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For instrumented spherical indentation, the presence of equibiaxial residual stress in a material
will lead the indentation load—depth curve to shift upward or downward. The load differences
between the stressed and stress-free curves were used to estimate the equibiaxial residual stress.
Using dimensional analysis and finite element simulations, the equibiaxial residual stress was
related to the elastic—plastic parameters and the relative load difference at a fixed normalized
indentation depth (#/R = 0.1). Based on these expressions, and together with the method for
determining elastic—plastic parameters established in our previous work, an integrated method was
proposed to estimate the equibiaxial residual stress and elastic—plastic parameters of metals
simultaneously via instrumented spherical indentation. This method avoids preknowledge of the
yield strength and measuring the contact area. Applications were illustrated on Al 2024, Al 7075,
and Ti Grade 5 with introduced stresses. By comparing the results determined by this integrated
method with the reference values, the maximum relative error is generally within *=10% for the
yield strength, within =15% for the elastic modulus, and within =20% for the equibiaxial
residual stress.

. INTRODUCTION

Residual stresses, which are inevitably introduced by
thermal mismatch or mechanical/thermal processing
during their manufacturing and welding/joining, have
significant effects on the mechanical behavior of materi-
als, such as fatigue, fracture, corrosion, wear, and
friction. Therefore, the measurement of residual stress
in engineering structures and components is of great
value for understanding and predicting the mechanical
performance. Various methods have been developed for
measuring residual stress. The conventional methods can
be divided into two categories: mechanical methods and
physical methods." Mechanical methods, such as hole-
drilling and saw-cutting techniques, can measure residual
stresses quantitatively without any reference sample but

have destructive characteristics. Physical methods, such
as ultrasonic wave, X-ray, and neutron diffraction, can
measure residual stresses nondestructively but are gener-
ally sensitive to the grain size and microstructures and
hence require the preparation of stress-free reference
sample for comparison. In addition, X-ray and neutron
diffraction methods cannot be applied to amorphous
materials, which do not have a long-range ordered atomic
structure.

Instrumented indentation testing (IIT) is another prom-
ising technique for estimation of the surface residual
stress in a nondestructive way. The basic principle of
measuring residual stress using IIT is that the load—depth
(F=h) curve of indentation is shifted upward by com-
pressive residual stress and downward by tensile residual
stress compared to the unstressed state, and the magni-
tude of residual stress is approximately proportional to
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the load difference at a given indentation depth.”™ Based
on the theoretical and experimental correlation between
indentation characteristic parameters, such as indentation
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load and loading curvature, and residual stresses, a num-
ber of methods have been proposed to evaluate residual
stresses using instrumented indentation.* ' These meth-
ods can be separated into three groups, i.e., sharp
indentation methods, spherical indentation methods, and
Knoop indentation methods, according to the indenter
adopted in the indentation tests.

For instrumented sharp indentation, in terms of the
research results obtained by Tsui et al.> and Bolshakov
et al.® that hardness computed from actual contact area is
constant but indentation load depends on residual
stresses, Suresh and Giannakopoulos” proposed a general
methodology to estimate equibiaxial residual stress.
Carlsson and Larsson®’ suggested a correlation between
the equibiaxial residual stress and the size of the contact
area. Lee and Kwon*?® established a quantitative method
for evaluating nonequibiaxial residual stress by introduc-
ing the stress directionality which is the ratio of the major
in-plane residual stress component 6} to the minor one
05. The above-mentioned three methods all require the
actual contact area, which is difficult to measure directly
during indentation tests, to be known to calculate residual
stresses. Based on the premise that elastic unloading
responses during indentation are independent of any pre-
existing residual stresses at the indented surface, Wang
et al.” developed a model for calculating the residual
stress from the viewpoint of indentation work during the
indentation process. Xiao et al.'® conducted a further
study on Suresh et al.’s method, Lee et al.’s method,
Carlsson et al.’s method, and Wang et al.’s method, and
found that these four methods can be expressed as the
expanded form of Suresh et al.’s method. In our previous
work,'! the relative change in loading curvature between
stressed and unstressed materials was used to success-
fully estimate the equibiaxial residual stress by conical
indentation. The convenience of our method is to avoid
measuring the actual contact area during indentation test,
while the inconvenience is that the yield strength must be
determined in advance.

For instrumented spherical indentation, Taljat and
Pharr'® found that residual stresses have a significant
effect on the indentation load—depth curves in the elastic—
plastic transition regime through theoretical predictions
and finite element (FE) analyses. Based on this discovery,
Swadener et al.'* developed two different methods for
measuring equibiaxial residual stress via instrumented
spherical indentations: the first one is based on the fact
that the indentation depth where yielding occurs is
affected by residual stress and the second one is based
on the empirical observation that mean contact pressure
has a linear relationship with residual stress. Recently,
Ahn et al."” used the load difference at maximum
indentation depth to evaluate the equibiaxial surface
residual stress in soda-lime glass by spherical indentation.
Using theoretical analysis and numerical simulations,

Shen et al.'® found that the maximum pile-up around an
impression after unloading is dependent on the direction of
the maximum residual stress and the amount of pile-up can
be related to the magnitude of residual stress. A spherical
indentation method to determine the magnitude as well as
direction of principal residual stresses was then proposed.
Among these spherical indentation methods, Swadener
et al.’s first method'* and Shen et al.’s method'® require
preknowledge of the yield strength whilst Swadener
et al.’s second method'* and Ahn et al.’s method"’ require
measuring the actual contact area.

