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Abstract Due to the inevitable phenomena that multi-
source uncertainty factors in compliant mechanisms,
which generally originate from material dispersion and
uncertain external forces, severely affect the output mo-
tion accuracy, the robustness assessment and optimiza-
tion with high confidence and efficiency is of great
significance for scientists and engineers. In view of this,
this study develops a novel approach of robust topology
synthesis for compliant mechanisms with desired motion
output by minimizing the expectation of Taguchi quan-
tity loss function. The sensitivities of the robustness
index with respect to design variables are calculated
by the method of adjoint vector. Furthermore, the solu-
tion procedures of motion error based robust topology
synthesis for geometrically linear and non-linear compli-
ant mechanisms are elaborated. Two engineering exam-
ples are eventually presented to demonstrate the validity
and applicability of the developed methodology.

Keywords Compliant mechanisms . Uncertainties . Motion
accuracy . Robust design . Topology optimization

1 Introduction

Compliant mechanisms are monolithic structures which can
transfer the input force or motion into the output motion
through their own elastic deformations (Howell 2013).
Without revolute joints and assembly cost, the compliant
mechanisms have numbers of advantages over traditional
rigid-link mechanisms such as reserving space, reducing vi-
bration, noise, wear and friction caused by joint clearances
(Wang et al. 2015). Therefore, the compliant mechanisms
are widely used in precision devices such as medical instru-
ments and micro-electro-mechanical systems (MEMS)
(Huang et al. 2014).

In recent years, topology optimization has become increas-
ingly prevalent in the researches on the structural design since
it enables designers to find the best material distribution for
the required performance (Sigmund 1997). There are two
main schemes in topology optimization relevant studies, the
explicit geometry-based and the density-based approaches.
The former approach was first proposed by Guo et al. in Ref
(2014a), which was later strengthened into various problems
of applying the topology optimization in practical engineering
by some researchers (Zhang et al. 2017a, b; Guo et al. 2017).
Despite of the explicit geometry-based approach, the
other efficient and classical scheme is density-based ap-
proach, including the solid isotropic material with penal-
ization (SIMP) method (Sigmund 1997), the level-set
method (Wang et al. 2003; Allaire et al. 2004; Yaji
et al. 2016), the evolutionary structural optimization
(ESO) method (Xie and Steven 1993) and the sequential
element rejection and admission (SERA) method
(Alonso et al. 2014a, b). The brilliance of the density-
based approach is its natural ability to accommodate
changes in topology and allowance for response sensi-
tivities to be computed (Norato et al. 2015).
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As for the field of topology optimization for compliant
mechanisms, both the stiffness and flexibility should be taken
into account in the design procedure (Luo et al. 2005).
Researchers used various functions to qualify the comprehen-
sive influence of flexibility and stiffness and presented the
algorithm to calculate the corresponding sensitivities, such
as the mutual potential energy and strain energy (Ansola
et al. 2007, 2010; Lin et al. 2010), geometric advantage
(Luo et al. 2007) and mechanical advantage (Larsen et al.
1997; Bruns and Tortorelli 2003). Some studies focus on tak-
ing the maximum motion of output port as the objective, such
as Bruggi et al. proposed the Synthesis of auxetic structures by
taking the maximum output motion as objective (Bruggi
et al. 2017), Leon et al. taken the maximum output
motion as objective and alleviated the one-node hinges
by the stress constraint (Leon et al. 2015). It has been
demonstrated by the aforementioned studies that the
density-based approaches are reliable and effective tools
to handle the topology optimization problems with var-
ious constraints and objectives.

It should be emphasized that the material dispersion and
uncertain external forces are inevitable in practical engineer-
ing (Rao and Bhatti 2001). Moreover, the small mechanisms
such asMEMS are likely sensitive to the variations in material
properties and applied loads (Kogiso et al. 2008). All the
aforementioned researches are conducted in the deterministic
assumptions, the optimums of which may fail to respond ap-
propriately when the variations exist in material properties and
external forces. Recently, the reliability or robust optimiza-
tions have become increasingly important in product design.
In the field of the robust topology optimization, the compli-
ance based robust optimizations which focus on the structural
flexibility (i.e., the ability to produce the kinematic motion)
are the most popular approaches. Guo et al. introduced the
robust index of compliance under uncertain boundary as ob-
jective and conduct the topology optimization via level set
approach (Guo et al. 2013). Jansen et al. took the variance of
end-compliance calculated byMonte-Carlo simulation (MCS)
as constraint in optimization formulation (Jansen et al. 2015).
Richardson used the summation of mean and standard devia-
tion of the compliance as the objective to design a monolithic
structure (Richardson et al. 2015). Kogiso et al. proposed a
mutual compliance based robust synthesis for structures with
random applied force directions(Kogiso et al. 2008). Chen
et al. developed a compliance based robust topology optimi-
zation approach for structures with interval random parame-
ters (Chen et al. 2016).Wu et al. proposed a Level-set topology
optimization method for auxetic metamaterials under hybrid
uncertainties, and took the robustness of elasticity tensor index
obtained by the PC expansion method (Wu et al. 2017). Liu
et al. introduced the uncertain degree of mean compliance as
the objective which took the correlations of the probability
and fuzziness of the applied loads direction into account,

and conduct the uncertain topology optimization via BESO
algorithms (Liu et al. 2015).

