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Steady thermocapillary migration of a droplet in a uniform temperature gradient combined with a
radiation energy source at large Marangoni numbers
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Steady thermocapillary droplet migration in a uniform temperature gradient combined with a radiation energy
source at large Reynolds and Marangoni numbers is studied. To reach a terminal quasisteady process, the
magnitude of the radiation energy source is required to preserve the conservative integral thermal flux across
the surface. Under a quasisteady state assumption, an analytical result for the steady thermocapillary migration
of a droplet at large Reynolds and Marangoni numbers is derived by using the method of matched asymptotic
expansions. It is shown that the thermocapillary droplet migration speed increases as the Marangoni number
increases, while a radiation energy source with a sine square dependence is provided.
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I. INTRODUCTION

A droplet in an external fluid or on a solid substrate can
be driven by body forces generated in gravitational, electric,
magnetic, and ultrasonic fields [1]. Even in the absence of
body forces, a variable surface tension along the interface
can also drive the droplet migration in an external fluid
or solid substrate. Thermocapillary migration of a droplet
in a microgravity environment is a very interesting topic
in both fundamental hydrodynamic theory and engineering
applications [2]. Young, Goldstein, and Block [3] carried out an
initial study on the thermocapillary migration of a droplet in a
uniform temperature gradient in the limits of zero Reynolds
(Re) and Marangoni (Ma) numbers (YGB model). Subra-
manian [4] proposed the quasisteady state assumption and
obtained analytical results with high-order expansions at small
Ma numbers. The thermocapillary droplet migration processes
at small Ma numbers are understood very well in a series of
theoretical analyses, numerical simulations, and experimental
investigations [5,6]. However, the physical behaviors at large
Ma numbers appear rather complicated due to the momentum
and energy transfer through the interface of two-phase fluids.
Meanwhile, to perform a feasible numerical simulation of ther-
mocapillary migration of a droplet at large Ma numbers is still
a challenge due to very thin thermal boundaries [O(Ma−1/2)]
and very long migration times [O(Ma)]. Under the assumption
of a quasisteady state, Balasubramaniam and Subramanian
reported [7] that the migration speed of a droplet increases
as the Ma number increases, in qualitative agreement with
a corresponding numerical simulation [8]. The experimental
investigation carried out by Hadland et al. [9] and Xie et al. [10]
showed that the droplet migration speed decreases as the Ma
number increases, which qualitatively disagrees with the above
theoretical and numerical results. Wu and Hu [11] and Wu [12]
identified a nonconservative integral thermal flux across the
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surface in steady thermocapillary droplet migration at large
Ma (Re) numbers, which indicates that thermocapillary droplet
migration at large Ma (Re) numbers is an unsteady process.
To preserve a conservative integral thermal flux across the
surface, two methods, i.e., adding a thermal source inside
the droplet or at the surface, were also suggested. With a
thermal source added inside the droplet, an analytical result
of steady thermocapillary migration of the droplet at large Ma
(Re) numbers was determined [13]. Therefore, thermocapillary
droplet migration at large Ma numbers remains a topic to be
studied with respect to its physical mechanism.

In the above studies, the variable surface tension exerted
on the interface of two phases is generated by adding a
nonuniform temperature field. On the other hand, a radiative
heating contrary to the direction of movement, which provides
a thermal source at the surface through absorption, can also
form a variable surface tension exerted on the interface. Oliver
and Dewitt [14] first analyzed thermocapillary migration of
a droplet caused by thermal radiation in a microgravity en-
vironment in the zero Re and Ma number limits. Rednikov
and Ryzzantsev [15] independently derived similar results and
determined the deformation of the droplet. Shen [16] and
Khodadadi and Zhang [17] numerically studied the effects of
thermocapillary convection on the melting of droplets for a
short duration and uniform heat pulses under zero gravity con-
ditions at large Ma numbers, respectively. Lopez et al. [18] ex-
perimentally observed thermocapillary migration of a droplet
caused by laser beam heating due to the absorption of laser
radiation in making a strongly nonhomogeneous distribution
of temperature inside the droplet as well as at its surface.