For nonequibiaxial residual stress evaluation, Han
et al.'” and Choi et al.'"® noted that the Knoop indenter
has an advantage over other axisymmetric indenters as
the load—depth curve is sensitive to the orientation of the
Knoop indenter. A Knoop indentation method was de-
veloped to measure nonequibiaxial residual stress based
on the linear relation between residual stress and load
difference at a given indentation depth. Rickhey et al.'’
found that the loading curvature of the Knoop indentation
has a further sensitivity to the indenter’s orientation with
respect to the principle residual stress directions. They
took into account the influence of material properties and
provided a method to estimate the nonequibiaxial residual
stress using the relative changes in loading curvature.
However, these two Knoop indentation methods require
preknowledge of the principle residual stress directions
and conducting two indentation tests parallel with and
perpendicular to the maximum residual stress direction,
respectively. Recently, a theoretical model was devel-
oped by Kim et al.?>*' for evaluating both magnitude and
direction of two principal residual stresses using four
Knoop indentations performed at 45° rotated angles. In
the Kim et al.’s model, the contact area in the Knoop
indentation loaded states and the load changes of the four
Knoop indentations at 45° rotated angles must be
measured to calculate nonequibiaxial residual stresses.

To sum up, these indentation methods for estimating
residual stresses either need preknowledge of mechanical
properties such as yield strength or require knowing the
actual contact area which is usually calculated using
empirical methods such as Oliver—Pharr method** and
Kang et al.’s method®® because directly measuring the
actual contact area has extremely high requirements for
equipment. The accuracy of the calculated contact area is
highly dependent on the geometry of indenters as well as
the sink-in/pile-up states which vary with materials’
mechanical properties. Comparatively, it is easier to
determine the yield strength, G, accurately by a variety
of methods. In this study, the effect of residual stress on
the spherical indentation behavior in the elastic—plastic
transition regime was theoretically analyzed. Using
dimensional analysis and FE simulations, the normalized
equibiaxial residual stress, GR/Gy, was related to the
elastic—plastic parameters as well as the relative load
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difference, (F — Fo)/Fo|lmr=0.1, at a fixed normalized
indentation depth of 0.1. Combining these expressions
with our previous work?* for extracting elastic—plastic
properties, the yield strength and equibiaxial residual
stress can then be determined simultaneously via instru-
mented spherical indentation. Experiments were carried
out on three commonly used metals, namely Al 2024,
Al 7075, and Ti Grade 5, with introduced stress to verify
the newly proposed method.

ll. ESTABLISHMENT OF METHOD
A. Model hypothesis

A mechanical model of spherical indentation in
stressed solid is considered. It is assumed that the surface
of the sample is flat and the equibiaxial residual stress
near the surface is uniform over the indentation depth.
The sample is penetrated to a depth less than 1/10 of its
thickness by a rigid spherical indenter. For the elastic—
plastic constitutive model, the behavior of commonly
used metals can be approximated by a linear elastic-
power law strain hardening description. The correspond-
ing uniaxial stress—strain expressions are written as

[ Eg, for e=o,/E
G_{Egyl”s”, for e=oy/E (1)

where E is the elastic modulus, oy is the yield strength, n
is the strain-hardening exponent, and & is the yield strain
which equals the ratio of the yield strength to the elastic
modulus.

B. Theoretical analysis

During a spherical indentation process, the deforma-
tion beneath the indenter is in the elastic regime when the
spherical indenter penetrates into an isotropic elastic—
plastic solid at shallow depth. With the increasing of
indentation depth, the deformation beneath the indenter
gradually gets into the elastic-plastic transition regime.
As the indentation depth continues to increase, the
deformation will be in the fully plastic regime. Taljat
and Pharr'® pointed out that residual stresses have
a significant effect on the spherical indentation behavior
in the elastic—plastic transition regime. Using the load—
depth data in the elastic—plastic transition regime to
estimate residual stress may have a good sensitivity. So
it is necessary to determine the indentation depth range
within which the deformation remains in the elastic—
plastic transition regime.

1. Hertzian contact

At the beginning of a spherical indenter penetrates into
an isotropic elastic—plastic solid, the Hertz theory of
elastic contact® can be used to describe the deformation

behavior before the yielding first occurs. The relationship
between the indentation depth, /, and the contact radius,
a, can be expressed by

h:E ) (2)

where R is the radius of spherical indenter. The indentation
depth can also be related to the applied load, F, by

9F2 \ '3
h— (—) , 3)
16RE

where E, is the reduced modulus defined by

I 1—v? 1—v?