It is notable that in some circumstance, when considering
problems of designing the positon or path generation mecha-
nisms, the output ports of mechanisms are required to produce
a given displacement or pass a set of given positions precisely
(Bendsøe and Sigmund 2004). All the remarkable robust to-
pology optimization relevant studies mentioned above was
aiming at maximizing the motion ability of mechanisms ro-
bustly rather than improving the motion accuracy of output
ports robustly. Therefore, the aforementioned compliance
based robust topology optimization approaches may not be
effective enough in the situation that the output motion accu-
racy is the major concern to designers. Pedersen et al. was the
first to take the minimum of motion error as the objective to
design a compliant mechanism with an expected output mo-
tion and conducted the topology optimization in the determin-
istic assumptions (Pedersen et al. 2001). Nevertheless, the
studies on minimizing the motion error of compliant mecha-
nisms with uncertain properties via robust topology optimiza-
tion, namely, motion error based robust topology optimiza-
tion, are still relatively rare at present. It is necessary to intro-
duce the concept of robust design in the mechanisms synthesis
which ensures the output motion realizing its target value ro-
bustly against the uncertain effects.

Aiming at finding the optimum compliant mechanism with
the highest output motion accuracy and the strongest robust-
ness under various uncertain factors by virtue of the SIMP
framework, the ultimate purpose of this paper is to present a
motion error based robust topology optimization approach
and the corresponding methodology to calculate the sensitiv-
ities of the robust index. The expectation of Taguchi quality
loss function which is widely used to qualify the robustness of
motion error in rigid-linkmechanisms design (Luo et al. 2012)
is applied in this work as the objective function. Moreover, in
order to conduct the motion error based robust topology opti-
mization via density-based approach, the sensitivities of the
expectation of Taguchi quality loss function is calculated by
virtue of the adjoint method.

2 Problem statements

In this section, the definition of motion error for com-
pliant mechanisms is discussed, and the optimal formu-
lation is proposed.

2.1 Definition of the motion error

As shown in Fig. 1, consider the design domain of a compliant
mechanism where fin is the applied force at the input port, uout
and uout are the actual output displacement and the excepted
output displacement, respectively. A spring with a constant
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stiffness ks is introduced to simulate the interaction between
the work-piece and the compliant mechanism. The primary
purpose of a compliant mechanism is to realize an expected
displacement at the output port, and where by, the objective
function of mechanism synthesis is to minimize the discrep-
ancy between the actual displacement and the required dis-
placement. Such discrepancy can be evaluated bymotion error
(Mallik and Ghosh 1994), namely

eout Xð Þ ¼ uout Xð Þ−uout ð1Þ
where X is the design variable vector filled with the relative
densities of every element.

2.2 Topology synthesis of compliant mechanism

Now we carry out the motion error based topology synthesis
of compliant mechanisms. A compliant mechanism is re-
quired to meet the flexibility and stiffness requirements in
order to withstand the applied loads and produce the
predefined displacement transmission. It worth noting that
taking the minimum motion-error as objective may result in
forming the de facto hinge regions, which will lead to the fact
that the optimum function as rigid linkages and unable to be
manufactured (Rahmatalla and Swan 2004). To eliminate the
de facto hinge regions, Poulsen proposed a technique of im-
bedding the wavelet base functions (Poulsen 2001). Later, he
imposed a minimum length scale constraint in the optimiza-
tion formulation, namelyMOLEmethod (Poulsen 2003). Guo
et al. imposed the extreme values of the signed distance level
set function as constraint to control the maximum and mini-
mum length via the level set method (Guo et al. 2014b). To
control the explicit feature of structural members via SIMP
method, Zhang et al. developed an efficient local and explicit
length scale control approach (Zhang et al. 2014). Besides of
these morphology-based approaches, other researchers con-
centrated on the multi-criteria optimization method. Frecker
et al. proposed an objective function which can simultaneous-
ly maximize the flexibility and minimize the stiffness (Frecker

et al. 1997). Zhu et al. extended this approach to optimize
hinge-free compliant mechanisms with multiple outputs
(Zhu et al. 2013). Luo et al. revealed a remarkable phenome-
non that the de-facto hinges is closely related to the energy
dissipation from the input port to the output port. They further
introduced a quadratic energy functional used in image pro-
cessing applications, and conducted topology optimization of
the hinge-free compliant mechanisms via the level-set method
(Luo et al. 2008). Huang et al. found that the de-facto hinges is
also related to the difference between the input force and out-
put force, taken the mean compliance as the constraint and
given the appropriate value of the prescribed mean compli-
ance to effectively eliminate the de facto hinge regions
(Huang et al. 2014).

Enlightened by Ref (Huang et al. 2014), to ensure the stiff-
ness of compliant mechanisms and eliminate the shortage of
de facto hinge regions, the mean compliance constraint is
applied in this work. Based on (1), the optimization model
of topology synthesis, especially for a Multi-Input-Multi-
Output (MIMO) compliant mechanism can be formulated into

Find X¼ x1; x2;…; xmð ÞT

Minimize ∑
k

j¼1
e jout Xð Þ2

Subject to ∑
m

e¼1
xeVe−V ≤0

C≤C
xmin≤xe≤1

ð2Þ

where k is the amount of output ports, e jout Xð Þ denotes the jth
output motion error corresponding to the output port j, C and

C represent the mean compliance and the prescribed mean
compliance, Ve and V are volume of one element and the
maximum allowable total volume, respectively. It is notice-
able that the upper bound of mean compliance, namely the

prescribed mean compliance C may severely affects the op-
timal result. The optimal result will be not flexible enough to

produce the expected output motion if the value of C is too
small, and the one will come with the de facto hinge regions if

Fig. 1 Schematic diagram for
designing a compliant mechanism
with desired output motion

Motion error based robust topology optimization for compliant mechanisms under material dispersion and... 2163



the value of C is too large. According to the numerical exam-
ples and discussion in Ref (Huang et al. 2014), the one-node
hinge phenomena can be effectively depressed by cho-

sen the value of C as 3 to 4 times of C0, which denotes
the mean compliance of the full design. In this work,

the value of C is chosen as 4C0. One more point should
be emphasized that the traditional optimization formula-
tion without additional mean compliance constraint can
also be utilized to eliminate the de facto hinge regions.
According to Ref (Guo et al. 2014a), the minimum and
maximum length scale constraints presented by Zhang
et al. can also be used to control the maximum length
and the minimum length of compliant mechanisms.

