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A B S T R A C T

Fracture toughness is an important material property used to perform the integrity assessment of engineering
components containing cracks. Due to the difference in crack tip constraint, specimens may show different
fracture toughness. The constraint difference for cruciform specimen with shallow crack, compact tension (CT)
specimen and three point bending specimen with shallow and deep cracks are investigated. Both linear elastic
and elastic-plastic fracture mechanics are applied to study the constraint effect based on two-parameter fracture
criterion. Crack tip constraint depends on the applied loading. J-A2 method is used to precisely capture the crack
tip constraint and crack tip stress distributions. Local approach to fracture can be applied to transfer the fracture
toughness among different specimens under uniaxial and biaxial loadings. In case of positive T-stress, T-stress

increases with KI. In the case of negative T-stress, T-stress decreases with KI. Q-stress generally decreases with applied
loading for both deep crack and shallow crack cases. Loss of constraint occurs for the single-edged bending (SEB)
specimen with deep crack and thus raises the question whether the SEB specimen is proper to be used to obtain
material toughness. For the cruciform bending (CRB) specimen, the constraint at the crack tip surface shows a
least constraint while the deepest point has a relatively higher constraint. At a fracture probability of 10%, the
fracture toughness difference between CT specimen and CRB specimen is about 50MPam0.5, i.e 200% of the
fracture toughness. This big difference demonstrates the importance of considering the constraint effects in the
integrity analysis.

1. Introduction

Fracture toughness is an important material property used to per-
form the integrity assessment of engineering components containing
cracks. Widely used industry standards (e.g. ASTM standard) to test
fracture toughness utilize specimens subjected to uniaxial loading, e.g.,
three point bending and compact tension (CT) specimens in order to
obtain a lower bound value of material's fracture toughness (ASTM
E399-09e2, 2011). However, a lot of engineering structures are sub-
jected to biaxial/multiaxial loadings. Reactor pressure vessels (RPVs) in
nuclear power plants are subject to biaxial loading during pressurized
thermal shocks initiated by the loss-of-coolant accidents (Qian and
Niffenegger, 2013; Qian et al., 2014). The thermal, pressure and re-
sidual stresses in the RPV wall combine to form a biaxial stress state at
the crack tip. However, the fracture toughness of materials, Kc or Jc,

required for the integrity assessment of the RPV is obtained from the
conventional deeply-cracked single-edged bending (SEB) and CT spe-
cimens tested under uniaxial loading. The crack-tip stress state in spe-
cimens (uniaxial), as well as the crack tip constraint is quite different
from that of a real crack in RPV (biaxial). For the sake of nuclear safety,
it is important to determine accurate fracture toughness for RPV ma-
terials or other similar structures. Thus, the question arises whether
results obtained from specimens tested in the laboratory can be trans-
ferred to actual RPV in nuclear power plants. The difference of con-
straint effect (in-plane and out-of-plane) in different specimens and
structures, as shown in Fig. 1, should be taken into account (Qian and
Niffenegger, 2015). There are two options to consider the constraint
effect. First option is to test specimens with different constraints, which
could be very expensive. Second option is to work out a simple model
and procedure to transfer the fracture toughness from standard
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specimens to real components. Obviously, the second option could be
more advantageous considering time, efforts and economic effects and
therefore this paper is devoted to this aspect. However, it should be
noted that a simple model/procedure alone cannot hold without the
support of test data at selected geometries/specimens. In this sense,
both options are interacted.

In order to transfer the fracture toughness from standard specimens
to real components, the actual constraint of a specific geometry should
be analyzed. A second (e.g. J-T, J-Q, J-A2) parameter can be used to
quantify the crack-tip constraint of engineering structures in compar-
ison to that of the laboratory specimen. The K-T (or J-T) approach, J-Q
theory and J- A2 are the known theories, where the parameters T, Q and
A2 can be used to quantify the constraint effect on the crack-tip field
and fracture toughness. The J-T methodology, developed by Hancock
et al. (Hancock and Du, 1991), is used to quantify the in-plane con-
straint effect on fracture toughness for different crack geometries.
However, the J-T approach is limited to linear elastic analysis and it
becomes less meaningful as the plastic deformation expands arounds