= . 4
E; E+Ei 4)

In Eq. 4), E, v and E;, v; are the elastic modulus and
Poisson’s ratio of the sample and indenter, respectively.
For a diamond indenter, E; = 1141 GPa and v; = 0.07;
for most commonly used metals, v ~ 0.3. Thus, the
reduced modulus can be simplified to

E. ~11E . (5)

From Egs. (2) and (3), the mean contact pressure, py,,
under the indenter can be related to the indentation depth by

F 4E (h\'? ©)
Pm =22 T 30 \R ’

For Hertzian contact between a spherical indenter and
a stress-free half-space body, the maximum shear stress
with a value of approximately 0.465p,, occurs at the depth
of 0.48a (for v = 0.3) on z-axis (the axis of indentation).
According to the Tresca yield criterion, the plastic yielding
will occur when

093pm =0y, . (7)

where o, is the yield strength. Substituting Egs. (5) and
(6) into Eq. (7) leads to

i\ 12
which can be rewritten as
h
2= 541e; (9)

where ¢, is the yield strain that equals the ratio of the
yield strength to the elastic modulus. Equation (9)
indicates that the deformation beneath the contact surface
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will enter the elastic—plastic transition regime when the
normalized indentation depth exceeds 5.41g2.

Taljat and Pharr'? analyzed the influence of residual
stress on the shear stress when an equibiaxial residual
stress, G, exists in the half-space body. According to the
Tresca yield criterion, a yield condition related to the
equibiaxial residual stress was given by

0.93pm + o8 =0y . (10)
Similarly, substituting Egs. (5) and (6) into Eq. (10),

the initial indentation depth for the elastic—plastic transi-
tion regime can be determined by

(11)

x| =
W
N
—
m
<N
7 N
—
|
21%
~_
i8]

It is clear from Eq. (11) that the initial yielding occurs
at smaller indentation depth for tensile residual stress and
at larger indentation depth for compressive residual stress
relative to the stress-free state.

2. Elastic—plastic indentation

With the increasing of indentation depth, the elastic—
plastic indentation problem should be considered when
plastic yielding occurs beneath the contact surface. For the
spherical cavity model, Johnson®® pointed out that the fully
plastic state will be reached when p/c, ~ 3, i.e., when
E.a/Ro, ~ 40. Hence, to remain in the elastic—plastic
transition regime, the contact area must meet the following
condition

E.a
— =40 . 12
Fo (12)

In the fully plastic regime, assuming the edges of the
impression neither pile-up nor sink-in, Matthews?’ sug-
gested that the indentation depth can be approximately
related to the contact radius by

612

h=2p (13)

From Egs. (5), (12), and (13), the terminative in-
dentation depth for the elastic—plastic transition regime
can be determined by

h 2
o =661.165) . (14)

Combining Egs. (9) and (14) leads to

Equation (15) gives the corresponding indentation
depth range for the elastic—plastic transition regime. It
is evident that the indentation depth range is mainly
dependent on the materials’ yield strain.

C. Dimensional analysis

For a spherical indenter penetrating an unstressed
sample, the indentation load, Fj, is a function of the
following independent parameters: the elastic modulus,
E, the Poisson’s ratio, v, the yield strength, o, and the
strain-hardening exponent, n, of the sample, the elastic
modulus, E;, the Poisson’s ratio, v;, and the radius, R, of
spherical indenter as well as the indentation depth, 4, and
it can be written as

Fo =fo(E,V,0y,m E;,vi,R;h) . (16)

When an equibiaxial residual stress, oR, exists in the
sample, the influence of residual stress must be taken into
account, and the indentation load, F, can be expressed by

F =f(E,v,6y,m E;, vi,R;h;6%) . (17)

To reduce the complexity of analysis, it is assumed that
diamond indenters are adopted during indentation tests
and the Poisson’s ratio of commonly used metals takes
a fixed value of 0.3. Equations (16) and (17) can then be
simplified, respectively, to

Fo=fy(E,oy,n;R;h) (18)

and
F:f(E, Gy, n; R h; GR) . (19)

Applying the IT theorem® in dimensional analysis,
Egs. (18) and (19) can be rewritten, respectively, as

FO (& h
0~y ( 2, = 20
0<E7naR> I ( )

and

izn<ﬁ QG_R) _ 21)
ER? E’"R oy,

From Egs. (20) and (21), the relative change of load
between stressed and unstressed samples, (F' — Fy)/Fy, is
given by

Oy h . h
F—F, H(E’"’R’G) Iy (Z 3 )

FO N H() (Gy n; h)
h c h cs
541l = — =661.16e; . (15) =11 <y n; (22)
y y r s Iy .
R E'"R’ o,
For a fixed value of /R, Eq. (22) can be simplified to
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F—F, R

[e)
(e, ) 23
- ( n Gy) (23)

Based on the dimensionless function, Il,, and with the
aid of FE simulations, analytical expressions can be
derived to relate the indentation data to the plastic
properties and equibiaxial residual stress.