In this paper, when a radiation energy source contrary to
the direction of movement is placed to preserve the conserva-
tive integral thermal flux across the surface, thermocapillary
droplet migration at large Re and Ma numbers can thus
reach a quasisteady process. Steady thermocapillary droplet
migration in a uniform temperature gradient combined with
a radiation energy source at large Re and Ma numbers is
studied. In comparing with the previous method to preserve
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a conservative integral thermal flux across the surface [13],
the current method, i.e., placing the radiation energy source on
the outside of the droplet, is easier to carry out in a real space
experiment. In principle, the previous method adds a thermal
source in the energy equation within the droplet, but the current
method adds a heat flux at the interface of the droplet. The
paper is organized as follows. In Sec. II, the magnitude of the
radiation energy source is required to preserve the conservative
integral thermal flux across the surface. An analytical result
for steady thermocapillary droplet migration at large Re and
Ma numbers is determined in Sec. III. Finally, in Sec. IV,
conclusions and discussions are given.

II. PROBLEM FORMULATION

Consider the thermocapillary migration of a spherical
droplet of radius R0, density γρ, dynamic viscosity αμ, ther-
mal conductivity βk, and thermal diffusivity λκ in a continuous
phase fluid of infinite extent with density ρ, dynamic viscosity
μ, thermal conductivity k, and thermal diffusivity κ under a
uniform temperature gradient G in the direction of movement
and an inhomogeneous radiation energy source S contrary to
the direction of movement. It is assumed that the continuous
phase fluid is transparent and that the radiation is absorbed
totally on the droplet surface. The rate of change of the
interfacial tension between the droplet and the continuous
phase fluid with temperature is denoted byσT . Unsteady energy
equations for the continuous phase and the fluid in the droplet
in a laboratory coordinate system denoted by a bar are written
as follows,

∂T̄

∂t
+ v̄∇̄T̄ = κ�̄T̄ ,

(1)
∂T̄ ′

∂t
+ v̄′∇̄T̄ ′ = λκ�̄T̄ ′,

where v̄ and T̄ are velocity and temperature, and a prime
denotes quantities in the droplet. The solutions of Eqs. (1)
have to satisfy the boundary conditions at infinity,

T̄ → T0 + Gz̄, (2)

where T0 is the undisturbed temperature of the continuous
phase and the boundary conditions at the interface r̄b of the
two-phase fluids,

T̄ (r̄b, t ) = T̄ ′(r̄b, t ),
(3)

∂T̄

∂n
(r̄b, t ) + S = β

∂T̄ ′

∂n
(r̄b, t ).

Under the quasisteady state assumptions, steady axisym-
metric energy equations nondimensionalized by taking the
radius of the droplet R0, the YGB model velocity vo =
−σT GR0/μ, and GR0 as reference quantities to make the
coordinates, velocity, and temperature dimensionless, can be
written in a spherical coordinate system (r, θ ) moving with a
droplet velocity V∞ as follows,

1 + u
∂T

∂r
+ v

r

∂T

∂θ
= ε2�T ,

(4)

1 + u′ ∂T ′

∂r
+ v′

r

∂T ′

∂θ
= λε2�T ′,

o

S= sin²

G

V

FIG. 1. A schematic diagram of thermocapillary droplet migra-
tion under the combined actions of a temperature gradient G and a
radiation energy source S = � sin2 θ in an axisymmetric spherical
coordinate system moving with a droplet velocity V∞.

where the small parameter ε and Ma number are defined,
respectively, as

ε = 1√
Ma V∞

(5)

and

Ma = v0R0

κ
. (6)

The boundary conditions (2) and (3) are rewritten, respectively,
as

T → r cos θ, as r → ∞, (7)

and at the interface of two-phase fluids,

T (1, θ ) = T ′(1, θ ),

∂T

∂r
(1, θ ) + � sin2 θ cos θ = β

∂T ′

∂r
(1, θ ), 0 � θ � π/2,

∂T

∂r
(1, θ ) = β

∂T ′

∂r
(1, θ ), π/2 < θ � π.

(8)

The inhomogeneous radiation energy source nondimensional-
ized by the reference quantity kG is assumed as S = � sin2 θ .
Its contribution to the interface thermal flux S cos θ is zero
at θ = π/2, which reveals that the upper and lower interface
thermal boundary conditions in Eq. (8) are continuous. A
schematic diagram of thermocapillary droplet migration in a
coordinate system moving with a droplet speed V∞ is shown
in Fig. 1.

