = x1

f2(x) = (1 + 10x2)[
1 −

(
x1

1 + 10x2

)2

− x1

1 + 10x2
sin(8πx1)

]
;

0 ≤ x1, x2 ≤ 1.

TEST3 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x) =
2∑

i=1
[
[
−10 exp

(
−0.2

√
x2

i + x2
i+1

)]

f2(x) =
3∑

i=1
(|xi|0.8 + 5 sin(x3

i
));

− 5 ≤ xi ≤ 5, i = 1, 2, 3.

TEST4 :

{
f1(x) = 1 − exp(−4x1)sin6(6πx1)

f2(x) = g(x)(1 − (f1(x)/g(x))2);

0 ≤ xi ≤ 1, i = 1, 2, . . . , 10;

g(x) = 1 + 9

(
10∑

i=2

xi

9

)0.25

.

The Pareto optimal solution sets of the four test func-
tions are discontinuous solution sets, of which TEST4
owns 10 dimensions, which could be effectively used to
test the optimization capability for the algorithms in solv-
ing multimodal, discontinuous and high-dimensional prob-
lems. For all test functions, the initial particle population
is 200 and the number of iterations is 1000. To improve
the search capability of the algorithm during the iterative
process, w is gradually reduced from 1.2 to 0.4 during the
iteration, while c1 and c2 are 2, and the maximum speed
vmax is half the difference between the maximum value
and the minimum value for each dimension in the design
space.

Table 1. Test results from the different algorithms.

TEST1 TEST2

SP D Number SP D Number
MPSO-NC 0.03225 1.13551 57.1 0.02038 1.68997 367.2
MPSO-NI 0.75410 1.02361 34.1 0.02229 1.69031 325.5
MPSO-CR 0.01482 1.25632 142.6 0.01617 1.69026 560.3
ABGA 34.34229 N/A 120.3 0.26940 N/A 198.4
ARGA 38.54076 N/A 59.1 0.19126 N/A 122.3

TEST3 TEST4

SP D Number SP D Number
MPSO-NC 0.16186 12.67251 130.1 0.02422 1.16868 227.1
MPSO-NI 0.29671 12.51064 75.2 0.01394 1.16855 233.2
MPSO-CR 0.19456 12.50832 126.8 0.00995 1.16868 496.0
ABGA 0.24482 12.82375 60 N/A N/A N/A
ARGA 0.15978 12.84945 111.8 N/A N/A N/A
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(a) (b)

(c) (d)

Figure 4. Pareto-optimal solution sets obtained by MPSO-CR and the ABGA.
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3.2. Performance metrics of the Pareto front
In order to effectively analyze the quality of the non-
dominated solutions obtained from all algorithms, the
spacing metrics (Schott, 1995) and maximum spreading
range assessment are used to compare the optimal solution
sets of the test functions.

Spacing metrics can evaluate the distribution of non-
dominated solution set uniform or not, which is calculated
as

SP =
√√√√ 1

n − 1

n∑
i=1

(d − di)
2
,

in which, di = minj

(∑m
k=1 |f i

m − f j
m |
)

; i, j = 1, 2, . . . ,
n, i �= j , n is the amount of Pareto optimal solutions, m

is the amount of optimization objectives, and d is the
mean value of all di. When SP is zero, it means that all
non-dominated solutions are equally distributed. Thus, the
smaller SP is, the better the uniformity of the distribution
of the solution set.

The maximum spreading range assessment can effec-
tively test the scope of extremal solutions in the objective
function space, calculated as

D =
√√√√ m∑

k=1

(
n

max
i=1

f k
i −

n
min
i=1

f k
i )

in which n is the amount of Pareto optimal solutions and
m is the amount of optimization objectives. It is apparent
from the definition that the larger the value of D, the closer

Figure 5. Comparison of the real Pareto solutions and the numerical results obtained from MPSO-CR, the ARGA and the ABGA
(TEST1 and TEST3).
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the extremum of the Pareto optimal solution set is to real
extremum; further, the larger the distribution range of the
solution set is, the better it performs.

