
Enhancing the multiple harmonics by step-like cantilever
Feifei Gao, and Yin Zhang

Citation: AIP Advances 8, 045108 (2018); doi: 10.1063/1.5023623
View online: https://doi.org/10.1063/1.5023623
View Table of Contents: http://aip.scitation.org/toc/adv/8/4
Published by the American Institute of Physics

Articles you may be interested in
On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
Applied Physics Letters 112, 163104 (2018); 10.1063/1.5016306

 Minimizing tip-sample forces and enhancing sensitivity in atomic force microscopy with dynamically
compliant cantilevers
Journal of Applied Physics 121, 244505 (2017); 10.1063/1.4990276

Note: Double-hole cantilevers for harmonic atomic force microscopy
Review of Scientific Instruments 88, 106101 (2017); 10.1063/1.4991073

Designs for thermal harvesting with nonlinear coordinate transformation
AIP Advances 8, 045316 (2018); 10.1063/1.5027671

Sub-surface AFM imaging using tip generated stress and electric fields
Applied Physics Letters 110, 123108 (2017); 10.1063/1.4977837

 Atomic force microscope based on vertical silicon probes
Applied Physics Letters 110, 243101 (2017); 10.1063/1.4985125

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1148885704/x01/AIP-PT/AIPAdv_ArticleDL_0618/AIP_CP_eTOC_1640x440_ad.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Gao%2C+Feifei
http://aip.scitation.org/author/Zhang%2C+Yin
/loi/adv
https://doi.org/10.1063/1.5023623
http://aip.scitation.org/toc/adv/8/4
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5016306
http://aip.scitation.org/doi/abs/10.1063/1.4990276
http://aip.scitation.org/doi/abs/10.1063/1.4990276
http://aip.scitation.org/doi/abs/10.1063/1.4991073
http://aip.scitation.org/doi/abs/10.1063/1.5027671
http://aip.scitation.org/doi/abs/10.1063/1.4977837
http://aip.scitation.org/doi/abs/10.1063/1.4985125


AIP ADVANCES 8, 045108 (2018)

Enhancing the multiple harmonics by step-like cantilever
Feifei Gao1,2 and Yin Zhang1,2,a
1State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy
of Sciences, Beijing 100190, China
2School of Engineering Science, University of Chinese Academy of Sciences,
Beijing 100049, China

(Received 26 January 2018; accepted 28 March 2018; published online 10 April 2018)

In atomic force microscopy (AFM), the higher modes are highly sensitive to the
tip-sample interactions which generate many harmonics. When a higher harmonic
is close to the natural frequency of a mode, the harmonic signal is enhanced by a
resonance. The step-like cantilever is proposed as an effective design to enhance the
higher harmonic signals. The natural frequencies are changed with the variations of
the step-like cantilever sizes. By carefully designing the step-like cantilever, the first
three modes can be simultaneously excited. A comprehensive map is provided as
a guidance of selecting the appropriate geometric parameters. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5023623

The atomic force microscopy (AFM) is extensively used to investigate the material properties
in nanoscale.1 In tapping mode AFM, the peaks of the vibration spectrum are exhibited at integer
multiples (higher harmonics) of the excitation frequency.2 The higher harmonics are generated by the
tip-sample interactions, which can be used to extract information on the material properties.3–10 The
enhanced resolution,6,9 sensitivity7 and better contrast10,11 can be obtained in higher harmonics. For
example, Garcı́a et al.9 demonstrated that bimodal AFM enables fast, accurate and angstrom-scale
Young’s modulus mapping on a wide range of materials in air and liquid. The trimodal AFM can be
used as separate control “knobs” to simultaneously measure the topography, map compositional con-
trast and modulate sample indentation by the tip during tip-sample impact, respectively.10 However,
the higher harmonic signals are suppressed due to the rapid decay of frequency response curve of the
uniform cantilever,12 which may result in a small signal output that is even lower than the effective
noise level. The vibration amplitudes of the higher harmonics are several orders of magnitude smaller
than that of the fundamental component.13 Therefore, the higher harmonic signals are inevitably
lost.