For large Re numbers (Re = v0R0
ν

), the velocity fields of
the continuous phase and the fluid within the droplet can be
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FIG. 2. A schematic diagram of potential flows and boundary
layer flows of thermocapillary droplet migration at large Re numbers.
Solid line: The interface of the droplet. Dashed/long-dashed lines: The
interface between potential flow (white/green zone) and boundary
layer flow (blue/yellow zone) in the continuous flow/within the
droplet. Dashed-dotted lines: Streamlines of the potential flows inside
and outside the droplet.

described by potential flows and boundary layer flows, as
shown in Fig. 2. The scaled potential flow fields around a fluid
sphere,

u = − cos θ

(
1 − 1

r3

)
,

(9)

v = sin θ

(
1 + 1

2r3

)
,

and

u′ = 3

2
cos θ (1 − r2),

(10)

v′ = −3

2
sin θ (1 − 2r2),

are taken as those in the continuous phase and within the
droplet, respectively [19,20]. It is noticed that the potential flow
fields (9) and (10) for large Re numbers may be obtained from
the general solutions for small Re numbers by setting Dn = 0,
n � 3 [21,22]. For large Ma numbers, the temperature field at
infinity in Eq. (7) is further expressed as [11]

T ≈ r cos θ − 1

2r2
cos θ + o(1). (11)

Integrating Eqs. (4) in the continuous phase domain (r ∈
[1, r∞], θ ∈ [0, π ]) with the boundary condition (11) and
within the droplet region (r ∈ [0, 1], θ ∈ [0, π ]), respectively,
we obtain∫ π

0

∂T

∂r
(1, θ ) sin θdθ+

∫ π/2

0
� sin3 θ cos θdθ = − 1

3ε2
+ �

4

(12)

and ∫ π

0

∂T ′

∂r
(1, θ ) sin θdθ = 2

3λε2
. (13)

From Eqs. (12) and (13), we have

β

∫ π

0

∂T ′

∂r
(1, θ ) sin θdθ −

∫ π

0

∂T

∂r
(1, θ ) sin θdθ

−
∫ π/2

0
� sin3 θ cos θdθ = 1

3ε2

(
1 + 2β

λ

)
− �

4
. (14)

For large Ma numbers and finite V∞, Eqs. (12) and (13) should
satisfy the thermal flux boundary condition (8), i.e., the right-
hand side of Eq. (14) will be zero. So, we have

� = 4

3ε2

(
1 + 2β

λ

)
= 4

3

(
1 + 2β

λ

)
V∞ Ma, (15)

which preserves the conservative integral thermal flux across
the surface. In following, we will focus on the steady ther-
mocapillary migration of a droplet in a uniform temperature
gradient G combined with an external thermal radiation source
S and determine the dependence of the migration speed on large
Ma numbers.

III. ANALYSIS AND RESULTS

A. Outer temperature field in the continuous phase

By using an outer expansion for the scaled temperature field
in the continuous phase,

T = T0 + εT1 + o(ε), (16)

the energy equation for the outer temperature field in its leading
order can be obtained from Eqs. (4) as follows,

1 + u
∂T0

∂r
+ v

r

∂T0

∂θ
= 0. (17)

By using the coordinate transformation from (r, θ ) to (ψ, θ )
in solving Eq. (17), its solution can be written as

T0(r, θ ) = G(ψ ) −
∫

2r4

2r3 + 1

dθ

sin θ
, (18)

where G(ψ ) is a function of ψ (the stream function in the
continuous phase). Following Refs. [7,13], the solution near
r = 1 is simplified as

T0(r, θ ) =
(

1 + π

6
√

3
− 1

6
ln 432

)
− 1

18

(
π√

3
+ ln 432

)

×
(

r2 − 1

r

)
sin2 θ + 1

3
ln

(
r2 − 1

r

)

+ 2

3
ln(1 + cos θ ) + 2

9

(
r2 − 1

r

)
cos θ

+ 1

9

(
r2 − 1

r

)
ln

(
r2 − 1

r

)
sin2 θ

+ 2

9

(
r2 − 1

r

)
sin2 θ ln(1 + cos θ ). (19)