the crack tip. Based on the theory of deformation plasticity, the J-Q
methodology (actually, it is a numerical solution) is developed based on
a series of detailed elastic-plastic finite element (FE) calculations for
various geometries (O'Dowd and Shih, 1991). In addition, the J-A2 so-
lution is developed based on the higher-order, asymptotic expansion of
crack-tip field for an elastic-plastic, power-law hardening material
(Yang et al., 1993a, 1993b; Chao et al., 1994). A comprehensive review
of these methodologies is referred in (Zhu and Joyce, 2012). Further-
more, the effects of out-of-plane constraint have been studied along the
thickness of specimens and plenty of efforts have been made in the past
decades (Faleskog, 1995; Matvienko et al., 2013; Guo, 1993). In addi-
tion to the above-mentioned global approach, the local approaches to
(cleavage) fracture (micro mechanics model), which couple macro-
scopic fracture behavior with micro scale deformations, captures the
constraint effect on cleavage due to crack geometry and loading. The
most widely used one, proposed by Beremin (1983), is a statistical
approach based upon the Weibull stress concept. The advantage of
Beremin's model is that model parameters are assumed to be material
properties and can be transferred from one specimen geometry or
constraint level to another.

In order to experimentally study both in-plane and out-of-plane
constraint effects, the cruciform bending specimen (CRB) is designed to
approximate the biaxial stresses resulted from realistic engineering
loading, as well as to study the influence of biaxial stress on crack-tip
constraints. A series of large (4T) cruciform specimen were tested by
Bass et al. (1999). while Joyce et al. (2005). developed a medium scale
CRB specimens (2T) made of the same steel. In addition, Jörg et al
(Hohe et al., 2011). studied that the biaxial effects observed on large
scale CRB specimen could be reproduced in the small-scale specimen. It
is shown that the biaxial effect may be dependent on material property
and detailed stress analysis should be used to characterize the con-
straints (Link et al., 2007).

Nomenclature

a, a0 crack depth, mm
A2 second term used to quantify constraint effect
B biaxiality ratio
2c crack length, mm
E elastic modulus, MPa
fij(θ) angular functions of crack-tip stress field
J J-integral, MPa·m
Jc critical J-integral, MPa·m
Jeff effective J-integral, MPa·m
K, KI Mode I linear elastic stress intensity factor, MPa·m0.5

KIC material fracture toughness, MPa·m0.5

n strain hardening exponent
In integration constant
L characteristic length parameter, mm
m, σ0 model parameters known as Weibull modulus
P, Pf fracture probability
s1, s2, s3 stress power exponents in the J-A2 method
S1, S2 span widths on the longitudinal and the transverse beam

arms
Q Q-stress

r radial coordinate in the polar system
R radius of the model used in modified boundary layer for-

mulation, mm
R, θ, Z cylindrical coordinate system
T-stress, T11 second term of William's extension along x direction,

MPa
u(R, θ) displacement in x direction
v(R, θ) displacement in y direction
W specimen width, mm

x length along specimen thickness, mm
V0 elementary volume,mm3

Vpl volume of the plastic deformation zone
v Poisson's ratio
α material coefficient in Ramberg-Osgood relationship
σ0 yield stress, MPa
σ1 first principal stress, MPa
σw Weibull stress, MPa
σth threshold stress, MPa
σe von Mises stress, MPa
σij stress at crack tip region, MPa
σ θ n( , )͠ ijk dimensionless functions in the J-A2 method
σxx, σyy, σzz stress along different directions, MPa
σ( )θθ HRR opening stress in small scale yielding, MPa
σ( )θθ FEA opening stress in a structure, MPa
ε0 yield strain
ε strain
θ angular coordinate in the polar system
Φ angle of elliptical crack
δij Kronecker delta
CT compact tension
CDF crack driving force
CRB cruciform bending
FE finite element
FEA finite element analysis
MBL modified boundary layer
MFC material failure curve
PTS pressurized thermal shock
RPV reactor pressure vessel
SEB single-edged bending
SSY small scale yielding