The tip-sample interactions (F ts) can be expanded into the following Fourier series:

Fts =
∞∑

n=0
αn cos(nωt) + βn sin(nωt),ω is the driving frequency and sin(nωt)/cos(nωt) is the harmonic,

in which nω is an integer multiple of ω. When the cantilever is driven by the fundamental frequency,
the response of the cantilever at the nth harmonic will be dominated by the resonance of a mode whose
natural frequency is an integer n multiple of the fundamental frequency.5 Unfortunately, for a uniform
cantilever, the natural frequencies of the higher modes are not integer multiples of the fundamental
frequency. A great number of efforts have been made to enhance the higher harmonic signals. The
higher harmonics are enhanced by simultaneously exciting the first two modes of a cantilever,14 or
by driving the cantilever around a submultiple of the fundamental frequency,8,15 or by exciting the
torsional modes in a torsional harmonic cantilever.16 Besides excitation, the geometry of cantilever
can also be modified to enhance its response. These modifications include fabricating the notch at the
anti-node of the third mode,12 introducing a paddle-like structure,17–19 drilling holes with specific
sizes and locations,20–23 adding a concentrated mass at a specific location,24 non-uniform width25–29
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and step cross section structure.30–32 However, there are some deficiencies in those methods.
For example, the concentrated-mass which is described by the Dirac delta function occupies a certain
volume in practice.24 The position of the hole, which is obtained from the finite element simulation,
is difficult to be fabricated precisely in a practical application.20,22,23

In this study, a step-like cantilever design is proposed to enhance the higher harmonic signals.
By simultaneously changing the length, width and thickness, the natural frequency of a mode can
be tuned to coincide with a specific harmonic. The first three modes of a carefully designed step-
like cantilever can be simultaneously excited. We provide a straightforward method of selecting the
appropriate parameters of the step-like cantilever to tune the natural frequencies of the higher modes
by a comprehensive map and a table.

In Fig. 1, the step-like cantilever consists of two parts: Li, bi and hi (i = 1, 2) denote the length,
width and thickness, respectively. The total length is L = L1 + L2. Subscript 1 denotes the parameters
of the part with the fixed end, and subscript 2 denotes the parameters of the part with the free end.

The free vibration of a step-like cantilever is described by the following equations:33–35




m1
∂2w1
∂t2 (x, t) + c1

∂w1
∂t (x, t) + E1I1

∂4w1
∂x4 (x, t)= 0, 0 ≤ x ≤ L1,

m2
∂2w2
∂t2 (x, t) + c2

∂w2
∂t (x, t) + E2I2

∂4w2
∂x4 (x, t)= 0, L1 ≤ x ≤ L.

(1)

Because of the step-like structure, the cantilever is divided into two parts: wi, mi, ci and EiI i

(i = 1, 2) denote the cantilever deflection, mass per unit length, damping coefficient and flexural
stiffness of the two parts, respectively. By introducing the following quantities ξ = x

/
L, W i = wi

/
L

(i = 1, 2) and τ =
√

E1I1
/
m1L4t, the following dimensionless equations are obtained:




∂2W1
∂τ2 + κ1

∂W1
∂τ + ∂4W1

∂ξ4 = 0, 0 ≤ ξ ≤ ξo,

γ ∂
2W2
∂τ2 + κ2

∂W2
∂τ + χ ∂

4W2
∂ξ4 = 0, ξo ≤ ξ ≤ 1.

(2)

Where ξo = L1
/
L is the length ratio of the first part to the total cantilever, which is also the location

of the step as indicated in the coordinate system. Here γ = m2
/
m1 and χ = E2I2

/
E1I1 are the mass

and flexural stiffness ratios for the two parts of the cantilever, respectively. And κi = ci

√
L4/m1E1I1

(i = 1, 2) is the dimensionless damping. For simplicity, ρ1 = ρ2 and E1 = E2 are assumed, hence,
γ = A2

/
A1 and χ = I2

/
I1. The ratios ofω2

/
ω1 andω3

/
ω1 as the functions of ξo, γ and χ are obtained.