In the boundary layer approximation near the interface, the
convective transport term must be of the same order as the
conduction term. By using the scaled radial coordinate in
the boundary layer,

x = r − 1

ε
, (20)
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the temperature field near the interface can be expressed as

t (x, θ ) = 1 + π

6
√

3
− 1

6
ln 48 + 2

3
ln

(
1 + cos θ

sin θ

)

+ 1

3
x sin2 θε ln ε + o(ε ln ε). (21)

B. Outer temperature field within the droplet

By using the outer expansion for the scaled temperature
field within the droplet in Eqs. (4),

T ′ = 1

ε2
T ′

−2 + 1

ε
T ′

−1 + T ′
0 + o(1), (22)

the equation in its leading order can be written as

u′ ∂T ′
−2

∂r
+ v′

r

∂T ′
−2

∂θ
= 0. (23)

Its solution is

T ′
−2 = F0(ψ ′), (24)

where ψ ′ = 3
4 sin2 θ (r4 − r2) is the stream function within the

droplet. The unknown function F0(ψ ′) can be obtained from
the following equation for the temperature field T ′

0 in its second
order,

1 + u′ ∂T ′
0

∂r
+ v′

r

∂T ′
0

∂θ
= λ�F0. (25)

Following Ref. [7], in solving Eq. (25), the coordinate
transformation from (r, θ ) to (m, q ) is applied in the form of

m = −16

3
ψ ′, q = r4 cos4 θ

2r2 − 1
, (26)

where m and q denote the streamlines and their orthogonal
lines, respectively. The solution of Eq. (25) is thus written as

T ′
−2(r, θ ) = F0 = 1

λ

[
B ′ − 1

16
m + 3

256

(
3 ln 2 − 1

3

4

)
m2

− 3

512
m2 ln m

]
+ o(m2 ln m), (27)

where B ′ is an unknown constant. Similarly, by using the scaled
radial coordinate in the boundary layer,

x ′ = 1 − r√
λε

, (28)

the temperature field near the interface can be expressed as
follows,

t ′(x ′, θ ) = − 1

2
√

λ
x ′ sin2 θ

1

ε
− 3

8
x ′2 sin4 θ ln ε + o(ln ε).

(29)

C. Inner temperature fields in the leading order

By using inner expansions for the continuous phase and the
fluid in the droplet,

t (x, θ ) = t−1
1

ε
+ tl0 ln ε + o(ln ε), (30)

t ′(x ′, θ ) = t ′−1
1

ε
+ t ′l0 ln ε + o(ln ε), (31)

and the inner variables given in Eqs. (20) and (28), the scaled
energy equations for the inner temperature fields in the leading
order can be written as follows,

−3x cos θ
∂t−1

∂x
+ 3

2
sin θ

∂t−1

∂θ
= ∂2t−1

∂x2
, (32)

−3x ′ cos θ
∂t ′−1

∂x ′ + 3

2
sin θ

∂t ′−1

∂θ
= ∂2t ′−1

∂x ′2 . (33)

The boundary conditions are

t−1(0, θ ) = t ′−1(0, θ ),

δ
∂t−1

∂x
(0, θ ) + ωδ sin2 θ cos θ = −∂t ′−1

∂x ′ (0, θ ), 0�θ �π/2,

δ
∂t−1

∂x
(0, θ ) = −∂t ′−1

∂x ′ (0, θ ), π/2<θ �π,

t−1(x → ∞, θ ) → 0,

t ′−1(x ′ → ∞, θ ) → B − 1

2
√

λ
x ′ sin2 θ, (34)

where δ = √
λ/β and ω = �ε2 = 2

3 (1 + 2β

λ
). We transform

the independent variables from [(x, x ′), θ ] to [(η, η′), ξ ] and
the functions from (t−1, t

′
−1) to (f0, f

′
0) as

(η, η′) =
(

3

2
x sin2 θ,

3

2
x ′ sin2 θ

)
,

ξ = 1

2
(2−3 cos θ + cos3 θ )= 1

2
(2+ cos θ )(1 − cos θ )2,

(35)

and

f0(η, ξ ) = t−1(x, θ ),
(36)

f ′
0(η′, ξ ) = t ′−1(x ′, θ ) − B + 1

2
√

λ
x ′ sin2 θ.