3.3. Results of the test functions
ABGAs and ARGAs are both based on the idea of non-
dominated sorting and the niche count concept. The dif-
ference between the two types is just the coding method,
which has a strong effect on search performance. Details
of the two methods can be found in Yang et al. (2009),
Arakawa and Hagiwara (1998), and Yao, Guo, Sun, Yang,
and Chen (2012). For each test function, each algorithm
runs 10 times independently. Table 1 shows the average
of 10 results of every algorithm. As can be seen, MPSO-
CR performs significantly better than the other algorithms
for TEST1 and TEST4, and obtains more Pareto-optimal
solutions and better distribution uniformity than other algo-
rithms for TEST2, but has a worse maximum dispersion
scope of the solution set than MPSO-NI; 10 times opti-
mization results of the ABGA and ARGA do not fully
converge to the Pareto-optimal solution set nearby for
TEST1, TEST2 and TEST4. For TEST1 and TEST2, both
algorithms do not converge to the Pareto-optimal solution
set just in the boundary points, but do not converge to the
Pareto-optimal solution set at all for TEST4. This means
that the searching capability of these two kinds of algo-
rithms for high-dimensional problems is weak. For TEST3,
the distribution uniformity and the maximum dispersion
scope of the optimal solution set obtained by the ARGA are
superior to other algorithms, but the amount of solutions
is less than for MPSO-NC and MPSO-CR. Considering
the test results of the four test functions, MPSO-CR has
the best optimization capability; in addition, the number
and performance of the result are better. In contrast, the
performance of the ABGA is the worst.

In order to directly understand the distribution of
Pareto-optimal solutions obtained by each algorithm,
Figure 4 shows the best Pareto-optimal solution of these
four test functions obtained by MPSO-CR and by the
ABGA. As can be seen, after 1000 iterations, the upper
boundary points of the Pareto-optimal solutions obtained
by the ABGA for TEST1 and TEST2 do not converge
with the optimal solution, and its distribution is worse
than MPSO-CR. For TEST3, the ABGA has a bigger first
objective value F1 than MPSO-CR but a smaller second
objective value F2, and the difference is greater. Further-
more, the maximum spreading range D of ABGA, which
is decided by F1 and F2, is bigger than that of MPSO-CR.
This means that D can effectively test the range of the
extreme points in the objective function space. For TEST4,
ABGA obtains several local extreme points and does not
find the Pareto-optimal solution.

In Figure 5, the distribution of the Pareto-optimal solu-
tions obtained by MPSO-CR, the ARGA and the ABGA

for TEST1 and TEST3 is given near the real Pareto-
optimal solutions. It can be seen that MPSO-CR has the
best distribution. For TEST1, the convergence, distribution
uniformity and maximum dispersion range of the Pareto-
optimal solutions obtained by MPSO-CR are superior to
those obtained by the ARGA and the ABGA. The ARGA
has a better result in searching the first objective value
F1 than in searching the second objective value F2, which
leads to a worse distribution of the lower part of the Pareto
front solution set. It also can be seen that the convergence
of MPSO-CR is obviously superior to the ABGA.

4. Optimal aerodynamic shape design of high-speed
trains

As the running speed of high-speed trains increases, the
aerodynamic problems are increasingly prominent, and
thus good aerodynamic performance is a key issue for the
nose shape of high-speed trains. In order to obtain a stream-
lined design with excellent aerodynamic performance and
improve the optimization efficiency of a train head’s aero-
dynamic shape, many scholars have done a lot of work
(Kwon et al., 2001; Lee & Kim, 2008; Sun, Song, & An,
2010; Vytla, Huang, & Penmetsa, 2010; Yao, Guo, et al.,
2012; Yao, Guo, & Yang, 2012). Lee and Kim (2008)
developed an optimization algorithm that combines suc-
cessive quadratic programming (SQP) optimization with a
support vector machine in order to reduce micro-pressure.
Yao, Guo, et al. (2012) introduced genetic algorithms to
reduce the aerodynamic drag of high-speed trains and
the lift force of the trailing car. Taking the aerodynamic
drag and noise as optimal objectives, Vytla et al. (2010)
used a hybrid genetic-PSO algorithm to optimize a two-
dimensional nose shape. There are usually many design
variables for engineering the nose shape of high-speed
trains, and it is very difficult to find the Pareto-optimal
solutions if the multi-objective optimization method is not
good enough. In section 3, the test function results showed
that MPSO-CR is superior to MPSO-NI, MPOS-NC, the
ABGA and the ARGA. In order to test the engineering
application of the optimal method proposed in this paper,
we will use MPSO-CR to optimize the three-dimensional
nose shape of a high-speed train to reduce both the aero-
dynamic drag of the whole train and the lift force of
trailing car. Because the train runs near to the ground, has a
complex operating environment and is affected by ground
effect, the flow field results around the train is very com-
plex and requires more CFD computational time and higher
accuracy. In order to reduce the computational cost, only
the nose shape of the train is considered in this paper;
the bogies, windshields, pantograph and other ancillary
components are all ignored. The parametric method of the
streamline, CFD computing method and the construction
of the Kriging surrogate model are detailed in the following
sections.
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4.1. Three-dimensional parametric method for
streamlining the nose shape of a high-speed train