Fig. 1. In-plane and out-of-plane constraints for a 3D crack subjected to biaxial loading.
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Thus, this paper is devoted to compare crack tip constraints in dif-
ferent specimens and structures, thereby providing hints for transfer-
ring material toughness from different specimens to real structures. The
biaxial effect on the crack-tip constraint is studied. Different two-
parameter approaches, e.g. K-T method, J-Q method and J-A2 method,
are applied to quantify the constraint of a variety of specimens under
uniaxial or biaxial loads. The cruciform specimen with a shallow crack,
compact tension specimen with a deep crack, and three point bending
specimens with shallow and deep cracks are modeled to quantify the
constraint effects. Weibull stress and fracture probability according to
the local approach to fracture are calculated to compare the constraint
difference in the crack tip.

2. Approaches for constraint analyses

2.1. K-T method

The K-T method is generally used for linear elastic in-plane con-
straint analyses. The K-T concept considers both the first (singular) and
second (non-singular) term of the Williams extension (Williams, 1957)
of the crack front stress field (in terms of the polar coordinate r and φ):

= +σ K
πr

f θ Tδ δ
2

( )ij
I

ij i j1 1 (1)

The T-stress (T11) represents the stress acting parallel to the crack
plane and is used for in-plane constraint analysis. However, the T-stress is
an elastic parameter and becomes less meaningful as the plastic zone
expands at the crack tip. To address this limitation, a new second
parameter Q (Q-stress) was studied for elastic–plastic conditions.

2.2. J-Q method

In elastic-plastic analysis, the Q-stress is defined by

= − = =Q σ σ
σ

θ rσ
J

( ) ( ) , for 0, 2θθ FEA θθ HRR

0

0

(2)

where σ( )θθ FEA is the opening stress in a structure; σ( )θθ HRR represents
the opening stress defined from the stress field in small scale yielding
(SSY) condition. In general, the parameter Q can effectively describe
the constraint effect in the crack-tip stress field for different geometries
under a variety of deformation levels. It is a common practice to esti-
mate the Q-stress at =θ 0 and at the normalized distance =r J σ2 / 0. To
compute σ( )θθ HRR, the modified boundary layer (MBL) model is used.

2.3. J-A2 methodology

The crack tip stresses in the low constraint geometry gradually de-
viate from the HRR solution as the load increases. In order to solve this
problem, Yang and Chao et al (Yang et al., 1993a, 1993b; Chao et al.,
1994). developed asymptotic solutions near a crack tip, which includes
several higher order terms. It was demonstrated that the stress, strain
and displacement fields can be well characterized by the analytical
solution with only three terms, which can be written as
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where the angular functions σ θ n( , )͠ ijk (k= 1, 2, 3) are the dimension-
less functions of n and θ, the stress power exponents s1, s2, s3
(sl < s2 < s3) are only dependent of the hardening exponent n,

= − +s n1
1

1 and s3= 2s2-s1 for n > 3. L is a characteristic length para-
meter which can be chosen as the crack length a, specimen thickness W,
or a unit length (e.g., 1 mm). The (r, θ) represents the local coordinate
system established on the plane normal to the crack front with the
origin at each point along the crack front. For the HRR field, the
parameters A1 is given by

⎜ ⎟= ⎛
⎝

⎞
⎠

−

A J
αε σ I Ln

s

1
0 0

1

(4)

A2 is an undetermined parameter and is related to the geometry of
the specimen and the loading. Hence, similar to Q-stress, A2 can be used
as a quantitative measure of the constraint effect.

2.4. Beremin model

As a local approach to fracture, Beremin model (Beremin, 1983) is
essentially a two-parameter Weibull distribution as below:
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where P is the cumulative probability of fracture, Vpl denotes the vo-
lume of the plastic deformation zone as the cleavage fracture process
zone, m and σ0 are the two model parameters known as Weibull
modulus and the scale parameter, respectively, σ1 is the maximum
tensile principal stress, V0 is an elementary volume representing the
mean volume occupied by each micro-crack in a solid, dV is the dif-
ferential volume.