The corresponding energy equations for f0, f
′
0 and the bound-

ary conditions can be written as follows,

∂f0

∂ξ
= ∂2f0

∂η2
,

∂f ′
0

∂ξ
= ∂2f ′

0

∂η′2 , (37)

and

f0(0, ξ ) = f ′
0(0, ξ ) + B,

δ
∂f0

∂η
(0, ξ ) = −∂f ′

0

∂η′ (0, ξ ) + 1

3
√

λ
+ �(ξ ), 0 � ξ � 1,

δ
∂f0

∂η
(0, ξ ) = −∂f ′

0

∂η′ (0, ξ ) + 1

3
√

λ
, 1 < ξ � 2,

f0(η → ∞, ξ ) = 0,

f ′
0(η′ → ∞, ξ ) = 0, (38)

where �(ξ ) = − 2ωδ
3 cos θ = − 2ωδ

3 (cos φ

3 − √
3 sin φ

3 ), and
φ = arccos(1 − ξ ) in Shengjin’s formula [23]. To solve
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Eqs. (37), the initial conditions are provided below,

f0(η, 0) = 0,

f ′
0(η′, 0) = f ′

0[η′, ξ (π )] = f ′
0(η′, 2) = g0(η′), (39)

g0(η′ → ∞) → 0.

Following the methods given by Carslaw and Jaeger [24] and Harper and Moore [19], the solutions of Eqs. (37) for the continuous
phase and the fluid in the droplet can be respectively determined as

f0(η, ξ ) = 1

1 + δ

{
− 1√

π

∫ ξ

0
�(ξ − τ ) exp

(
− η2

4τ

)
dτ

τ 1/2
+

(
B + η

3
√

λ

)
erfc

(
η

2
√

ξ

)

+ 1√
πξ

∫ ∞

0
g0(η∗) exp

[
− (η + η∗)2

4ξ

]
dη∗

}
(0 � ξ � 1),

f0(η, ξ ) = 1

1 + δ

{
− 1√

π

∫ ξ

0
�(ξ − τ ) exp

(
− η2

4τ

)
dτ

τ 1/2
+ 1√

π

∫ ξ−1

0
�(ξ − 1 − τ ) exp

(
− η2

4τ

)
dτ

τ 1/2

+
(

B + η

3
√

λ

)
erfc

(
η

2
√

ξ

)
+ 1√

πξ

∫ ∞

0
g0(η∗) exp

[
− (η + η∗)2

4ξ

]
dη∗

}
(1 < ξ � 2), (40)

and

f ′
0(η′, ξ ) = δ

1 + δ

{
− 1√

πδ

∫ ξ

0
�(ξ − τ ) exp

(
−η′2

4τ

)
dτ

τ 1/2
−

(
B − η′

3δ
√

λ

)
erfc

(
η′

2
√

ξ

)}

+ 1

2
√

πξ

∫ ∞

0
g0(η∗)

{
exp

[
− (η′ − η∗)2

4ξ

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗)2

4ξ

]}
dη∗ (0 � ξ � 1),

f ′
0(η′, ξ ) = δ

1 + δ

{
− 1√

πδ

∫ ξ

0
�(ξ − τ ) exp

(
−η′2

4τ

)
dτ

τ 1/2

+ 1√
πδ

∫ ξ−1

0
�(ξ − 1 − τ ) exp

(
−η′2

4τ

)
dτ

τ 1/2
−

(
B − η′

3δ
√

λ

)
erfc

(
η′

2
√

ξ

)}

+ 1

2
√

πξ

∫ ∞

0
g0(η∗)

{
exp

[
− (η′ − η∗)2

4ξ

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗)2

4ξ

]}
dη∗ (1 < ξ � 2). (41)

D. Steady migration velocity of the droplet

Due to the zero net force acting on the droplet at the flow direction, the migration speed of the droplet can be obtained as

V∞ = − 1

2(2 + 3α)