The Free Form Deformation (FFD) and Non-Uniform
Rational B-Splines (NURBS) methods are widely used in
the field of parameterized geometry. But for the three-
dimensional parameterization of a complex surface, their
application is problematic due to practical engineering
optimization requiring far more design variables. This
means that a higher optimization capability is needed for
the optimization algorithm, and is not conducive to con-
structing the response surface model with higher prediction
accuracy. For applications of aerodynamic shape engineer-
ing optimization problems that require a large amount of
computational cost (for example, millions or even tens of
millions grids are required to calculate a sample point),
both methods are useless. In order to solve this problem,
Kulfan and Bussoletti (2006) proposed the class and shape
function parametric method and realized the 2D and 3D
parametric designs of the airfoil, wing and fuselage. On
this basis, Rho et al. (2009) proposed the VMF 3D para-
metric approach and used less design parameters to realize
3D parametric designs of the complex shape of the automo-
biles. Ku et al. (2010) applied the VMF method to the 3D
parametric design of streamlining high-speed trains. In this
paper, in order to better describe the aerodynamic shape of
high-speed trains, the VMF method is appropriately cor-
rected and the local shape boundary is described by some
simple but effective functions instead.

The streamlined head of high-speed trains is controlled
by the critical two-dimensional line, and surface configura-
tion is formed by the gradual changes of the key parameters
of the profile equation. According to the basic outline of the
currently existing models, basic lines and control points are
extracted (see Figure 6). The overall outline of the stream-
lined head is controlled by four main contour lines and
two local contour lines, and the shape of the cab is formed

by superimposing separate surface control equations onto
the basic surface. According to the basic properties of all
the profile equations, nine control points are extracted to
determine the boundary of the profile.

With P1 as the origin point of the coordinate, the length
direction of the head as the x axis and the width direc-
tion of the head as the y axis, a basic coordinate system
can be established by the right-hand rule. The parametric
equations of each profile are given as follows:

The upper longitudinal section profile equation is

Z(x) =
(

x
xp7

)A11
(

1 − x
xp7

)A12

zp7 + xzp7

xp7
.

The bottom longitudinal section profile equation is

Z(x) = xA21

zp2
.

The horizontal section profile equation is

Y(x) =
(

x
xp8

)A31
(

1 − x
xp8

)A32

yp8

+
(

1 − x
xp8

)
yp1 + xyp8

xp8
.

The maximum cross-sectional profile equation is

Z(y) = zp7yA41(2yp8 − y)A42

(yA41+A42
p8 g(y))

,

in which, g(y) = min{(y/yp8)
0.5, 1}.

The minimum cross-section profile is a circle, and its
equation is

Z(y) = (R2 − y2)0.5 − R,

in which, R is the radius and the equation converges to a
point at point P1.

Figure 6. Basic profile lines and control points in VMF parametric design.
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Table 2. Design variables and their ranges.