D. FE analysis

We considered a rigid spherical indenter penetrating
into an infinite half-space with equibiaxial residual stress.
Since it is an axisymmetric problem, an axisymmetric
two-dimensional FE model was constructed in the com-
mercial FE program ABAQUS? to simulate the in-
dentation response of linear elastic-power law strain
hardening material with equibiaxial residual stress. The
indenter was treated as an analytical rigid sphere with
a radius of 100 pm, and the sample was modeled with
25,000 CAX4R elements which are composed of fine
meshed elements near the contact region and gradually
coarser meshed elements further from the contact region.
For each simulation, the maximum indentation depth was
fixed at 10 um, ie., /R = 0.1. At the maximum
indentation depth, the number of contact elements in
the contact zone is about 150. The size of the sample was
set to 2 x 2 mm which is about sixty times larger than the
radius of the contact region, so that the sample can be
regarded as an infinite half-space.’**' The equibiaxial
residual stress, &, was simulated by applying pressure
on the outer cylindrical surface of the sample prior to the
indentation. Coulomb’s friction law was applied between
the contact surfaces (with a friction coefficient of 0.15).
To obtain the analytical expressions of dimensionless
function, II,, we considered a wide range of material
parameters for commonly used metals. As listed in
Table I, the yield strain, €, ranges from 0.001 to 0.010
and takes 10 values, the strain-hardening exponent, n,
ranges from 0.05 to 0.30 and takes 6 values, and the
normalized equibiaxial residual stress, GR/Gy, ranges
from —0.9 to 0.90 (‘—’ indicates compression residual

TABLE I. The mechanical parameters and residual stresses input into
ABAQUS for simulations.

E (GPa) v gy n o®/o,
0.001
0.002 0.05 09
0.003 0.10 -0.5
100 0.3 ‘ 0
0.006 0.20
0.007 : 0.1
0.008 0.25 0.5
0.009
0.010 0.30 0.9

stress) and takes 7 values. Since the elastic modulus, E,
does not influence the dimensionless function, it was
fixed at 100 GPa for convenience. The combination of
these parameters leads to 420 simulations which cover
majority of the practical cases.

Typical indentation load—depth curves with different ¢,
and O'R/Gy are shown in Fig. 1(a). It is clear that the
loading curves are shifted upward by compressive re-
sidual stress and downward by tensile residual stress
compared to the unstressed state. As the magnitude of
residual stress decreases, the loading curve tends to move
toward the one that does not display residual stress. In
addition, the effect of the residual stress on the in-
dentation loading curves becomes more significant
for larger yield strain. Figure 1(b) shows the variation
of (F — Fy)/Fy with the normalized indentation depth,
hiR, for different yield strains and equibiaxial residual
stresses. As can be seen, the absolute value of (F — Fy)/F)
decreases monotonically with the increase of the normalized
indentation depth for a smaller yield strain (g, = 0.001),
while for a larger yield strain (¢, = 0.01), the absolute value
of (F — Fy)/F, increases as the normalized indentation
depth increases initially and decreases afterward. This could
be explained by Eq. (15). When ¢, = 0.001, the normalized
indentation depth range for the elastic—plastic transition
regime is about from 5.4 x 107% t0 6.6 x 10_4, and when
gy, = 0.01, the corresponding normalized indentation depth
ranges approximately from 5.4 x 107* to 6.6 x 1072, The
dashed lines in Fig. 1(b) display the normalized in-
dentation depth range for the elastic—plastic transition
regime. For €, = 0.001, the normalized indentation depth
range for the elastic—plastic transition regime is rather
narrow, and the fully plastic condition can be easily
reached. For €, = 0.01, it has a comparatively wide range
of indentation depth for elastic—plastic transition. It can
be known from Eq. (11) that the initial indentation depth
for the elastic—plastic transition regime is influenced by
equibiaxial residual stress. Hence the maximum absolute
value of (F — Fy)/F, appears at different normalized
indentation depths in the elastic—plastic transition regime
for different GR/Gy as shown in the right part of Fig. 1(b).
The absolute value of (F — F,)/Fy has a maximum value
in the elastic—plastic transition regime and decreases
continuously when the indentation depth exceeds this
range. This agrees well with Taljat and Pharr’s finding"?
that the effect of equibiaxial residual stress on spherical
indentation behaviors is significant in the elastic—plastic
transition regime and becomes weaker in the fully plastic
regime.

To establish a method for evaluating equibiaxial
residual stress based on Eq. (23), the equibiaxial residual
stress should be related to the relative load difference,
(F — Fy)/Fy, at a fixed A/R. 1t is evident from Fig. 1(b)
that the equibiaxial residual stress has a most significant
influence on the relative load difference in the
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FIG. 1. (a) The influence of equibiaxial residual stress on the indentation load—depth curves; (b) the variation of relative load difference with the

normalized indentation depth.

elastic—plastic transition regime (i.e., the indentation
depths between the two dotted lines). Using the maxi-
mum relative load difference in this regime to estimate
the residual stress may have a favorable sensitivity.
However, it is difficult to assign a fixed A/R in the
elastic—plastic transition regime for all cases that the
relative load difference reaches a maximum value. More-
over, the normalized indentation depths in the elastic—
plastic transition regime are relatively small. Taking into
account the actual situation that the tip of a spherical
diamond indenter is not an ideal sphere due to the
limitation of processing technology, it will introduce large
measurement errors in load and depth at small normalized
indentation depth. Thus, the relative load difference at the
fixed normalized indentation depth of #/R = 0.1, where
the relative load difference is more steady and accurate,
was related to the equibiaxial residual stress.