3 Robust topology optimization by using the Taguchi
approach

We now investigate how to insert the robustness conditions
into topology optimization for the compliant mechanisms.

3.1 Robustness estimation

Uncertainties, which widely exist in practical engineer-
ing, are commonly related to manufacturing deviations,
measurement errors, etc. The experimental studies have
shown that the small instrument, such as MEMS de-
vices, may be subject to severe stochastic variations in
material properties and their operating environment
(Maute and Dan 2003). Assuming that the material
properties (i.e., the Young’s module and the Poisson’s
ratio) and external forces are random variables, the mo-
tion error e(X) is uncertainty as well. For convenience,
a vector a = (a1, a2,…, an) is established, of which the
elements are all the uncertain parameters. The mean and
standard deviation of random variable ai are μi and σi.
Thus, the motion error of compliant mechanism with
uncertainties can be represented by e(a, X). Since the
uncertainties in compliant mechanisms is usually small
compared to their nominal values μ, the motion error
can then be accurately approximated in the vicinity of
μ. If the output motion is relatively small, the compli-
ant mechanism can be considered as a linear model.
Then the first-order approximation is indeed accurate
(Wang and Qiu 2010; Wang et al. 2014). Furthermore,
the high accuracy of the first-order approximation will
be demonstrated in numerical examples. The motion er-
ror of compliant mechanisms can be calculated by

e a;Xð Þ≈e μ;Xð Þ þ ∑
n

i¼1

∂e a;Xð Þ
∂ai

����
a¼μ

ai−μið Þ ð3Þ

where n is the number of uncertain variables. Substituting (1)
into (3), we have

e a;Xð Þ≈uμout−uout þ ∑
n

i¼1
βi
out ai−μið Þ ð4Þ

where uμout represents the mean output motion, and βi
out de-

notes ∂uμout
∂ai . Furthermore, assuming that all the uncertain vari-

ables are independent with each other, the mean and standard
deviation of motion error e(a,X) can be calculated by

μe a;Xð Þ ¼ uμout−uout

σe a;Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
βi
outσi

� �2s
ð5Þ

In the studies about the non-deterministic topology optimiza-
tion, some researchers used the nominal distribution to quan-
tify the uncertain variables (Chen et al. 2016; Maute and Dan
2003; Silva and Cardoso 2017; Zhao et al. 2016; Jung and
Cho 2004). If the normal distribution is utilized to quantify ai,
μi and σi in (4) and (5) are the mean and standard deviation of
a normal-distributed variable ai∼N μi;σ

2
i

� �
. Nevertheless, the

precise distributions of the uncertainties in material properties
and external forces are obtained based on a great amount of
experimental samples. In practical engineering, the normal
distribution assumption may not be accurate enough. For ex-
ample, the range of a normal-distributed variable is from −∞
to +∞, which is not in accordance with the actual situation.
Therefore, some non-Gaussian random variables should be
considered to quantify the various uncertainties. Hence, μi
and σi are the functions of the parameters of the distribution
corresponded to ai. For example, if ai is a Weibull random
variable, μi and σi are given by

μi ¼ βΓ
1

α
þ 1

� �

σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ

2

α
þ 1

� �

Γ 2 1

α
þ 1

� � −1

vuuuuut
ð6Þ

where Γ(•) is the gamma function, α and β are the shape
parameter and the scale parameter, respectively.

Here, we first take the linear model as an example to elab-
orate the concept of motion error based robust topology opti-
mization. The displacements of all the nodes in design domain
obeys

KU ¼ F ð7Þ
where K is the stiffness matrix, F is the load vector, and U is
the displacement vector. Taking the derivatives of (7), it is
obvious that
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Kμ
∂Uμ

∂ai
¼ ∂Fμ

∂ai
−
∂Kμ

∂ai
Uμ

� 	
ð8Þ

where Kμ, Fμ and Uμ are the mean stiffness matrix, load
vector and displacement vector, respectively. It should be not-

ed that βi ¼ ∂Uμ

∂ai and βi
out ¼ βi outð Þ. According to Ref

(Matthies et al. 1997), the partial derivatives of stiffness ma-
trix and load vector about ai can be approximated as

∂Kμ

∂ai
¼ Kξi−Kμ

ξi
∂Fμ

∂ai
¼ Fξi−Fμ

ξi

ð9Þ

where Kξi ¼ K að Þj j≠i; aj ¼ μi
j ¼ i; aj ¼ μi þ ξi

is the perturbation

stiffness matrix, and Fξi ¼ F að Þj j≠i; aj ¼ μi
j ¼ i; aj ¼ μi þ ξi

is the

perturbation load vector, and ξi is a small perturbation.
In the process of the robust design, a quality characteristic,

namely motion error is established to describe the level that
significantly affects product quality and customer satisfaction
(Huang and Zhang 2010). The best quality characteristic is
achieved in design procedure when the motion error is zero.
The deviation of motion error will certainly cause a quality
loss. Therefore, it is fundamentally necessary to deduce both
the mean value and the deviation of motion error in mecha-
nism synthesis procedure. The Taguchi quality loss function is
commonly used to quantify the quality loss for the uncertain
system (Chen et al. 2009, 2010). For a compliant mechanism,
the quality loss function can be given by

Q ¼ f e a;Xð Þ−tð Þ ð10Þ
where target t is zero for the mechanisms. The quality loss
function can be approximated by the second order Taylor se-
ries expansion at t, thus, (10) can be calculated by

Q≈Qje¼t þ
∂Q

∂e a;Xð Þ
����
e¼t

e a;Xð Þ

þ ∂2Q
∂2e a;Xð Þ

����
e¼t

e a;Xð Þ2 ð11Þ

According to Taguchi (Chen et al. 2010), the quality loss
function and the first order derivative at target are both zero,
moreover, the second derivative at target is a constant.
Therefore, (11) is converted to