Design variable Range Design variable range

A11 (0.3,0.6) Pu (0.0,2.0)
A12 (2.0,5.0) gh (0.3,0.5)
A21 (0.2,0.5) A61 (0.6,1.0)

The bottom horizontal profile equation is

Y(x) =
(

x
xp

)A51
(

1 − x
xp

)A52

yp9 +
(

1 − x
xp

)
yp1 + xyp9

xp
,

in which xp = xp9 − xp2.
The equation for the nose shape surface is

Z(y) = zp

(
1 −

(
(y − yp)

yp

)Am
)1/Am

,

in which, Am = AR1 + (A41 − AR1)(x/L)Pu , L is the length
of the streamlined head, yp is the y coordinate of the hor-
izontal section profile, and zp is the z coordinate of the
upper longitudinal section profile.

The surface equation of the windshield of the cab is

Z(x) = gh

(
sin

(
π

(
(x − xp3)

(xp4 − xp3)

)A61
))A62

(
cos

(
π(y − yp5)

(yp6 − yp5)/2
/2
))A63

,

in which gh can control the viewing angle, the x-direction
coordinate values of control points P3, P4, P5 and P6 are
unchanged, the y- and z-direction coordinate values just
change with the variation of the base surface, A61 and A62
control the x-direction deformation of the windshield, and
A63 controls the y-direction deformation of the windshield.

The surface equation of the equipment shields is

X (z) = z2(xpb − xpc)

z2
p2 + xpc

,

Y(z) = z2(ypb − yph)

z2
p2

+ yph,

in which xpb is the x coordinate of the bottom horizontal
profile, xpc is the x coordinate of the upper longitudinal

section profile, ypb is the y coordinate of the bottom lon-
gitudinal section profile, and yph is the y coordinate of the
horizontal section profile.

When optimizing the streamlined head, the bottom lon-
gitudinal section profile is set to a parabolic equation, so
the value of A21 is 2. Without considering the deformation
of the horizontal section profile near P8, the value of A22 is
set to 1 as a constant value. The deformation of the bottom
horizontal profile has little effect on train aerodynamic per-
formance, and the values of A31and A32 are set to 0.4 and
1 respectively to reduce the number of design variables.
Usually, the maximum cross-sectional shape of the train is
fixed, therefore the maximum cross-sectional shape is con-
stant in this paper, and the values of A41 and A42 are 4 and
1, respectively. The surfaces of the nose are a gradual tran-
sition from one dot to the maximum cross-sectional shape,
so the value of AR1 of the initial dot is given as 2. With-
out considering the deformation of the y-axis direction and
the vicinity of the point P4 for the cab window, the corre-
sponding parameters A62 and A63 are both given as 2 and
the coordinate values of all control points are fixed values.
The remaining six undetermined parameters A11, A12, A21,
Pu, gh and A61 are regarded as design parameters (for their
ranges, see Table 2).

The geometry controlled by the design parameters
above is shown in Figure 7. It can be seen that completely
different types of streamlining can be obtained by adjusting
the design parameters.

4.2. CFD algorithms
In order to more accurately simulate the flow field around
the train, the geometry of the train designed in this paper
is given in accordance with the real geometry of the high-
speed train, as shown in Figure 8. The length of the leading
car and trailing car is 26.5 m, and the shape of the trail-
ing car is the same as that of the leading car. The length
L of the streamlined head is 12 m, the height is 3 m,
the width is 3.2 m and the cross-sectional area is 9.3 m2.
The initial shape of the train is determined by the average
value of the maximum value and the minimum value of
each dimension in the design space. Since the last bogie of
the trailing car has a great effect on aerodynamic lift, it is
retained.

In this paper, the speed of the high-speed train is 300
km/h, so the Mach number is 0.245. Under this condition,

Figure 7. Different streamlines obtained by adjusting the design variables.
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Figure 8. Original model of the high-speed train.

the air compression characteristic has an obvious effect on
the aerodynamic drag of the train. Therefore, the steady
compressible Reynolds-averaged Navier-Stokes equations
based on the finite volume method are used to predict the
aerodynamic drag. Roe’s FDS scheme is used to calculate
convective fluxes, and the Lower-Upper Symmetric Gauss-
Seidel (LU-SGS) is chosen for temporal discretization. The
k-ω SST model is selected as the turbulence model. The
standard wall functions are used near the wall so that the
accuracy of the CFD results can be ensured with a limited
amount of mesh.