The detailed computation procedures are given in the supplementary material.
The natural frequencies of the step-like cantilever and thus their ratios can be tuned with the

variations of ξo, γ and χ. In Fig. 2(a), the ratio of ω2
/
ω1 as the function of γ and χ with ξo = 0.5

is presented, and the zoomed-in view of the boxed area is shown in Fig. 2(b). The ratio of ω3
/
ω1

as the function of γ and χ with ξo = 0.5 is presented in Fig. 2(c). As shown in Fig. 2, with γ
and χ increasing, the ratios of ω2

/
ω1 and ω3

/
ω1 increase, except for the part ω2

/
ω1 around 3.

In Fig. 2(b), when γ is less than 0.3, the ratio of ω2
/
ω1 is non-monotonic. With χ changing from

FIG. 1. Schematic diagram of the coordinate system and AFM cantilever dimensions.
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FIG. 2. The ratios of (a) ω2
/
ω1, (b) ω2

/
ω1 and (c) ω3

/
ω1 as the functions of γ and χ with ξo = 0.5. Here (b) is the

zoomed-in view of the boxed area in (a).

0 to 0.5, the ratio of ω2
/
ω1 decreases firstly and then increases. When γ and χ remain constant,

the ratio of ω2
/
ω1 shows a minimum at ξo = 0.5.25 For a cantilever, when a mass is removed

from the high mechanical stress region of the specific mode, the elastic energy and the natural
frequency of the mode reduce.12 The position of ξo = 0.5 is close to the highly curved region of
the second mode. However, it is far from the highly curved region of the first mode. As a result, a
smaller ratio of ω2

/
ω1 can be obtained at ξo = 0.5. When ξo increases from 0.5 to 1, the minimum

integer multiple ratio of ω2
/
ω1 increases. For example, with the increasing of ξo, the minimum

integer multiple ratio of ω2
/
ω1 increases from 2 to 5 in Fig. 3. When γ remains constant and

χ changes from 0 to 0.5, the bending stiffness of the cantilever increases, and as a result the natural
frequencies increase. However, the ratio of ω2

/
ω1 can be either increasing, decreasing or remaining

constant. When the wider part is clamped, ω2
/
ω1 < 6.27 (the ratio value of a uniform cantilever). In

comparison, when the narrower part is clamped,ω2
/
ω1 > 6.27. The results coincide with the results by

Sadewasser et al.28

The integer n labels the curve that the natural frequency of the second mode (Fig. 3) or the natural
frequency of the third mode (Fig. 4) equals to the nth harmonic. By interchanging the values of γ
and χ, the figure with length ratio ξo can be regarded as the figure with length ratio 1 � ξo (Figs. 3

FIG. 3. Values of γ and χ which ensure an integer value of the ω2
/
ω1 ratio. The integers are labeled on the corresponding

curves. (a) ξo = 0.5, (b) ξo = 0.6, (c) ξo = 0.7 and (d) ξo = 0.8. (The figure with length ratio ξo can also be regarded as
the figure with length ratio 1 � ξo by interchanging the values of γ and χ). The solid line (—) and dashed line (- - -) are the
corresponding curve of the undamped cantilever and damped cantilever, respectively.
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FIG. 4. Values of γ and χ which ensure an integer value of the ω3
/
ω1 ratio. The integers are labeled on the corresponding

curves. (a) ξo = 0.5, (b) ξo = 0.6, (c) ξo = 0.7 and (d) ξo = 0.8. (The figure with length ratio ξo can also be regarded as the
figure with length ratio 1 � ξo by interchanging the values of γ and χ).

and 4), because these two figures are symmetrical to the straight line of χ = γ. The detailed proof
is given in supplementary material. Therefore, the figures with ξo = 0.2 ∼ 0.5 are omitted in Figs. 3
and 4. When the thickness of the two parts is with a significant difference, the bending of the thinner
part dominates.28 The ratios of ω2

/
ω1 are close to 6.27 with a smaller ξo. As shown in Fig. 3, when

ξo varies from 0.5 to 0.8, the ratio of ω2
/
ω1 increases with the giving γ and χ. There is a similar

tendency in Fig. 4. With the increasing of ξo, the influence of γ and χ becomes weaker, thus the
frequencies of the step-like cantilever are close to those of a uniform cantilever.