The correlations between (F — Fo)/Fo|wyr=0.1 and
GR/Gy for materials with a constant strain-hardening
exponent of 0.3 and different yield strains are illustrated
in Fig. 2(a). It clearly shows a bilinear relation between
(F — Fo)Fo|jr=0.1 and GR/Gy for compressive residual
stress and tensile residual stress. And the slope of the plot
of (F — Fo)Fo|r=0.1 Vversus GR/Gy decreases with
increasing yield strain. Figure 2(b) shows the variation
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in (F — Fo)/Fo|nr=0.1 with respect to GR/Gy for materials
with a constant yield strain of 0.1 and different strain-
hardening exponents. These data also indicate an approx-
imately linear relation between (F — Fo)/Fo|nr=0.1 and
GR/Gy. The slopes of the plots of (F — Fo)/Fo|ur=0.1
Versus ch/csy are also different for compressive and
tensile residual stresses. It can be concluded from
Fig. 2 that (F — Fy)/Fo|r=0.1 varies linearly with GR/Gy
and the slope is a function of yield strain as well as strain-
hardening exponent. Same conclusion could be derived
from the FE results of other combinations of yield strain
and strain-hardening exponent, which are not shown here
due to the limitation of space. Based on this finding,

Eq. (23) can be further simplified to
F —F, R

Fo

(¢

=f(ey,n) ‘h/R:O.l ’ (24)

h/R=0.1 Oy
where fley, n)|wr=01 is the slope function, which is
different for compressive residual stress and tensile
residual stress.

We plotted the slope versus the yield strain in Figs. 3(a)
and 3(b), respectively, for compressive residual stress and
tensile residual stress. By fitting a logarithmic equation,

ey, Wwr=01 = g1(m)lg(ey) + ga(n), to the data points in
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Figs. 3(a) and 3(b), respectively, the slope function was
evaluated. For compressive residual stress, i.e., (F — Fy) >
0, the slope function is

fe(ey,m) |h/R:0.l

For tensile residual stress, i.e., (F — Fp) < 0, the slope
function becomes

filey,n)| BR=01 = (—0.61027n* 4 0.51775n — 0.25209) Ig (&)
—1.45435n% + 1.47543n — 0.84722

Thus far, the analytical equation relating the
equibiaxial residual stress to the indentation parameter,
(F — Fo)/Fo|yr=0.1, has been established as

= (—0.66535n% + 0.54962n — 0.22177) lg(sy)
—1.30556n2 + 1.26769n — 0.67626

the indentation load—depth curve; b and c¢ are the radii
of the hemispherical hydrostatic core and the hemi-
spherical hydrostatic plastic zone, respectively, in the

(25)

Johnson’s expanding cavity model.?® These radii are
described by

(26)

b=V2Rh— 1 | (29)

[(—0.66535n* 4 0.54962n — 0.22177) 1g(sy)

oy [(—0.610272% 4 0.51775n — 0.25209) Ig (e, )
—1.45435n + 1.47543n — 0.84722] ' =10

which can be used to calculate the equibiaxial residual stress
if the elastic—plastic parameters, E, €,, and n, are known.

E. Integrated method

In our previous work,>* a method has been proposed to
determine the elastic—plastic parameters of linear elastic-
power law strain hardening materials using instrumented
spherical indentation. The formulae for calculating the
elastic modulus, the yield strain, and strain-hardening
exponent are given as

2nEelc? [ an (n—1)nEe2b® [ 3 nEe2c
_ y o y o y
Wi = 3n(n+1) (b—‘” l) + 3(n+1) (173 1) + 3

W, = SIS (042 626, — 4.6663)n” + (~268.308, + 3.1253)n
+(57.0536, +056730)] [ ()" 3 (5~ 1) +1]
m = (—70.436¢g, + 2.1866)n + (49.355¢, + 1.8547)

)

(28)

where the total work, W,, the unloading work, W,, and
the Meyer’s coefficient, m, can be obtained directly from

R —1.30556n + 1.26769n — 0.67626]71%

for (F — Fp) >0
h/R=0.1 ’ (27)
for (F — Fy) <0

0

Fo lp/R=0.1

and

¢ = [(—0.0077n% + 0.0534n — 0.0304)1g" (¢,)
+(0.3717n* — 0.1331n — 0.0774) 1g(&y)

2 1/3
4(0.4950n* — 0.3016n + 1.0627)] [h (ifyﬂ
(30)

Based on Eqs. (27) and (28), an integrated method for
evaluating the elastic—plastic parameters and the equi-
biaxial residual stress was developed. Specifically, the
first step is to carry out spherical indentation tests on
unstressed sample with a maximum depth of #//R = 0.3
and on stressed sample with a depth of /R > 0.1. The
second step is to obtain W, W,, and m from
the unstressed load—depth curve by fitting and obtain
(F — Fo)/Fo|nr=0.1 by comparing the stressed load—depth
curve with unstressed load—depth curves at the depth of
h/R = 0.1. The final step is to substitute W,, W,, m, and
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FIG. 2. The bilinear relation between the relative load difference at
a normalized indentation depth of 0.1 and the normalized residual
stress for materials (a) with a constant strain-hardening exponent of 0.3
and different yield strains; (b) with a constant yield strain of 0.1 and
different strain-hardening exponents.