Q≈he a;Xð Þ2 ð12Þ
where h is a constant variable represents the second derivative
at the target. Since the quality loss function is random, the
expectation of it is usually employed in robust design. Then,
the expectation of quality loss function is given by

E Qð Þ ¼ h μe a;Xð Þ2 þ σe a;Xð Þ2
h i

ð13Þ

Substituting (5) into (13), the expectation of quality loss func-
tion can be calculated as

E Qð Þ ¼ h uμout−uout

 �2

þ ∑
n

i¼1
βi
outσi

� �2� 	
ð14Þ

Then, the objective of the optimization model in (2) is derived
by finding the minimum value of E(Q). According to (14), it is
notable that once μi and σi of ai are specified, the expectation
value of quality loss function does not depend on the distribu-

tion type of ai, but the partial derivatives about ai, namely βi
out.

In other word, the robust synthesis of mechanism is essentially
to find an optimum result of which the mean value of motion
error and the partial derivatives of output motion with respect
to uncertain variable ai are at their minimum value, as shown
in Fig. 2.

3.2 Sensitivity analysis for the expectation of quality loss
function

To solve the topology optimization problems via density-
based approach, it is necessary to calculate the sensitivities
of the optimal objective (Sigmund 1997). According to (1)
and (14), the sensitivity of objective function is given by

∂E Qð Þ
∂xe

¼ C 2 uμout−uout

 � ∂uμout

∂xe
þ ∑

n

i¼1
2βi

outσ
2
i
∂βi

out

∂xe

� 	
ð15Þ

By using the method of SIMP (Bendsøe and Sigmund 2003).
The Young’s module E of the artificial material for each ele-
ment Ee is parameterized by taking the elemental relative den-
sity as

Ee ¼ xpeE* ð16Þ
where E∗ is the Young’s module of the fully solid material, xe
is the element density, and p is penalization factor. In accor-
dance with the SIMP approach, the original discrete 0-1 prob-
lem is converted to a continuous one. As shown in (15), the

key object to obtain the sensitivity is to calculate ∂uout
∂xe and ∂βi

out
∂xe .

Enlightened by reference (Sigmund 1997), assuming that

Kμλ ¼ ∂uμout
∂Uμ

, ∂u
μ
out

∂xe can be gained by

∂uμout
∂xe

¼ −pxp−1e λT
e K

e*
μ U

e
μ ð17Þ

where λT
e is the element value of adjoint vector λT, U e

μ is the

element displacement vector, Ke*
μ is the mean element stuffi-

ness matrix of eth finite element when the density of it is 1.

Furthermore, ∂βi
out

∂xe is calculated as follows

Motion error based robust topology optimization for compliant mechanisms under material dispersion and... 2165



∂βi
out

∂xe
¼ ∂βi

out

∂βi

� 	T ∂βi

∂xe
ð18Þ

Taking the derivative of (8), one obtains

∂Kμ

∂xe
βi þ Kμ

∂βi

∂xe
þ 1

ξi

∂Kξ

∂xe
−
1

ξi

∂Kμ

∂xe

� �
Uμ þ Kξi−Kμ

ξi

∂Uμ

∂xe
¼ 0; ai∈ E; νf g

∂Kμ

∂xe
βi þ Kμ

∂βi

∂xe
¼ 0; ai∈ f 1; f 2;…; f mf g

8>><
>>:

ð19Þ

When uncertain variable ai is a material related parameter, ∂β
∂xe

can be obtained by

Kμ
∂βi

∂xe
¼ −

∂Kμ

∂xe
βi þ 1

ξi

∂Kξi

∂xe
−
1

ξ

∂Kμ

∂xe

� �
Uμ þ Kξi−Kμ

ξi

∂Uμ

∂xe

� 	
ð20Þ

It should be noted thatKμUμ =Fμ. By taking derivative of this
equation, it is obvious that

Kμ
∂Uμ

∂xe
¼ −

∂Kμ

∂xe
Uμ ð21Þ

Substituting (21) into (20), it yields

Kμ
∂βi

∂xe
¼ −

∂Kμ

∂xe
βi þ 1

ξi

∂Kξi

∂xe
Uμ−

1

ξi
KξiK−1

μ

∂Kμ

∂xe
Uμ

� 	
ð22Þ

In accordance with (18), we arrive at

∂βi
out

∂xe
¼ −

∂βi
out

∂βi

� 	T
K−1

μ

∂Kμ

∂xe
βi þ 1

ξi

∂Kξi

∂xe
Uμ

� 	

þ 1

ξi

∂βi
out

∂βi

� 	T
K−1

μ KξiK−1
μ

∂Kμ

∂xe
Uμ ð23Þ

Introducing two adjoint vectors λ1i and λ2i into (23),
we have

Kμλ1i ¼ ∂βi
out

∂βi ð24Þ
and

KμK−1
ξi Kμλ2i ¼ ∂βi

out

∂βi ð25Þ

Moreover, since ∂βi
out

∂βi jð Þ

���
j≠out

¼ 0 and ∂βi
out

∂βi jð Þ

���
j¼out

¼ 1, the

adjoint vector λ1i can be easily obtained by the method
of matrix operation. By comparisons of (24) and (25), it
is significant that

Kμλ2i ¼ Kξiλ1i ð26Þ

Thus, the adjoint vector λ2i can be obtained by (26),

and ∂βi
out

∂xe can be efficiently calculated by

∂βi
out

∂xe
¼ −λT

1i
∂Kμ

∂xe
βi þ 1

ξi

∂Kξi

∂xe
Uμ

� 	
þ 1

ξi
λT
2i
∂Kμ

∂xe
Uμ ð27Þ

As each density variable corresponds to a unique mesh

element, the value of ∂βi
out

∂xe can be calculated by using

(28)

∂βi
out

∂xe
¼ −λT

1ie pxp−1e Ke*
μ β

ie þ 1

ξi
pxp−1e Ke*

ξiU
e
μ

� 	

þ 1

ξi
λT
2iepx

p−1
e Ke*

μ U
e
μ ð28Þ

where λT
1ie and λT

2ie are the elemental adjoint vectors,

β ie is elemental value of ∂U
∂ai , Ke*

ξi is the element

Fig. 2 Comparison of robust
synthesis and deterministic
synthesis
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stuffiness matrix when the density of eth finite element
is unity and the value of uncertain parameter ai is the
summation of its nominal value and perturbation value.