When Fig. 4 is superimposed on top of the Fig. 3 of the same length ratio ξo, each of the
intersection points defines a multiple harmonic cantilever. For example, letting Fig. 4(a) is super-
imposed on top of the Fig. 3(a). The first three modes of a multiple harmonic cantilever can be
excited at the same time, which significantly enhances the higher harmonic signals. An applica-
tion example is the trimodal AFM, which offers a way to locate and characterize the subsurface
structures of the materials.10 All intersection points are obtained as ξo changing from 0.2 to 0.8,
and the corresponding values of (ξo, γ, χ) are listed in Table I. Sahin et al.5 demonstrated that
the 24th harmonic is more sensitive to harder samples and the 8th harmonic is more sensitive
to softer samples when monitoring the cantilever deflection at the harmonic corresponding to the
third mode. Therefore, the choice of the appropriate higher harmonic is determined by the material
properties.

TABLE I. Values of (ξo, γ, χ) which yield integer numbers for both ω2
/
ω1 and ω3

/
ω1.

ω2
/
ω1 ω3

/
ω1 ξo γ χ ω2

/
ω1 ω3

/
ω1 ξo γ χ ω2

/
ω1 ω3

/
ω1 ξo γ χ

3 8 0.50 0.22 0.04 5 11 0.30 0.28 0.14 7 21 0.60 1.24 1.87
3 8 0.70 0.22 0.04 5 12 0.30 0.41 0.22 7 21 0.70 1.38 2.62
3 9 0.50 0.28 0.08 5 12 0.70 0.58 0.23 8 23 0.30 1.66 2.28
4 9 0.40 0.26 0.07 5 14 0.40 0.74 0.44 8 24 0.40 1.96 2.04
4 9 0.70 0.26 0.08 5 14 0.50 0.72 0.46 8 24 0.70 2.16 2.82
4 10 0.40 0.35 0.13 7 20 0.30 1.34 1.46 8 25 0.50 1.54 2.72
4 11 0.60 0.45 0.20 7 20 0.40 1.30 1.39 8 25 0.60 1.85 2.75

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-029804


045108-5 F. Gao and Y. Zhang AIP Advances 8, 045108 (2018)

The normal modes are characterized by the effective stiffness, natural frequency and quality
factor.36 The presence of the damping reduces the natural frequencies. Compared with that of the
fundamental mode, the force constant of kn =mω2

n (ωn: natural frequency of the nth mode) is larger in
higher mode. As a result, the damping influence on higher modes is smaller. The falling amplitude of
the higher natural frequency is smaller than that of the fundamental frequency. Therefore, as shown
in Fig. 3, the ratios of ω2

/
ω1 and ω3

/
ω1 are higher than those of the undamped step-like cantilever

with the giving ξo, γ and χ. In fact, the vibration of AFM in air is with small damping.37 The shift of
natural frequency due to small damping can be ignored in air or vacuum.38 The variation tendency
for the case of ω3

/
ω1 is even smaller.

In summary, a step-like cantilever, whose natural frequency of the second mode or third mode
is an integer multiple of the fundamental frequency, is proposed to enhance the signals of the higher
harmonics. Besides, the first three natural frequencies can be simultaneously excited with proper
step-like cantilever geometric parameters. Therefore, the information of the material properties can
be extracted from the enhanced higher harmonic signals. By this way, the step-like cantilever can
simultaneously sense the topography and mechanical properties with the increased spatio-temporal
resolution. In the step-like cantilever, the ratio of ω2

/
ω1 shows a minimum when both parts are with

the same length. For a step-like cantilever is with a large difference in the length of the two parts,
the bending of the thinner part dominates, and the natural frequencies are close to those of a uniform
cantilever.

See supplementary material for the detailed computational procedures of the natural frequencies
of the step-like cantilever, and the detailed proof that the figure with length ratio ξo and figure with
length ratio 1 � ξo are symmetrical to the straight line of χ = γ.

This work was supported by the National Natural Science Foundation of China (NSFC No.
11772335).
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