(F — Fo)lFo|nr=0.1 into Egs. (27) and (28) to calculate
the elastic—plastic parameters and the equibiaxial residual
stress simultaneously.

lll. EXPERIMENTS

Both uniaxial tensile tests and indentation tests were
carried out on three commonly used metals (Al 2024, Al
7075, and Ti Grade 5). The indentation results will be
compared with the corresponding uniaxial tensile results
to verify the validity and reliability of the newly proposed
method.

A. Specimens

For uniaxial tensile tests, the 3-mm-thick Al 2024, Al
7075, and Ti Grade 5 plates were processed into
dumbbell-shaped specimens according to ISO 6892-1.
For instrumented indentation tests, these plates were cut
into dumbbell-shaped specimens with a cross-section
measuring 4 x 3 mm (see Fig. 4). The surfaces of
specimens for indentation tests were polished to mirror
finish surfaces using an automatic polishing machine with
0.3 pm alumina powder. All the Al 2024 and Al 7075
specimens were annealed at 180 °C and Ti Grade 5 were
annealed at 480 °C for 10 h to relieve the residual stress
caused by mechanical processing.

B. Uniaxial tensile tests

A material testing system MTS 810 (MTS, Minneap-
olis, MN) was used to perform uniaxial tensile tests on Al
2024, Al 7075, and Ti Grade 5 at room temperature
according to ISO 6892-1. Uniaxial tensile tests were
performed in a displacement-controlled manner, and the
displacement increased at a constant extension rate of
5 mm/min. The elastic modulus, yield strain as well as

n=0.1 n=0.15

00— 71T T T T T 1

PR P I I BRI B
0.002 0.004 0.006 0.008 0.010

(a) &y

n=0.2 n=0.25 n=0.3----- all n,Fit
Mr—T1T 1 T * T 7 |
Z
_=
T
"
-
_0‘4 L | L I 1 I 1 | L |
0.002 0.004 0.006 0.008 0.010
(b) &y

FIG. 3. The effects of the strain hardening exponent and the yield strain on the evolution of the slope function for (a) compressive residual stress
and (b) tensile residual stress. Dashed lines are the best-fitting curves to the data points of the same strain hardening exponent.
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FIG. 4. Schematic diagram of the residual stress-generating jig for (a) tensile stress and (b) compressive stress; (c) photograph of the jig for

generating compressive stress.

strain-hardening exponent determined by uniaxial tension
are regarded as the reference values.

C. Instrumented indentation tests

Instrumented spherical indentation tests were carried
out on three metals at room temperature using a uni-
versal hardness testing machine (ZHU2.5/Z22.5, Zwick/
Roell Corporation, Ulm-Einsingen, Germany) with
a spherical diamond indenter whose nominal radius is
90 pum. Since the radius of the indenter plays a very
important role in the results analysis, the three-
dimensional observation of the indenter tip was per-
formed using a confocal laser scanning microscope
(OLS4000, OLYMPUS, Shinjuku Monolith, Tokyo,

Japan), which has a vertical resolution of 0.01 pm and
a horizontal resolution of 0.12 pum.

A residual stress-generating jig illustrated in Fig. 4 was
designed to control the stress in the specimen by
screwing in a loading nut for tension or a loading bolt
for compression. To avoid buckling when compressive
stress was applied, two aluminous strips and two cup-
reous slices were used to constrain the out-of-plane
displacement of the specimen as shown in Fig. 4(c).
Specifically, to generate compressive stress, there are 5
steps: (i) putting the dumbbell-shaped specimen into the
grips and making sure that the lower surface fully touches
the support table of the jig. (ii) Using Cu slices to fix the
specimen on the support table and Al strips to cover both
ends of the specimen to constrain the out-of-plane
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displacement. (iii) Screwing in the loading bolt carefully
to compress the specimen without bending. (iv) Check-
ing and making sure that the specimen is not bent and
there is no gap between specimen and support table [If
bent, repeat steps (i)—(iv)]. (v) Cleaning the top surface
of the specimen and getting ready for indentation tests.
During the test processes, the stress-generating jig was
fixed on the sample stage by glues to eliminate the gap

between the jig and the sample stage. Following these
procedures, the frame compliance could be reduced to
a minimum. The load exerted on the specimen was
measured by a load cell (here, the friction force between
the cupreous slices and the specimen was ignored), and
the applied stress can then be calculated (the applied
load divided by the specimen’s cross-sectional area 4 x
3 mm). For each type of metal, five levels of uniaxial

Equibiaxial stress ¢"/o, ——0.45 ----0.25
Uniaxial stress o’uni."o"f 0.90
- m d
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4
-
[+ ] . A ) L _— 1] S . A A L N
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Uniaxial stress ::.l'u"i.-"o;r 0.90 > 0.50 o -0.50 -0.90
0.10 T T r r r T 0.10 T T T T r r
E 0.05} £,70.001 n=0.20 . § 0.05} £,70.010 n=0.20 .
e -
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FIG. 5. (a) Comparison between indentation load—depth curves of the uniaxial stressed sample and those of the equibiaxial stressed sample with
half-value stress; (b) the relative error between them at different normalized indentation depths.