∫ π

0
sin2 θ

∂t

∂θ
(0, θ )dθ

= 1

2 + 3α

∫ π

0
sin θ cos θt (0, θ )dθ. (42)

When the inner expansion in the temperature field (30) is truncated at the o(ln ε) order, we rewrite Eq. (42) as

V∞ = 1

2 + 3α

∫ π

0
sin θ cos θ

[
t−1(0, θ )

1

ε
+ tl0(0, θ ) ln ε

]
dθ. (43)

Since ε = 1/
√

Ma V∞, the migration speed of the droplet is evaluated as

V∞ ≈ a2
1 Ma − 2al0 ln Ma + a0, (44)

where

a1 = 1

2 + 3α

∫ π

0
sin θ cos θt−1(0, θ )dθ (45)

and

al0 = 1

2 + 3α

∫ π

0
sin θ cos θtl0(0, θ )dθ. (46)
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From Eqs. (40), we obtain the inner temperature field in its leading order for the continuous phase near the surface of the droplet,

t−1(0, θ ) = f0(0, ξ ) = 1

1 + δ

[
− 1√

π

∫ ξ

0
�(ξ − τ )

dτ

τ 1/2
+ B + 1√

πξ

∫ ∞

0
g0(η∗) exp

(
−η∗2

4ξ

)
dη∗

]

= 1

1 + δ

[
− 1√

π

∫ √
ξ

0
�(ξ − s2)ds + B + 2√

π

∫ ∞

0
g0(2ξ 1/2ζ ) exp(−ζ 2)dζ

]
, 0 � θ � π/2,

t−1(0, θ ) = f0(0, ξ )

= 1

1 + δ

[
− 1√

π

∫ ξ

0
�(ξ − τ )

dτ

τ 1/2
+ 1√

π

∫ ξ−1

0
�(ξ − 1 − τ )

dτ

τ 1/2
+ B + 1√

πξ

∫ ∞

0
g0(η∗) exp

(
−η∗2

4ξ

)
dη∗

]

= 1

1 + δ

[
− 1√

π

∫ √
ξ

0
�(ξ − s2)ds + 1√

π

∫ √
ξ−1

0
�(ξ − 1 − s2)ds + B

+ 2√
π

∫ ∞

0
g0(2ξ 1/2ζ ) exp(−ζ 2)dζ

]
, π/2 < θ � π. (47)

Substituting Eq. (47) into Eq. (45), we obtain

a1 = − 1√
π (2 + 3α)(1 + δ)

{∫ π

0
sin θ cos θ

[∫ √
ξ

0
�(ξ − s2)ds

]
dθ −

∫ π

π/2
sin θ cos θ

[∫ √
ξ−1

0
�(ξ − 1 − s2)ds

]
dθ

}

+ 2√
π (2 + 3α)(1 + δ)

∫ π

0
sin θ cos θ

[∫ ∞

0
g0(2ξ 1/2ζ ) exp(−ζ 2)dζ

]
dθ. (48)

To determine the function g0 in Eq. (48), we use the boundary condition within the droplet at the front and rear stagnation points
in Eq. (39),

g0(η′)= δ

1 + δ

{
− 1√

πδ

∫ √
2

0
�(2 − s2) exp

(
− η′2

4s2

)
ds+ 1√

πδ

∫ 1

0
�(1 − s2) exp

(
− η′2

4s2

)
ds−

(
B − η′

2δ
√

λ

)
erfc

(
η′

2
√

2

)}

+ 1

2
√

2π

∫ ∞

0
g0(η∗)

{
exp

[
− (η′ − η∗)2

8

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗)2

8

]}
dη∗. (49)

The integral of the fourth term on the right-hand side of Eq. (49) is approximated as∫ ∞

0
g0(η∗)h(η′, η∗)dη∗ =

∫ η∗
l

0
g0(η∗)h(η′, η∗)dη∗ + g0(η∗

l )
∫ ∞

η∗
l

h(η′, η∗)dη∗. (50)

Then, Eq. (49) is evaluated in a linear system of equations,

g0(η′) − 1

4
√

2π
g0(η∗

1 )

{
exp

[
− (η′ − η∗

1 )2

8

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗

1 )2

8

]}
�η∗

− 1

4
√

2π
g0(η∗

N+1)