In order to consider the plastic deformation effect, the cumulative
failure probability formulation is modified to adopt a fixed-value
threshold stress (σth) by Gao et al. (2005),
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3. Finite element modeling

In order to compare the crack tip constraints between different ex-
perimental specimens, CRB, SEB, CT specimen and MBL model are
modeled, as shown in Fig. 2. The geometries of SEB and CT specimen
are in agreement with the ASTM standard and the CRB specimen is in
line with that used in the international program NESC (Bass et al.,
1999). Specimens with different crack depths are considered. The semi-
elliptical crack and through-wall cracks with straight front are modeled.
In this way, both in-plane and out-of-plane constraints are included.
The sizes of the specimens are listed in Table 1.

A RPV material is studied. The elastic modulus and Poisson's ratio are
assumed to be 206GPa and 0.3, respectively. The tensile property of the
material represented by the Ramberg-Osgood relationship has the form

⎜ ⎟= + ⎛
⎝

⎞
⎠

ε
ε

σ
σ

α σ
σ

n

0 0 0 (8)

where σ0 and ε0= σ0/E are the yield stress and the yield strain, respec-
tively, α is a material constant, and n is the strain hardening exponent
(with the two coefficients of 1 and 8), as shown in Fig. 3.

3D FE simulations for CRB, CT, SEB specimen and MBL model are
conducted by ABAQUS 6.14 (Abaqus 6.14 Manual and Versi, 2017). In
order to study the in-plane constraint effect, 3D simulation for SEB
specimens with deep and shallow cracks is performed with a/W of 0.5
and 0.1. Due to symmetry considerations, only one quarter of the spe-
cimen (for 3D) is modeled. The displacement is applied on a rigid pin in
contact (frictionless) with the specimen and the applied load is obtained
from the reaction force acting on the rigid body. Since large strain is
expected in the crack tip field, a finite strain (large deformation theory)
method is used. Quadrilateral elements and 20-node brick elements
(quadratic elements) are used, as shown in Fig. 4. The reduced
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integration scheme is used in the calculation. The number of elements
for CRB, CT, SEB specimen and MBL model are about 105560, 11055,
13822 and 130382, respectively. The deformation contours from FE
simulations are shown in Fig. 5.

The J-integral is computed using the domain integral implemented
in ABAQUS 6.14, which calculates the J-integral over a predefined
number of contours around the crack tip. Under plane strain condition,
the SIF calculated from the path-independent J-integral is

=
−

K JE
ν1J 2 (9)

In order to calculate the Weibull stress according to the local ap-
proach to fracture, a subroutine is written to extract the stress and
strain distributions for different elements. Fracture probability of each
specimen at different loadings is then calculated.

Table 1
Specimens size.

Specimen type B (mm) W (mm) S1 (mm) S2 (mm) L (mm) a0/W

CRB specimen 104 104 725 725 825 10/104
CT specimen 25.4 50 60 80 90 0.5
SEB specimen 10 20 80 / 90 0.1, 0.5

Fig. 3. Relation of stress and strain for the studied material.

Fig. 2. Geometry of (a) the CR(B) specimen, (b) CT spe-
cimen, (c) SE(B) specimen and (d) MBL model.
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4. Results

In the following, K-T method, J-Q method, J-A2 method and the
modified Beremin model are applied for the constraint analysis and the
results are compared. The cruciform specimen with a shallow crack,
compact tension specimen with deep crack, and three point bending
specimens with shallow and deep cracks are analyzed.

4.1. Results from CT specimen

In the middle plane of the CT specimen, T-stress and Q-stress dis-
tributions with KI and KJ are shown in Fig. 6. It is seen that both T and
Q-stress are positive, indicating that no constraint loss occurs. This
confirms the validity of applying CT specimen to obtain the lower
bound of material toughness. T-stress shows a liner relation with KI,
while Q-stress increases with applied loading and then keeps constant.