Unit: pm
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FIG. 6. (a) The geometrical surface of the spherical indenter tip measured by OLYMPUS OLS4000; (b) the equivalent radii of the spherical
diamond indenter at various depths (solid line). The arrows mark the equivalent radii at #/R = 0.1 and /R = 0.3.
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stress (one stress-free state, two tensile stress states, and
two compressive stress states) were exerted on the
specimens to imitate different residual stresses. For each
stress state, indentation tests were repeated 5 times. The
maximum indentation depth was set to about 0.3R for
stress-free specimens and greater than 0.1R for stressed
specimens.

In the spherical indentation tests, uniaxial stress was
introduced instead of equibiaxial stress. To demonstrate
the feasibility of replacing equibiaxial stress with uniaxial
stress, three-dimensional FE models with equibiaxial
residual stress and uniaxial residual stress were carried
out in the commercial FE program ABAQUS.?’ The
indenter parameters, indentation depth, and material
parameters are the same as used in Sec. I.D. Based on
Giannakopoulos’s*? argument that the equibiaxial resid-
ual stress is equivalent to the half value of the uniaxial
stress for sharp indentation, four levels of normalized
uniaxial ~residual stress (oy/cy, = 0.90, 0.50,
—0.50, —0.90) and normalized equibiaxial residual stress
(ch/csy = 0.45, 0.25, —0.25, —0.45) were considered to
verify that this argument is also applicable for spherical
indentation. The comparison between indentation load—
depth curves with uniaxial stress and these with
equibiaxial stress is illustrated in Fig. 5. It clearly shows
that the load—depth curve of the uniaxial stressed sample
approximately coincides with that of the equibiaxial
stressed sample with half-value stress. The relative error
increases with the increasing of residual stress and yield
strain of the sample. For ¢, = 0.01 and n = 0.20, the
maximum relative error at normalized indentation depth,
h/R = 0.1, is within 3%. It can be concluded from the
current computing results that the equibiaxial stress can
be approximately replaced with uniaxial stress in spher-
ical indentation tests if the applied uniaxial stress does
not exceed 0.96, and the sample’s yield strain is no more
than 0.01.

IV. RESULTS AND DISCUSSION

A. Indenter shape

The observation result of the spherical indenter used in
the indentation tests is shown in Fig. 6(a). It clearly
shows that the diamond indenter tip is not an ideal sphere
and the curvature of the surface varies with the indenter
latitude. To improve the accuracy of data analysis, the
equivalent radii of the spherical indenter at different
indentation depths were evaluated according to the
volume conservation condition. It is considered that if
the actual spherical indenter tip has the same volume as
an ideal spherical indenter tip does at the same depth, #;,
the actual spherical indenter’s equivalent radius at 4; is
equal to the ideal spherical indenter’s radius. The volume
of an ideal spherical indenter tip at the depth, 4;, can be
expressed as
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FIG. 7. The resulting mean load—depth curves of five indentations in each
stress state for (a) Al 2024, (b) Al 7075, and (c) Ti Grade 5.

V(i) = mh? [R(hi) - ] . (31)

Thus, the radius of the ideal spherical indenter, R(#;),
which is also regarded as the equivalent radius of the
actual spherical indenter, is given as
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TABLE II. The mean value of elastic—plastic parameters determined by uniaxial tensile tests and instrumented indentation tests.

Tensile tests

Indentation tests

Materials EO 6y0 no E (E — Eo)/EO 6y (6y — 6y0)/6y0 n n—ngp
Al 2024 71.4 350.8 0.177 60.8 —14.8% 365.2 4.1% 0.166 —0.011
Al 7075 727 531.6 0.107 62.4 —14.2% 4855 —8.7% 0.108 0.001
Ti grade 5 121.1 886.6 0.057 108.9 —12.2% 807.7 —8.9% 0.149 0.092
uniaxial tensile results. For all three materials, the

R(h) = V(h;) + ﬁ (32) maximum relative error of the elastic modulus is within

Tth; 3
1

When the volume of the actual spherical indenter tip,
V(h;), at various depths was measured from the 3D
observation data [see Fig. 6(a)], the equivalent radius,
R(h;), at various depths can be calculated by Eq. (32). It can
be found from Fig. 6(b) that the equivalent radius increases
with the increasing depth. The equivalent radius of the
actual spherical indenter is about 71.1 pum at the depth, i; =
0.1R, and about 86.7 um at the depth, #; = 0.3R.