In terms of the computational domains and boundary
conditions, taking the length of the simplified train as the
characteristic length L, the length of inflow direction is 1L,
the length of outflow direction is 2L, the width is 1L, and
the far-field height is 0.5L (see Figure 9). The flow velocity
is 83.33 m/s; the far-field pressure is 1 atm, the temperature
is 288 K and the reference area is the maximum cross-
sectional area of the train. As a result of the compressibility
calculation model, one-dimensional inviscid flow of the
Riemann invariants are introduced as the far-field bound-
ary conditions, which are also known as non-reflective
boundary conditions. Inflow, outflow and the top bound-
aries are all set as far-field boundary conditions and the

train body is set with the non-slip solid wall boundary con-
dition. The ground is treated as the moving wall so as to
simulate the ground effect, and the moving speed is equal
to the train speed.

4.3. Mesh independence validation
Mesh quality has a direct impact on the accuracy and sta-
bility of the calculation results. Thus, grid-independent
validation is firstly performed in the present paper with dif-
ferent amounts of spatial mesh that combine prism mesh
near the wall and hexahedral mesh so as to assess the influ-
ence of different spatial mesh on the calculation results.
With the thickness of the first prism layer meeting the
requirement of the wall function (30 ≤ y+ ≤ 50) that is
valid to simulation the flow around high-speed trains (Yao,
Guo, et al., 2012; Yao, Guo, & Yang, 2012), three sets of
mesh are obtained in this paper by changing the number of
grid layers in the boundary layer, increasing the mesh size
and region. As can be seen in Figure 10, the value of y+

of the body surface is mainly in the range from 30 to 50.
Flowing through a stagnation point at the nose shape, the
air velocity increases quickly, thus the value of is higher
y+ near the nose. Due to the development of the boundary

Figure 9. Computational domain.

Figure 10. Values of y+ around the surface of the train.
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Table 3. Mesh configuration strategy and computational results.

First layer Prism layer Minimum Stretching Total Tail
Mesh number (millions) thickness (mm) number size (mm) ratio Cd Cl

8 0.45 6 12 1.5 0.1686 0.0207
10.02 0.45 10 12 1.5 0.1672 0.0198
36.16 0.45 6 8 1.5 0.1684 0.0201

layer, the rear cone is basically in the thick boundary layer
and the air flows slowly, thus the value y+ near the rear
cone is lower.

Table 3 shows the layout strategy and calculation
results of the three sets of grids. As can be seen, the dif-
ference in the calculation results of the three sets of grids is
not significant. Taking the result of the grids with the min-
imum mesh amount as the basis, the maximum difference
of the aerodynamic drag of the train is 0.83%. Due to the
complexity of the wake flow field (Baker, 2001), the aero-
dynamic lift of the trailing car is more sensitive to the grid
layout strategy and the biggest difference is 4.35% for the
calculation results of the three sets of grids. This basically
meets the engineering accuracy requirements. Therefore,
all flow field calculations in this paper are performed with
the minimum-grid strategy to reduce computational time.

4.4. Kriging surrogate model
The Latin hypercube sampling method can be used to
ensure that the sampling points represent the whole part
of the design space without taking the dimension of the
problem into consideration. However, this method suffers
from the problem of randomness. In order to avoid this
problem, the central Latin hypercube sampling method
with minimum and maximum criteria based on the iter-
ative local search algorithm has been utilized. A total of
21 initial sampling points have been chosen for training
the Kriging model, of which the first 20 points are cho-
sen as training points while the last point is chosen as the
test sampling point. For the distribution of the objective
function of sampling points, the maximum and minimum
values of the first target (aerodynamic drag of the train) are
0.1822 and 0.1658 respectively, and the maximum mini-
mum values of the second target (aerodynamic lift of the
trail car) are 0.0340 and 0.0072 respectively. The varia-
tion range of the aerodynamic lift of the trailing car is
greater, and thus the requirement for the prediction accu-
racy of the Kriging model for the aerodynamic lift of the
trailing car is higher. Therefore, for the prediction accuracy
in this paper, the prediction error of the aerodynamic drag
of the train must not be greater than 1% and the predic-
tion error of the aerodynamic lift of the trailing car must
not be greater than 5%. In order to meet the prediction
accuracy of the Kriging model, the minimizing response
surface method has been adopted. For the Pareto solutions
obtained in each iteration, three testing points are chosen

for CFD validation. If the prediction accuracy has not been
met, these points are added to the training sample set so
as to further refine the Kriging model until the accuracy of
the model is reached. After just one iteration, the prediction
accuracy of the Kriging model reached the requirement, so
only 27 CFD computations were used in the whole opti-
mization process. The optimization results based on the
Kriging model are analyzed in section 5.