If the uncertain variable ai stands for load condition param-

eter, ∂β
i

∂xe can be obtained by

∂βi
out

∂xe
¼ −

∂βi
out

∂βi

� 	T
K−1

μ

∂Kμ

∂xe
βi ð29Þ

Furthermore, by introducing adjoint vector λT
1 into (29), the

sensitivity of an element e can be calculated by

∂βi
out

∂xe
¼ −pxp−1e λT

1ieK
e*
μ β

ie ð30Þ

In accordance with ∂βi
out

∂βi ¼ ∂βi
out

∂βi , it can be found that λ =λ1i.

To sum up, by substituting (29), (30) and (17) into (15), the
sensitivity of objective function is given by

∂E Qð Þ
∂xe

¼ C −2 uμout−uout

 �

pxp−1e λT
e K

e*
μ U

e
μ þ ∑

n

i¼1
2βi

outσ
2
i τ i

� 	
ð31Þ

where

τ i ¼
−pxp−1e λT

eK
e*
μ β

ie−
1

ξi
pxp−1e λT

e K
e*
ξi U

e
μ þ

1

ξi
λT
2iepx

p−1
e Ke*

μ U
e
μ; ai∈ E; νf g

−pxp−1e λT
e K

e*
μ β

ie ; ai∈ f 1; f 2;…; f mf g

8<
:

ð32Þ
By virtue of two adjoint vectors introduced in this section, the
sensitive analysis of quality loss function with respect to de-
sign variables can be easily conducted.

The major drawback of the linear projection function ap-
plied in this work is that the fading effect (existence of grey
elements) along the edge of structural members cannot be
prevented via the traditional Sigmud sensitivity filter ap-
proach, which is commonly regarded as the most popular
and powerful method for suppressing the numerical instability
of SIMP approach. The intermediate density elements will
potentially affect the robustness of the compliant mechanisms.
Therefore, it is necessary to eliminate the grey elements.
Based on traditional Sigmud sensitivity filter approach,
Zhang et al. developed an improved filter scheme which uses
three adjustable parameters to prevent the undesirable bound-
ary diffusion effect (Zhang et al. 2014). Such improved filter
scheme is considered in this paper for its effectiveness and
convenience, which can be expressed as

∂̂l̂
∂xe

¼ 1

xeð Þη þ ∑
4

j¼1
x j

 !υ

∑
N

i¼1
Ĥ̂i xið Þγ ∂l

∂xe

∑
N

i¼1
Ĥ̂i

ð33Þ

where ∂̂l
∂xe and ∂l

∂xe are filtered and unfiltered sensitivities of

objective or constraint functions; η, υ and γ are three adjust-

able parameters; Ĥ i is the weight factor; a more detailed ex-
planation of (33) can be found in Ref (Zhang et al. 2014).

It should be noted that the effectiveness of the improved
sensitivity filter is highly depended on the value of three ad-
justable parameters. When η and υ are small (far less than 1),
the undesirable boundary diffusion effect can be effectively
prevented. While, without a structural skeleton, the improved
sensitivity filter may potentially increase the time consump-
tion to find the optimum via SIMP framework. Therefore, in
this work, two optimization steps are introduced. In the first
steps (η = 1, υ = 0 and γ = 1), the improved sensitivity filter is
converted to traditional Sigmud sensitivity filter, and the op-
timum of this step can be the initial design of the second step.
In second step (according to Ref (Zhang et al. 2014), η = 0.1,
υ = 0.05 and γ = 2), the undesirable boundary diffusion effect
can be prevented with the help of the improved sensitivity
filter.

3.3 Solution strategy of robust synthesis for compliant
mechanism with desired motion output

As expounded above, the expectation of Taguchi quality loss
function is an effective way to quantify the robustness of
mechanisms with respect to the randomness of motion error.
Thus, robust topology optimization problem for a compliant
mechanism can be formulated as

Find X¼ x1; x2;…; xmð ÞT

Minimize ∑
K

j¼1
E Qj

out

� �
Subject to ∑

m

e¼1
xeVe−V ≤0

C≤C
xmin≤xe≤1

ð34Þ

where E Qj
out

� �
is the expectation of quality loss function for

the motion error corresponding to the output port j.
To conduct the robust topology synthesis of compliant

mechanism, the following steps should be executed.

Step1: Define the design formulae: The design domainmust
be defined and meshed with the finite elements. All
boundary constraints, load conditions, the uncertain
characteristics of uncertain parameters, desired out-
put motion, prescribed mean compliance and the
maximum allowance volume fraction must be
specified.

Step2: Calculate the mean value of output motion and its
corresponding sensitivities, for which three substeps
should be followed:
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i) Calculate the mean value of nodal displace-
ment vector Uμ and mean output motion uμout
by solving (7).

ii) Calculate the adjoint vector λ.
iii) Calculate the sensitives of mean output mo-

tion with respect to the design variables,

namely, ∂u
μ
out

∂xe by solving (17).

Step3: Approximate the first-order derivative of output mo-
tion with respect to the uncertain parameter ai and its
corresponding sensitives with respect to the design
variables, for which four sbusteps should be followed:

i) Calculate βi and βi
out by substituting (9) into

(8).
ii) If ai stands for a material related parameter,

skip this substep. Otherwise, calculate ∂βi
out

∂xe
solving (30), where, λ1 =λ.

iii) Calculate the adjoint vector λ2 by solving
(26).

iv) Calculate ∂βi
out

∂xe by substituting λ1 and λ2 into
(28).