This means that constraint varies with the applied loading and the
elastic constraint is different from elastic-plastic constraint. It is seen in
Fig. 6 (a) that with increasing of K, Q-stress keeps almost constant. One
possible reason could be due to the large scale yielding with the in-
creasing of K. A similar tendency exists for A2, as referrer in (Chao et al.,
1994), which will be discussed later. In order to fully understand the
reason, more study is still needed. Using J-A2 method, the opening
stress σθθ in the crack vicinity is plotted in Fig. 6 (b). The opening stress
distributions at different loading level J from the FE analysis are also
plotted in Fig. 6 (b). A2 is calculated by substituting Jc, σθθ, and r (from
FE analysis) into Eq. (3) at each node. The average A2 value in the range
of r/(J/σ0)= 2–5, θ=0° is taken for the specimen. It is seen that the
results from FE analysis and J-A2 method are in good agreement. This
indicates that J-A2 method can be used to precisely capture the crack tip
constraint and crack tip stress distributions. It is also shown that A2 is
negative and increases with the applied loading. This tendency is in

Fig. 4. FE meshes for (a) CR specimen, (b) CT specimen, (c) SEB specimen and (d) MBL model.

G. Qian et al. European Journal of Mechanics / A Solids 69 (2018) 135–146

139



agreement with T-stress but different to Q-stress.
J-A2 method is further used to quantify the constraint effect in the

elastic-plastic analysis. J-integral increases along the crack front from
surface to the deepest point, as shown in Fig. 7. The surface point has a
more negative A2 than the deepest point, which indicates that the
surface point has a lower constraint than the deepest point of the crack
front. This is consistent with the common fact that plane stress condi-
tion exists on the specimen surface and plane strain condition exists in

the specimen middle. It should be noted that the negative of A2 means
the deviation of stress from the HRR solution.

4.2. Results from SEB specimen

In the middle plane of the SEB specimen with deep and shallow
cracks, T-stress vs. Q-stress distributions are shown in Fig. 8 (a). It is seen
that both T-stress and Q-stress vary significantly with the applied loading

Fig. 5. Stress distributions for (a) CR specimen, (b) CT specimen, (c) SEB specimen and (d) MBL model.

Fig. 6. (a) T-stress and Q-stress distributions with KI and KJ for CT specimen, (b) Opening stress distribution in the vicinity of crack tip for CT specimen.
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and the crack depth. In case of positive T-stress, T-stress increases with KI.
In the case of negative T-stress, T-stress decreases with KI. Q-stress generally
decreases with applied loading for both deep crack and shallow crack
cases. Q-stress is negative, meaning a deviation from HRR field. By
comparing Fig. 8 with Fig. 6, it is seen that constraint of CT specimens is

much higher than that of SEB specimen. However, for the SEB specimen
with deep crack, no constraint loss occurs in the linear elastic analysis.
Q-stress decreases with the applied loading and shows negative values at
some points. This means the loss of constraint and raises the question
whether it is conservative to obtain fracture toughness from SEB

Fig. 7. (a) Variation of J-integral along the crack front for the CT specimen at different loadings, (b) Variation of the constraint parameter A2 along the crack front for the CT specimen at
different loadings.

Fig. 8. (a) T-stress vs. Q-stress distributions with KI for SEB specimens and shallow cracks, (b) Opening stress distribution in the vicinity of crack tip for SEB specimens with deep crack (c)
Opening stress distribution in the vicinity of crack tip for SEB specimens with shallow crack.
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specimens.
Fig. 8 (b) and (c) show the opening stress distributions of the deep

and shallow cracked SEB specimens at different loading levels J. The
results from the FE analysis and the J-A2 solution with the calibrated A2

parameters are compared. It demonstrates that, for both the deep and
shallow cracked SEB specimens, the J–A2 solutions agrees very well
with the results from the FE analysis along the radial direction within
the range of r/(J/σ0)= 1–5.

J-A2 method is further used to quantify the constraint effect in the
elastic-plastic analysis, as shown in Fig. 9. J-integral increases along the
crack front from surface to the deepest point. The surface point has a
more negative A2 than the deepest point, which indicates that the
surface point has a lower constraint than the deepest point of the crack
front.