4.5. Optimization process
The optimization process of the streamlining still takes a
long time, even though the Kriging response surface model
has been adopted. Any errors in the design process will
affect the accuracy of the optimal results. Consequently,
a reasonable optimization process is required so as to
improve the optimization efficiency. Figure 11 shows the
optimization process designed in the present paper, which
is listed as follows:

(1) Extract the key parameters in the design of stream-
lining by the VMF approach, and determine the
range of the parameters (construct the design
space).

(2) Determine the number of initial training samples
which could meet the prediction accuracy of the
Kriging model by experience, sample in the design
space using the central Latin hypercube sampling
method with the maximum and minimum criteria
and obtain the initial value of the training samples.

(3) Obtain the accurate value of the objectives using
the CFD approach.

(4) Train the Kriging model using a real-coded
genetic-algorithm approach and obtain the optimal
correlation coefficients.

(5) Based on the Kriging model, perform the opti-
mization using MPSO-CR and obtain the Pareto
solutions.

(6) Chose several solutions as test samples and per-
form validation using the CFD approach. Judge
whether the accuracy of the solutions meets the
requirement or not.

(7) If not, the test samples from the previous step are
added to the training sample set, and steps3 is
repeated in order to reconstruct the Kriging model.

(8) If the accuracy has been met then the Kriging
model has been precisely constructed and the
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Figure 11. The optimization process of the streamlining of high-speed trains.

Pareto solutions obtained by the Kriging model are
the final optimal solutions.

5. Optimization results and analysis
Based on the constructed Kriging surrogate model, the
Pareto optimal solution of the aerodynamic drag of the
train and the aerodynamic lift of the trailing car is found
using MPSO-CR. The related parameter setting of MPSO-
CR is the same as the setting of test function optimization.
Figure 12 shows the distribution of the Pareto-optimal
solution. It can be seen that the distribution of the opti-
mal solution is uniform, indicating that MPSO-CR has
better capability of searching for optimization in complex
engineering problems. Within the design space, the aerody-
namic drag of the train only receives small changes, but the

Figure 12. Pareto-optimal solution set.

Table 4. Aerodynamic forces before and after opti-
mization and the prediction accuracy of Kriging model.

Model type Total Cd Tail Cl

Original shape 0.1686 0.0207
Optimal shape 0.1659 0.0146
Reduction 1.60% 29.47%
Kriging model 0.1656 0.0143
Error 0.18% 2.05%

aerodynamic lift of the trailing car receives big changes. In
order to get a design point at which the aerodynamic drag
of the train is less, the point in Figure 12 is chosen as the
optimal design point.

Ku et al. (2010) adopted the VMF method and Kriging
model to reduce the micro-pressure wave and aerodynamic
drag of a high-speed train. After optimization, the aerody-
namic drag was reduced by 5.6%. Compared to a simplified
CRH380A model, the aerodynamic drag of the optimiza-
tion shape is reduced by 3.2% in Yao, Guo, et al. (2012).
The aerodynamic drag of the optimal head of a CRH3 high-
speed train was reduced by 1.85% in Sun et al. (2010),
while the results of Vytla et al. (2010) showed a reduc-
tion in the aerodynamic noise of the optimal shape of 6%
but an increase in aerodynamic drag of 2%. The results
indicate that the aerodynamic drag of the high-speed train
is not very sensitive to the design parameters if the nose
length is constant. Table 4 shows the train aerodynamic
forces before and after optimization and the prediction
accuracy of Kriging model. As can be seen, after opti-
mization, the aerodynamic drag of the train is reduced
by 1.6%, and the aerodynamic lift of the trailing car is
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Table 5. Design parameter values before and after optimiza-
tion.