Repeat from substep i) to iv) until all the uncertain variables
are taken into account.

Fig. 3 Flowchart of the motion
error based robust topology
optimization for compliant
mechanisms
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Step4: Calculate the objective function E(Q) by substituting
uμout and βi

out into (14).
Step5: Calculate the sensitivity of objective function with

respect to the design variables, namely, ∂E Qð Þ
∂xe by

substituting λ1, λ1,
∂uμout
∂xe and ∂βi

out
∂xe into (31) and (32).

Furthermore, calculate the value of the constraints
and their corresponding sensitivities with respect to
design variables

Step6: Conduct the mesh independent filtering to the sensi-
tivity number by (33). Moreover, re-distribute the
density vector X by using the Method of Moving
Asymptotes (MMA)

Step7: Repeat from step 2 to step 6 until the optimization
converges are satisfied.

Besides, the whole procedure of motion error based robust
topology optimization for compliant mechanisms is exhibited
in Fig. 3.

3.4 Discussion of the motion error based robust topology
synthesis for geometrically non-linear compliant
mechanisms

For compliant mechanisms involving large displacement or
large rotation as the examples in Ref (Buhl et al. 2000), it
shows that the difference in stiffness obtained by linear and
non-linear model are generally small when the deformation is
small, and such difference is increasing along with the growth
of deformation. Therefore, it is necessary to consider the geo-
metrically non-linear effect in the process of designing a com-
pliant mechanism with large deformation demands. The geo-
metrically non-linear effect is important for designing a com-
pliant mechanism with large deformation. Many researchers
did a lot of tremendous work on the solution strategies of
geometrically non-linear compliant mechanism design
(Pedersen et al. 2001; Buhl et al. 2000; Jung and Gea 2004;
Gea and Luo 2001).

Here, we discuss how to apply the proposed motion error
based robust topology synthesis in the design procedure of
compliant mechanisms with large deformation. The first-
order Taylor series expansion is applied to evaluate the ran-
dom characteristics of geometrically non-linear structures
when the variances of random inputs are small (Chen et al.
2016; Jung and Cho 2004). Unlike the linear model, the tan-
gent stiffness matrix KT and displacement vector U is solved
iteratively by using the Newton-Raphson method (Buhl et al.

2000). It is impossible to calculate βi
out directly by (8) and (9).

Therefore, we have to applied the difference method to ap-
proximate the differential, namely

βi
out ¼

uoutξi−uμout
ξ

ð35Þ

where •ξi ¼ • að Þj j≠i; aj ¼ μi
j ¼ i; a j ¼ μi þ ξ

, ξ is a small perturbation.

In the SIMP approach of geometrically non-linear compliant
mechanisms, the elasticity tensor of the artificial material for
each element is parameterized by taking the elemental relative
densities as

De ¼ xpeD0 ð36Þ

where the definition of xe and p are same with (16), D0 is the
linearized elasticity tensor of the fully solid material. Then, the

sensitivity of βi
out can be computed by

∂βi
out

∂xe
¼ 1

ξ
uoutξi
∂xe

−
uμout
∂xe

� �
¼ −

1

ξ
λT
e1

pμe
∂xe

−λT
e2

peξi
∂xe

� �
ð37Þ

where Κμ
Tλ1 ¼ ∂uμout

∂Uμ
and Κξi

Tλ2 ¼ ∂uoutξi
∂U ξi

, pμ and pξi are the

mean internal force vector and the internal force vector when
one of the uncertain input is the summation of mean value and
a small perturbation .

According to (36), (37) can be converted to

∂βi
out

∂xe
¼ −

P
ξxe

λT
e1p

μ
e−λ

T
e2peξi

� � ð38Þ

Then, the sensitivity of robust index for geometrically non-
linear compliant mechanism can be calculated by

Fig. 4 Design domain for the compliant inverter

Table 1 Uncertainty characteristics of the compliant inverter

Fin E ν

Mean 1μN 10MPa 0.3

Standard deviation 0.1μN 1MPa 0.03

Distribution Normal Weibull Weibull

α – 10.428 0.31283

β – 12.285 12.285
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∂E Qð Þ
∂xe

¼ h −2 uμout−uout

 � p

xe
λT
e1p

μ
e− ∑

n

i¼1
2βi

outσ
2
i
P
ξxe

λT
e1p

μ
e−λ

T
e2peξi

� �� 	

ð39Þ
Hence, with the sensitivity of the objective function, the mo-
tion error based robust synthesis for the geometrically non-
linear compliant mechanisms can be effectively conducted.

For geometrically non-linear finite element analysis, the
problem of one-convergence will occurs in low-density ele-
ments during the optimization process. Some researchers con-
centrated on solving this numerical instability problem.
Sigmund proposed the method of “Convergence criterion re-
laxation” (Sigmund 2001). Bruns et al. developed the method
of “Element removal” (Bruns and Tortorelli 2003). Luo et al.
presented the method of “additive hyper-elasticity technique”
(Luo et al. 2015). All these great methodologies were success-
fully applied in SIMP framework. However, since the re-
moved elements and the additive hyper-elasticity elements
may influence the robustness of the compliant mechanisms,
therefore, the method of convergence criterion relaxation may
be the best choice to be utilized to conduct the motion error
based topology optimization of geometrically non-linear com-
pliant mechanisms presented in this work.