4.3. Results from CRB specimen

KI and T-stress distributions along the crack front in the CRB spe-
cimen are shown in Fig. 10 (a). Crack tip angle 0° means the surface of
the crack and 90° means the deepest point. KI generally increases from
crack surface to the deepest, due to the increase of the crack depth. T-

stress shows an opposite trend with KI. As observed before, constraint
depends on the applied loading. The surface point has a positive T-stress

while the deepest point has a loss of constraint. The variation of con-
straint requires a precise method to scale material toughness to the
crack tip. In elastic-plastic analysis, variation of Q-stress is shown in
Fig. 10 (b).Generally, Q-stress shows negative values and loss of con-
straint occurs along the crack tip. In contrast to the elastic constraint
analysis, the constraint at the crack tip surface shows a least constraint
while the deepest point has a relatively higher constraint. The depen-
dence of constraint on the location and loading is further confirmed.
The crack tip stresses evaluated by the FE method and the J-A2 method
are plotted in Fig. 10 (c), and good agreement is obtained.

J-A2 method is further used to quantify the constraint effect in the
elastic-plastic analysis. In agreement with the elastic analysis shown in
Fig. 10, J-integral increases along the crack front from surface to the
deepest point, as shown in Fig. 11. The surface point has a more ne-
gative A2 than the deepest point, which indicates that the surface point
has a lower constraint than the deepest point of the crack front.

5. Discussions

5.1. Jeff/J

From the above results, it is seen that the fracture toughness in
different specimens may vary due to the different constraints. Thus, a
method to scale J-integral at different constraints is discussed in the
following. From elastic-plastic fracture mechanics theory, the stress
fields of the crack tip may be characterized by the classical HRR solu-
tion (Hutchinson, 1968) as

⎜ ⎟= ⎛
⎝

⎞
⎠

+

σ σ J
αε σ I r

σ θ n( , )͠θ
n

n

ij0
0 0

1/ 1

(10)

where σ0 is a reference stress that is generally equal to the yield stress,
ε0 is defined as σ0/E, and E is the Young's modulus, α is material con-
stant and n is the strain hardening exponent, as given in the Ramberg-
Osgood stress-strain relationship (Eq. (8)), In is an integration constant
that depends on n and σ θ n( , )͠ ij is the dimensionless function of n and θ.

To study the difference in the constraint state, the effective J-in-
tegral in the studied models is calculated. Here the effective J-integral is
a J-integral in such HRR stress field that matches the stress field of the
crack tip under the specific constraint conditions. Eq. (10), which in-
dicates the crack tip stress field, can be expressed by using Jeff:

⎜ ⎟= ⎛
⎝

⎞
⎠

+

σ σ
J

αε σ I r
σ θ n( , )͠θ

eff

n

n

ij0
0 0

1/ 1

(11)

By substituting Eq. (11) into Eq. (2), the ratio of Jeff to the J-integral
can be expressed by
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0
1/ 1

1

(12)

Fig. 12 shows Jeff/J for the CT specimen, SEB specimen and CRB
specimen. Since the CT specimen has a highest constraint, Jeff/J is
higher than that of the other specimens. CRB specimen has a constraint
between SEB specimen with shallow and deep crack. Jeff of the cruci-
form specimen subjected to biaxial loading is about 2–15% smaller than
that of the CT specimen. This result can be used to scale fracture
toughness between different specimens.

Fig. 9. (a) Variation of J-integral along the crack front for the SEB specimen at different loadings, (b) Variation of the constraint parameter A2 along the crack front for the CRB specimen
at different loadings.
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5.2. Fracture probability for different specimens

Moreover, the modified Beremin model (Eq. (7)) is used to scale
fracture toughness in different specimens. According to the European
program (Hümmer et al., 2007), the calibrated parameters for this RPV
material are m=6.36, σth= 1546MPa, σu= 2076MPa,
V0= 0.001mm3. The integration zone is the volume where the von
Mises stress is over two times the yielding stress. Fig. 13 (a) shows the

Weibull stresses (σw) of the CT, SEB, CRB specimen and MBL model as a
function of KJ. The cruciform specimen subjected to uniaxial loading is
also modeled and the corresponding σw and Pf are calculated. It is in-
dicated that the Weibull stresses σw for the MBL model is greater than
that for the CT specimen and SEB specimen. σw for the SEB specimen
with deep crack are greater that with shallow crack. σw captures the
constraint effect due to the different stress distributions at the same J.