B. Elastic—-plastic parameters

The indentation load—depth curve without residual
stress (see the solid curve in Fig. 7) was used to
determine the elastic—plastic parameters by Eq. (28).
For each material, the values of the total work, W,, the
unloading work, W,,, and the Meyer’s coefficient, m, were
obtained directly from the load—depth curve by integrat-
ing and fitting. Then, substituting W,, W,, and m into
Eq. (28), the elastic modulus, the yield strength, and the
strain-hardening exponent were calculated. Here, the
mean value of the elastic modulus, Ey, the yield strength,
Gyo, and the strain-hardening exponent, 7ip, measured by
uniaxial tension were conventionally regarded as the
reference values. As listed in Table II, the mean values
of the elastic—plastic parameters determined by the pro-
posed method were compared with the corresponding

*15% and that of the yield strength is within *10%.
This indicates that the indentation results have a good
agreement with the uniaxial tensile results.

C. Residual stress

The spherical indentation load—depth curves of sam-
ples with and without residual stress are shown in Fig. 7.
Since the equivalent radius of the spherical indenter is
about 71.1 pm, the indentation depth equals 7.1 pm at the
normalized indentation depth of #//R = 0.1. The relative
load difference, (F — Fo)/Fo|nr=0.1, Were then obtained
by comparing the indentation loads of the stressed and
unstressed samples at the depth of 7.1 pum. Substituting
(F — Fo)lFy|jyr=0.1 and the above determined elastic—
plastic parameters into Eq. (27), the equibiaxial residual
stress were calculated. Because the equibiaxial residual
stress is equivalent to the half value of the uniaxial stress
as Giannakopoulos®? argued, the uniaxial stress should be
twice the value calculated by Eq. (27). Figure 8 clearly
shows that the residual stresses estimated by the newly
proposed method agree well with the applied stresses in
a wide range of stresses. The relative errors between the
estimated stresses and the applied stresses are commonly
within £20%. This demonstrates that the newly proposed
method is a reliable method for estimation of the
equibiaxial residual stress in metals.

Based on Eq. (27), applying error analysis leads to

Aok AE (1+11gg_§y>AG_?+kl%+AF—?, for (F — Fy) > 0 (33)
R = e AG}, n D ?
c A—,§+(1+lgg—gy>c—y+k2%+%, for (F — Fy) <0
where
ki = [(—0.66535n* + 0.54962n — 0.22177) lg(sy)—l.30556n2 + 1.26769n — 0.67626]71
x [(—1.33070n* + 0.54962n) 1g(&y) — 2.61112n* + 1.26769n]
ky = [(—0.61027712 +0.51775n — 0.25209) lg(sy)—l.45435n2 + 1.47543n — 0.84722]7]
X [(—1.22054n2 + 0.51775n) Ig(e,) —2.90870n> + 1.47543n] (34)
Fp =k
Fo {p/r=0.1

e =2.71828
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FIG. 8. Comparison of the measured residual stresses and the applied
stresses.

From Eq. (33), it clearly shows that errors in the elastic
modulus, the yield strength, the strain-hardening expo-
nent, and the relative load difference contribute directly
to the error of estimated stress. Since the value of yield
strain is typically range from 0.001 to 0.010, (1 + Ig e/lg
€y) ranges from 0.78285 to 0.85526. This means that the
contribution of the error in yield strength to the error of
estimated stress shrinks. Substituting the parameters of Al
2024, Al 7075, and Ti grade 5 presented in Table II into
Eq. (34), it could be calculated that k; ranges from
—0.10092 to —0.03161 and k, ranges from —0.20581 to
—0.06990. This means that the estimated stress is in-
sensitive to the error in strain-hardening exponent.

V. CONCLUSIONS

An integrated method that can be used to effectively
estimate the surface equibiaxial residual stress as well as
the elastic—plastic parameters of metals was proposed.
This method neither needs measurement of the actual
contact area nor requires the materials’ elastic—plastic
parameters to be known in advance. Applications were
illustrated on three commonly used metals (Al 2024, Al
7075, and Ti Grade 5) with various stresses applied by
a stress-generating jig. The maximum relative error
between the values determined by this integrated method
and the reference values is generally within *=10% for the
yield strength, within £15% for the elastic modulus and
within =20% for the equibiaxial residual stress. It thus
demonstrates that the newly proposed method is valid
and reliable for estimation of the equibiaxial residual
stress and elastic—plastic properties of metals simulta-
neously via instrumented spherical indentation.

VI. PROSPECTS

In engineering, engineers sometimes need to know the
stress state in large engineering structures such as
spherical pressure vessels and oil pipelines when they
are in service. Typically, the stresses in spherical pressure

vessels are approximately regarded as equibiaxial re-
sidual stresses and the main stress in pipelines is hoop
stress which can be equivalent to uniaxial stress in a small
area. In such cases, our newly proposed method in
alliance with a portable instrumented indentation machine
could be a nondestructive and promising technique for
estimating the stresses in spherical pressure vessels and
oil pipelines when they are in service.
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