A11 A12 A21 Pu gh A61

Original shape 0.45 3.5 0.35 1.0 0.4 0.8
Optimal shape 0.4176 3.5942 0.4592 1.2824 0.3884 0.8959

reduced by 29.47%. The Kriging model prediction errors
of the two objectives are 0.18% and 2.05% respectively;
thus, the accuracy requirements of the engineering design
are reached. The constructed Kriging model can map a
nonlinear relationship between the design variables and
optimization objectives.

Table 5 shows the design parameter values before and
after optimization. The values of the design parameters of
the original shape are the average of the maximum and
minimum values of each parameter. After optimization,
A11 and A21, which control the bluntness and width of
the nose shape, receive larger changes, and the other four

parameters receive small changes, revealing that the aero-
dynamic performance of the original shape is better com-
pared with the other design points within the design space.
Correction of the original shape design can be made to
obtain a train shape with better aerodynamic performance.

Figure 13 shows the pressure coefficient distribution
along longitudinal section profiles of the leading car and
the trailing car before and after optimization. As can be
seen, after optimization, the bluntness of the nose increases
slightly and the incline of the windshield of the cab
increases. The high-pressure area on the nose of the lead-
ing car moves to the tip of the nose, and the low-pressure
area on this region moves backward due to the deforma-
tion of the windshield of the cab. There is a high pressure
area in the transition area between the windshield and the
cab. Low pressure near the nose and tailing cone slightly
decreases, and pressure distribution moves towards zero.
Therefore the upward pull of the upper part of the trailing
cone is reduced, and the lift of the trailing car decreases.
Pressure fluctuation at the bottom of the trailing cone is

Figure 13. Pressure-coefficient distribution along longitudinal section profiles of the leading car and the trailing car before and after
optimization.
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Figure 14. Pressure distribution around the leading car before and after optimization.

large, and there are two larger low pressure zones at both
ends of the bogie shield.

Figure 14 shows the pressure distribution around the
leading car before and after optimization. As can be seen,
there is a larger high-pressure zone in the nose region,
and there is a sub-high-pressure area in the transition area
between the cab window and the nose. An obvious low
pressure zone exists at the bottom of the nose, and a larger
low pressure exists in the transition area between the nose
shape and the train body. After optimization, an increase in
the incline of the cab window results in faster airflow accel-
eration at the juncture of this area and the transition area,
and then low pressure at the juncture is slightly increased.
These two factors lead to reduced pressure drag of the head
car to some extent.

6. Conclusion
Multi-objective PSO algorithms have been applied to many
practical engineering problems. In order to improve the
searching capabilities of the algorithm and obtain more
satisfying optimization solutions, based on the concept of
niche count and crowding distance, an MPSO was intro-
duced. Under four test conditions, the niche count and
crowding distance were used to determine the global best
particle in an external file. Then a comparative analysis
was carried out between the MPSO and a non-dominated
sorting multi-objective adaptive genetic algorithms, real-
coded and binary-coded. The results show that MPSO
based on the crowding distance is best at getting the Pareto
front, especially for problems with a high-dimensional and
non-continuous Pareto front.

In order to verify the efficiency of MPSO to solve engi-
neering problems, the multi-objective optimization design
of the aerodynamic nose shape of high-speed trains was
undertaken using a modified vehicle modeling function
(MVMF) parametric method. Extracting six design param-
eters and taking the aerodynamic drag of the whole train
(Cd) and aerodynamic lift of the trailing car (Cl) as the
optimization goals, a Kriging surrogate model was con-
structed by using the Latin hypercube sampling method to
collect 21 samples. The MPSO based on crowding distance
was used for the multi-objective aerodynamic shape opti-
mization design to find the Pareto optimization solution in
the design space. The optimization results show that the

MVMF parametric method can be applied to the optimal
design of the nose shape of high-speed trains. Because
of less design parameters of actual control, this method
can effectively shorten the optimization cycle and improve
optimization efficiency for engineering optimization prob-
lems that need a large amount of computation, and can
result in a new, more streamlined head for high-speed
trains.

After optimization, compared to the original shape, the
Cd and Cl of the optimal shape were reduced by 1.6%
and 29.74%, respectively. The obvious improvement of the
train aerodynamic performance shows that the optimiza-
tion algorithm in this paper can be applied to practical
engineering problems.
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