An important objective of the constraint analysis is to estimate the

Fig. 11. (a) Variation of J-integral along the crack front for the CRB specimen at different loadings, (b) Variation of the constraint parameter A2 along the crack front for the CRB
specimen at different loadings.

Fig. 10. (a) KI and T-stress distributions along crack front for the CRB specimen, (b) Q-stress distributions along crack front for the CRB specimen, (c) Opening stress distribution in the
vicinity of crack tip for the CRB specimen at different loadings.
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probabilities of cleavage initiation for different specimens and compo-
nents. Therefore, it is necessary to calculate the fracture probability (Pf)
for different specimens. In order to decide which specimen fails first
during the loading, it is better to compare Pf for the same J-Integral. It is
clear in Fig. 13 (b) that the MBL model fails first, followed by CT spe-
cimen, SEB specimen and cruciform specimen. The results in Fig. 13
may be used to scale fracture toughness data to account for both in-
plane and out-of-plane constraint effect by indexing a given Pf for a
specific constraint to obtain J. At a fracture probability of 10%, the
fracture toughness difference between CT specimen and CRB specimen
is about 50MPam0.5, i.e 200% of the material toughness. The differ-
ence between SEB and CT specimen is 28MPam0.5 (107% of the ma-
terial toughness). This big difference demonstrates the importance of
considering the constraint effects in the integrity analysis.

5.3. Material failure curve

In the following, a comparison of material failure curve and crack
driving force curves for CT, SEB specimen, MBL model at different
loadings is presented based on the J-A2 method. The material failure
curve is developed by plotting J-integral versus the absolute value of A2

at different loadings. The critical stress for fracture (σc) and the corre-
sponding critical radial distance (rc) from the RKR model (Ritchie et al.,
1973) are substituted into Eq. (3), as
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Eqs. (3) and (13) are used to plot the crack driving force curve and
the material failure curve according to the following procedure: (1)
Obtain the opening stress distribution σθθ at a point of interest along the
crack front from the FE analysis at the load level Jc. Substitute Jc, σθθ,
and r into Eq. (3) to solve for A2 at each node. The average A2 value in
the range of r/(J/σ0)= 2–5, θ=0° is taken as the (Jc, A2) pair for the
specimen. These pairs of (Jc, A2) are the crack driving force for different
specimens. (2) In order to plot the material failure curve, A2 in Eq. (3) is
firstly calibrated based on CT specimen at different J. In this paper,
σc= 1830MPa is then taken as the fracture stress (Ritchie et al., 1973)
and is substituted into Eq. (13) to calculate the rc. Lastly, σc and rc are
substituted back to Eq. (13) to obtain J at an arbitrary A2. These (J, A2)
pairs are the material failure curve. In this way, both the crack driving
force and material failure curve are plotted in Fig. 14. The intersection
points between the material failure curve and crack driving force are
the critical points, above which cleavage fracture occurs. It is seen at
some critical J-integral, CT specimen fails first while SEB specimen with
shallow crack fails last due to different constraint.

Fig. 14 also compares the constraint differences among the speci-
mens investigated. The lower the intersection point between the failure

Fig. 12. Comparison of Jeff/J for CT specimen, SEB specimen, MBL model with deep and
shallow cracks at different loadings.

Fig. 13. (a) Comparison of Weibull stress for CT, SEB specimen, MBL model with deep and shallow cracks. (b) Comparison of fracture probability vs. KJ for CT specimen, SEB specimen,
MBL model with deep and shallow cracks.