It is obvious that the motion error based robust synthesis
for linear and geometrically non-linear compliant mechanisms
are essentially the same. One more point should be empha-
sized is that the first-order approximation for geometrically
non-linear strictures is sufficiently accurate only when the
deviations of uncertain parameters are relatively small. In the

situation that the deviations of uncertain parameters are large,
the non-liner approximation strategies should be utilized, such
as high-order Taylor series expansions, the high dimensional
stochastic response surface method (SRSM), high order per-
turbation method and even Monte-Carlo simulation.
Obviously, such non-liner approximation strategies will
definitely decrease the degree of efficiency. In summary,
we have to evaluate the computational cost and accura-
cy to decide whether the proposed method is suitable
for the any particular issue.

4 Numerical examples

In this section, the accuracy of the proposed robustness esti-
mation approach is verified by a Single-Input and Single-
Output compliant mechanism. Furthermore, the technique of
the robust topology synthesis is applied in two engineering
problems: (1) the synthesis for Two-Input and Two-Output
compliant mechanism, (2) the synthesis for Three-Input and
Two-Output compliant mechanism. Traditional deterministic
topology synthesis is also used for comparisons purpose. The
advantage of the proposed synthesis method can be clearly
demonstrated in the following statements.

Table 2 Comparison of the
uncertain propagation results
corresponding to the motion at
output port obtained by Monte-
Carlo simulation and first-order
approximation

First-order approximation Monte-Carlo simulation

Mean -13.2273μm -13.308μm

Error rate of mean value 0.59%

Standard deviation 1.7112μm 1.7348μm

Error rate of standard deviation 1.3604%

Computational time 8.12 seconds 5.5 hours

Computer configuration CPU: inter core i7-3770 RAM:16G

Fig. 6 Estimation error rates of standard deviation with different
perturbation values

Fig. 5 Topology synthesis result of the compliant inverter

2170 X. Wang et al.



4.1 Uncertain propagation analysis for a hinge free
compliant mechanism

The displacement inverter is used as a numerical example to
show the accuracy of the uncertain propagation based on the
first-order approximation for compliant mechanisms with ma-
terial dispersion and uncertain external forces. To demonstrate
the effectiveness of the proposed method, the result will be
compared to the one obtained by the Monte-Carlo simulation
(1 × 105 samples).

As shown in Fig. 4, the design domain of displacement
inverter is 120 × 120μm2 which is discretized with 120 × 120
4-node quadrilateral elements. An input force Fin = 1μN is
applied at the input port which is the center point of the left
edge. The output port is located at the center of right edge
which is designed to produce a horizontal displacement uout.
An artificial spring with stiffness kout = 0.01μN/μm is applied
at the output port to simulate the resistance from the work-
piece. Moreover, the input force is assumed to be normally
distributed, the material parameters are assumed to beWeibull
distributed, and the uncertain properties are listed in Table 1.
The topology synthesis result is shown in Fig. 5, the statistical
parameters of the output motion obtained by MCS and the
proposed method are are listed in Table 2. Furthermore, the
influence of estimation error by the different values of small
perturbation ξ in (9) is also discussed, and the error rates of
standard deviation estimation corresponding to deferent
values of ξ (1e − 6 ≤ ξ ≤ 1e − 3) are shown in Fig. 6.

It is obvious that the proposed method is sufficiently accu-
rate to approximate the motion error of linear compliant mech-
anisms. Moreover, the proposed method causes much less
computational cost than MCS. However, it worth noting that
the proposed method will potentially overestimate the stan-
dard deviation of result due to the ignorance of higher orders.
In particular, in the situation where geometrically non-linear is
taken into account and the deviations of uncertainties are very
large, the accuracy may be intolerable.

It is obvious that for a linear system, the value of perturba-
tion will not affect the estimation accuracy. However, the re-
lationship between the output motion and the Poisson ratio v is
weak non-linear, therefore, the value of the small perturbation
ξ severely affects the estimation accuracy of standard devia-
tion, as shown in Fig. 6. It is significant that the estimation
errors in Fig. 6 can be divided in three groups. (1) In the first
group (ξ ≤ 3e − 5), since the difference in the denominator of
(9) is by divided by a super small value, the computational
instability of solution procedure is over amplified and the
estimation error is intolerable. Equation (2) In the second

Fig. 8 Result of the Two-Input and Two-Output compliant mechanism
obtained by the traditional deterministic topology synthesis

Fig. 9 Result of the Two-Input and Two-Output compliant mechanism
obtained by the robust topology synthesis

Fig. 7 Design domain for the Two-Input and Two-Output compliant
mechanism

Table 3 Uncertainty
characteristics of the
two-input and two-
output compliant
mechanism

Mean Standard deviation

Fin1 1μN 0.04μN

Fin2 1μN 0.1μN

E 10MPa 1MPa

ν 0.3 0.03
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group (3e − 5 ≤ ξ ≤ 1.3e − 4), the estimation error is relatively
small, indicating that the partial derivatives approximation is
sufficiently accurate. Nevertheless, for the reason that the re-
lationship between the output motion and the Poisson ratio ν is
weakly non-linear, the estimation error of the standard devia-
tion still exists by the virtue of the higher-order ignorance in
(3) and (5). Equation (3) In the last group (1.3e − 4 ≤ ξ), the
estimation error is in relatively stable and in a low level. The
estimation error in this group is composed by two parts, the
first part is the error of partial derivatives approximation, and
the second one originates from the higher-order ignorance in
the linearization treatment. Based on the aforementioned con-
clusions, the small perturbation ξ is chosen as 1e − 4 in all
numerical examples.