{
exp

[
− (η′ − η∗

N+1)2

8

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗

N+1)2

8

]}
�η∗

− 1

2
√

2π

N∑
j=2

g0(η∗
j )

{
exp

[
− (η′ − η∗

j )2

8

]
+ 1 − δ

1 + δ
exp

[
− (η′ + η∗

j )2

8

]}
�η∗

−1

2
g0(η∗

N+1)

[
erfc

(
η∗

N+1 − η′

2
√

2

)
+ 1 − δ

1 + δ
erfc

(
η∗

N+1 + η′

2
√

2

)]

= δ

1 + δ

[
− 1√

πδ

∫ √
2

0
�(2 − s2) exp

(
− η′2

4s2

)
ds + 1√

πδ

∫ 1

0
�(1 − s2) exp

(
− η′2

4s2

)
ds −

(
B − η′

2δ
√

λ

)
erfc

(
η′

2
√

2

)]
,

(51)

where η∗
N+1 = η∗

l and �η∗ = η∗
l /N . The physical coefficients

used in space experiments [13] with the uniform temperature
gradient G = 12 K/cm for the continuous phase of Fluorinert

FC-75 (3M Corporation) and the droplet of 5-cSt silicone
oil at T = 333 K are adopted to yield α = 0.342, β = 0.571,
and λ = 0.299. A typical value for η∗

l is chosen as 3. Using
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FIG. 3. Function g0 vs η′ determined from Eq. (51).

the trial and error method to satisfy the above approximation,
we determine the unknown constant B = 1.419 and obtain the
dependence of g0 on η′ as shown in Fig. 3. From Eq. (48), we
can determine the root mean square of the leading-order term
of the migration speed as

a1 = 4.354 × 10−2. (52)

Although equations and boundary conditions describing the
second-order term of the migration speed can be obtained,
we are unable to find an analytical result for tl0 in Eq. (46).
Under the truncation after the leading-order term in Eq. (44),
we obtain the migration speed of the droplet,

V∞ ≈ 1.896 × 10−3 Ma, (53)

which indicates that the thermocapillary droplet migration
speed increases as the Ma number increases. Using the mi-
gration speed V∞, Eq. (15) is rewritten as

� = 2

3

(
1 + 2β

λ

)
V∞ Ma ≈ 6.098 × 10−3 Ma2. (54)

Therefore, to reach steady thermocapillary droplet migration
in the space experiment at large Ma numbers [13], an external

radiation energy source,

S = � sin2 θ ≈ 6.098 × 10−3 Ma2 sin2 θ, (55)

contrary to the direction of movement, should be provided.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, steady thermocapillary droplet migration in
a uniform temperature gradient combined with a radiation
energy source at large Re and Ma numbers is studied. The
magnitude of the radiation energy source with the sine square
dependence is determined to preserve the conservative integral
thermal flux across the surface. Under the assumption of a
quasisteady state, we have determined an analytical result for
the steady thermocapillary migration of droplets at large Re
and Ma numbers. The result shows that the thermocapillary
droplet migration speed increases as the Ma number increases.

In general, when the droplet in a uniform temperature
gradient moves upward, the thermal energy is not only trans-
ferred into the droplet from the top surface but also out of
the droplet from the bottom surface. Meanwhile, the thermal
flux across the surface is balanced. For large Ma numbers,
once thermocapillary droplet migration reaches a quasisteady
state, the relation of the nonconservative integral thermal flux
across the surface will be required [11,12]. To satisfy the
challenge, a thermal source at the surface through absorption
from an external radiation energy source is provided for the
system to make a balance of the integral thermal flux across
the surface. The thermal source at the surface can bring more
heat to the droplet, while the heat transfer in the system due
to the thermal conduction across and around the droplet is
weaker than that due to the thermal convection around the
droplet at large Ma numbers. The thermocapillary migration
of a droplet in the uniform temperature gradient combined with
a radiation energy source at large Ma numbers can thus arrive
at a quasisteady state process.

To perform a real space experiment to confirm the above
theoretical analysis of the steady thermocapillary migration
of a droplet, laser beam heating technology may be one of
the possible physical means to provide an external radiation
energy source contrary to the droplet movement direction.
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