Fig. 14. Comparison of material failure curve and crack driving force curves for CT, SEB
specimen, MBL model with deep and shallow cracks at different loadings.
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curve and crack driving force is, the higher constraint the specimen
exhibits. Therefore, the CT specimen has the highest constraint while
the SEB specimen with a shallow crack has the lowest constraint level.
The cruciform specimen under biaxial and uniaxial loading investigated
in this study has the constraint level between the SEB specimens with
deep and shallow cracks. The constraint of the cruciform specimen
under uniaxial loading is lower than that of the same type of specimen
under biaxial loading. It is noted that in Fig. 14 the resulting critical J is
rather insensitive to the A2. The value of A2 becomes a constant as the
applied load increases which results in the large scale yielding condi-
tion near the crack tip. This is proved and explained in (Chao et al.,
1994).

5.4. Comparison of constraints

In the preceding study, the constraints in different specimens are
studied. Both elastic and elastic-plastic analyses are performed. From
the study in Section 4.2, SEB deep crack model would possess higher
elastic constraint than the MBL model which has zero T stress. How-
ever, from elastic-plastic analysis, as shown in Fig. 13 a and b, MBL
model has a higher Weibull stress and failure probability at the same
KJ. This implies that the MBL model has a higher elastic-plastic con-
straint than the SEB model with deep crack. This confirms that the
elastic constraint may be different from elastic-plastic constraint. The
following Fig. 15 is based on the results from elastic-plastic analysis. It
is found that MBL model has a highest constraint, followed by CT
specimen, SEB specimen with deep crack, SEB specimen with shallow
crack. CRB specimen with shallow crack has the lowest constraint and
thus demonstrates the highest apparent fracture toughness. A qualita-
tive comparison of the crack tip constraint and fracture toughness in
different specimens is shown in Fig. 15. It would be conservative to
apply the fracture toughness obtained from CT or SEB specimen with
deep cracks to a RPV subjected to biaxial loading. In the transferring of
material toughness from different specimens and structures, the effec-
tive Jeff and local approach to fracture mechanics can be employed
based on elastic-plastic analysis.

6. Conclusions

This paper is dedicated to the comparison of the difference in crack
tip constraint for cruciform specimen with shallow crack, compact
tension specimen and three point bending specimen with shallow and
deep cracks. Both linear elastic and elastic-plastic fracture mechanics
are applied to study the constraint effect based on two-parameter
fracture criterion. Based on the analyses, the following conclusions are
drawn:

(1) The constraint is dependent on loading and specimen geometry.
Elastic constraint is different from the constraint in elastic-plastic
analysis. Along a curved crack front, the constraint shows a con-
tinuous variation. In case of positive T-stress, T-stress increases with KI.
In the case of negative T-stress, T-stress decreases with KI. Q-stress

generally decreases with applied loading for both deep crack and
shallow crack cases. Loss of constraint occurs for the SEB specimen
with deep crack and thus raises the question whether the SEB
specimen is proper to be used to obtain material toughness. For the
CRB specimen, the constraint at the crack tip surface shows a least
constraint while the deepest point has a relatively higher constraint.

(2) J-A2 method is used to precisely capture the crack tip constraint and
crack tip stress distributions. Crack driving force and material
failure curve for different specimens are well described by the J-A2

method. The effective J-integral of the cruciform specimen sub-
jected to biaxial loading is about 2–15% smaller than that of the CT
specimen. Fracture toughness values obtained from the CT spe-
cimen with higher constraint effects are on the conservative side.

(3) The CT specimen has the highest constraint while the SEB specimen
with a shallow crack has the lowest constraint level. The cruciform
specimen under biaxial and uniaxial loading investigated in this
study has the constraint level between the SEB specimens with deep
and shallow cracks. The constraint of the cruciform specimen under
uniaxial loading is lower than that of the same type of specimen
under biaxial loading.

(4) Weibull stress can be applied to transfer the fracture toughness
among different specimens at the same failure probability. At a
fracture probability of 10%, the fracture toughness difference be-
tween the CT specimen and CRB specimen is about 200% of the
material toughness, which demonstrates the importance of con-
sidering the constraint effects in the integrity analysis.
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