4.2 The robust topology synthesis of the MIMO compliant
mechanisms

CASE 1: two-input and two-output compliant mechanism
As shown in Fig. 7, the design domain of a Two-Input and
Two-Output compliant mechanism is 120 × 120μm2 which is
discretized with 120 × 120 4-node quadrilateral elements.
Two input forces Fin1 and Fin2 are applied at two input ports
which are located at the left edge of the design domain. The
output ports are located at the right edge of design domain,
which are designed to produce two horizontal displacements,
uout1 and uout2. Two artificial springs with stiffness ks =
0.01μN/μm are applied at the output ports to simulate the

resistance from the work-pieces. The desired outputs are
udesiredout1 ¼ −6μm and udesiredout2 ¼ −7μm. The volume fraction
of the final design is limited to be 30%.Moreover, the material
properties and input force are random variables which are
assumed to be random variables and the statistical parameters
are list in Table 3. The result of the traditional deterministic
topology synthesis and the robust topology synthesis are
shown in Figs. 8 and 9, respectively. The mean values and
standard deviations of deterministic synthesis result and ro-
bust synthesis result are listed in Table 4. To quantify the
effectiveness of the proposed motion error based robust topol-
ogy optimization, the descending rate is established and de-
fined as

Descending rate ¼ σR
error−σD

error

σR
error

� 100% ð40Þ

where σR
error and σ

D
error are the standard deviations of the output

motion errors of the results obtained by the robust topology
optimization and the deterministic topology optimization,
respectively.

CASE 2: three-input and two-output compliant mecha-
nism The synthesis problem of a Three-Input and Two-
Output compliant is shown in Fig. 10. Three input forces
Fin1 , Fin2 and Fin3 are applied at three input ports. The output
port is located at the right edge of design domain designed to
produce a horizontal displacements uout1 and a vertical dis-
placement uout2. Two artificial springs with stiffness kout =
0.01μN/μm are applied at the output port. The desired outputs
are udesiredout1 ¼ −3μm and udesiredout2 ¼ 7μm. The volume fraction
of the final design is limited to be 30%.Moreover, the material
properties and input forces are random variables which are
assumed to be random variables and the statistical parameters
are listed in Table 5. The means and standard deviations of

Fig. 10 Design domain for the Three-Input and Two-Output compliant
mechanism

Table 4 Comparison of the
motion errors corresponding to
the two-input and two-output
compliant mechanism obtained
by two synthesis approaches

Output ports Synthesis method μerror (μm) σerror (μm) Descending rate

Port 1 Traditional method 0.0277 0.6229 9.34%
Proposed method 0.0226 0.5697

Port 2 Traditional method 0.0192 0.7230 7.77%
Proposed method 0.0213 0.6709

Table 5 Uncertainty
characteristics of the
three-input and two-
output compliant
mechanism

Mean Standard deviation

Fin1 1μN 0.04μN

Fin2 1μN 0.1μN

Fin3 1μN 0.07μN

E 10MPa 1MPa

ν 0.3 0.024
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deterministic synthesis result and robust synthesis result are
list in Table 6. The result of the traditional deterministic topol-
ogy synthesis and the robust topology synthesis are shown in
Figs. 11 and 12, respectively.

According to the information listed in Tables 4 and 6, some
discussions can be further summarized as follows

(1) Compared with the traditional deterministic synthesis
method, the robust synthesis method proposed in this
paper can effectively reduce the deviation of output dis-
placement. As listed in Tables 4 and 6, the standard de-
viations of two output motions are definitely reduced.

(2) By the optimization results of CASE1 and CASE2, it is
significant that the descending rates of the standard de-
viations of CASE2 are much larger than the ones in
CASE1. It indicates that the proposed robust synthesis
method has a greater advantage over deterministic syn-
thesis method for the MIMO compliant mechanisms
with a more complicated load condition.

(3) For the problem of designing a MIMO compliant mech-
anism, the robust synthesis method has a great advantage
over the deterministic synthesis method. According to
(31), the sensitivity of Taguchi index consists of two
parts, the first being used to reduce the mean value of
motion error, and the second for reducing the partial de-
rivatives of motion error to uncertain variables.
However, for a SISO compliant mechanism, there is only
one input force applied on the design domain. Based on

(8) and (9), it should be noted that ∂Fμ

∂ f in
¼ ∂Fμ

∂ f in
, and

obviously ∂U
∂ f in

equals to U
f in
which has no relationship with

stiffness matrix, which is why the robust synthesis can-
not reduce the deviation caused by uncertain input force
for SISO compliant mechanism. As for MIMO compli-

ant mechanism, U
f iin

equals to K−1
μ

∂Fμ

∂ f iin
, and ∂Fμ

∂ f iin
≠ ∂Fμ

∂ f iin
.

Therefore, the robust topology synthesis can effectively
reduce the partial derivatives of motion error to uncertain
input force.

5 Conclusions

With the rapid technological advance, the robust topology
synthesis of compliant mechanisms has attracted more and
more concerns and discussions. Currently, most of the ap-
proaches for the robust topology synthesis are compliance
based approach. In some practical circumstance, however
the output motion accuracy is of major concern. It is necessary
to find an approach and effective solution strategy which can
ensures that the motion error of a compliant mechanism
reaches zero robustly against all the uncertainties through to-
pology optimization. In view of this, this paper introduces the
expectation of Taguchi quantity loss function as the topology
optimization objective, and develops a complete solution pro-
cedure of the sensitive analysis for the robustness index. As
shown by the results of numerical examples, it is obvious that
the motion error based robust topology synthesis has a great
advantage over the traditional deterministic approach.

Fig. 11 Result of the Three-Input and Two-Output compliant mechanism
obtained by the traditional deterministic topology synthesis

Fig. 12 Result of the Three-Input and Two-Output compliant
mechanism obtained by the robust topology synthesis

Table 6 Comparison of the
motion errors corresponding to
the three-input and two-output
compliant mechanism obtained
by two synthesis approaches

Output ports Synthesis method μerror (μm) σerror (μm) Descending rate

Horizontal Traditional method 0.0855 0.3318 16.87%
Proposed method 0.0368 0.2839

Vertical Traditional method 0.0377 0.6979 -1.43%
Proposed method 0.0538 0.7080
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Furthermore, it shows that the proposed method can be more
effective when the load conditions and the functional require-
ments are more complicated.
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