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To reduce the numerical dissipation in turbulencemodeling while maintaining the numerical stability around flow

discontinuities in supersonic flowfield, a low-dissipative compressible solver is developed for large-eddy simulation

within theOpenFOAMframework. To achieve the aforementioned goals, the low-dissipative solver adopts the hybrid

scheme approach through combining the dissipative Kurganov–Tadmor scheme with the nondissipative central

scheme via a shock sensor. In the construction of the central scheme, a robust skew-symmetric form of the convective

term is adopted to preserve the local kinetic energywithout adding an explicit dissipative term.Another feature of the

low-dissipative solver is the implementation of an optimal explicit strong stability-preserving linear third-order total

variation diminishing Runge–Kutta method for the temporal discretization. Numerical tests for a series of canonical

flow problems are carried out to validate the solver’s good performance in the flowfield either with strong

discontinuities or with continuous spectrum characteristics. Large-eddy simulation of a scramjet combustor with

supersonic airstreampassing over the flame holder is conducted to validate the low-dissipative solver’s reliability in a

realistic flow with the complex interaction of shock discontinuities and turbulence.

Nomenclature

Cp = specific heat capacity at constant pressure
Cv = specific heat capacity at constant volume
F = interface flux
k = turbulent kinetic energy
Pr = Prandtl number
p = pressure
Q = second invariant of velocity gradient
R = gas state constant
T = temperature
U = velocity vector
u, v, w = components of velocity vector
V = cell volume
x, y, z = Cartesian coordinates
γ = specific heat ratio
δij = Kronecker delta tensor
κ = wave number/Karman constant/thermal conductivity
μ = dynamic viscosity
ρ = density

Subscripts

i, j = computational indices
vd = van Driest transformation
w = flow property at the wall
∞ = far-field conditions
0 = initial conditions

Superscripts

n = time level in the time marching method
� = variables normalized by wall friction properties
� = variables normalized by the characteristic scale of the

flowfield
0 = fluctuations

I. Introduction

ACCURATEmodeling of the complex internal flow environment
in scramjet combustors poses a huge challenge to computa-

tional fluid dynamics, partially due to the coexistence of turbulence
structures and complex shock-wave structures. For several decades,
Reynolds-averaged Navier–Stokes (RANS) have been the routine
approach for turbulence modeling. However, the unsteady
interactions between turbulences and shock waves in the scramjet
require a wide range of flow physics and turbulent scales to be
directly resolved rather than modeled. High-resolution approaches,
especially large-eddy simulation (LES), are becoming dominant in
revealing the flow mixing as well as combustion physics for
supersonic flows. Compared with RANS, LES raises higher
requirements for the numerical methods, which are used to discretize
and advance the Navier–Stokes equations. Generally, LES requires
minimal numerical dissipation and dispersion over the resolved
length scales. The stability and reliability of the numerical methods
also need to be guaranteed, especially in supersonic flowswith strong
discontinuities.
The main difficulty in constructing a suitable solver for large-eddy

simulation of the supersonic flow lies in the fact that it needs to treat
the turbulence with broad continuous spectrum and the shock wave
with strong discontinuity. To achieve these goals, a number of
different strategies have been put forward, and they can be roughly
classified into two categories: artificial viscosity method and
hybridization formulation method. The artificial viscosity method
originates from the work of Jameson et al. [1] and von Neumann and
Richtmyer [2]. The main idea of this method is locally adding
artificial fluid transport coefficients onto the momentum and energy
equations to capture the discontinuities over a numerically resolvable
scale. The hybridization formulation method is based on the idea of
endowing a nondissipative baseline scheme with shock-capturing
capability through local replacementwith a classical shock-capturing
scheme, which is made to act as a nonlinear filter [3]. Here, the
nondissipative scheme, shock-capturing scheme, and an adaptive
switch constitute the main features of the hybridization method.
Central difference schemes are often used as the nondissipative
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baseline scheme. However, the standard central scheme tends to be
unstable in high-Reynolds-number turbulence [4], and so most
efforts are based on the idea of splitting the convective terms in skew-
symmetric form, which implies kinetic energy preservation at the
semidiscrete level [5]. As to the dissipative part, themodified Steger–
Warming flux vector splitting scheme [6], the piecewise parabolic
method [7], advection upstream splitting method (AUSM) [8], and
the more accurate essentially nonoscillatory (ENO) [9] and weighted
essentially nonoscillatory (WENO) [10,11] schemes are frequently
used to capture the discontinuities in the hybrid method. As seen,
proper specification of the adaptive switch/shock sensor is critical to
the formation of a hybrid scheme, which ought to be defined so that
numerical dissipation is effectively confined to shocked regions.
Numerous shock sensors have been proposed, for example, the
Jameson-type switch [11] based on the pressure/density field, the
Ducros-type switch [12] based on the velocity/dilatation field, and
the Lombardini sensor [13] based on entropy generation. Here, the
Ducros-type sensor is adopted due to its simplicity and good
performance in shock/turbulence interactions [14].
Although the hybrid schemes have been applied to the structured

solver for many years, only some recent attempts have been made to
implement it within the unstructured finite volume (FV) framework,
which is more useful for realistic flow modeling with complex
geometry. Peterson [6] used a fourth-order symmetric scheme to
reconstruct the values at the interface and calculate the nondissipative
flux and employed a modified Steger–Warming flux vector-splitting
scheme to act as the shock-capturing scheme. Khalighi [15]
developed a novel numerical scheme for unstructured compressible
LES within the unstructured flow solver CharLES, where a second-
order ENO method was used as the shock-capturing scheme and an
equivalent fourth-order central scheme served as the nondissipative
scheme. Modesti and Pirozzoli [8] implemented a second-order
central scheme in skew-symmetric form to evaluate the non-
dissipative flux and a numerical diffusion scheme inherited from
AUSM to act as the shock-capturing scheme. In addition to the work
focused on hybrid methods, Vuorinen et al. [16] proposed a scale-
selective mixed central/upwind discretization coupled with a low-
dissipative Runge–Kutta projection method for time integration into
OpenFOAM, which proved to be a suitable method for the high-
quality large-eddy simulation.
Different from the former research, in this study, a new low-

dissipative compressible solver will be constituted with a different
dissipative scheme and a robust central scheme, and it will be
optimized to be applicable to supersonic turbulent flows with strong
shock/turbulence interactions. In this new hybridization method, an
updated central-upwind scheme, named as the Kurganov–Tadmor
scheme [17], is adopted as the shock-capturing scheme, and the
central scheme in a robust skew-symmetric form is implemented to
investigate the solver’s performance in resolving turbulence in
viscous flow as well as holding stability in the inviscid limit. An
optimal explicit strong stability-preserving linear Runge–Kutta
method for third-order temporal discretization and a hybrid RANS/
LES approach are implemented into the solver to further improve its
capability in LES applications. A series of canonical flow problems
with increasing geometric and flow complexity will be conducted to
examine the performance of the low-dissipative solver in flows with
either strong discontinuities or continuous spectrum characteristics.
Finally, the compressible solver with the preceding fully validated
methods will be used to simulate a supersonic airstream over the
cavity in a scramjet combustor with complex shock/turbulence
interactions.

II. Numerical Methods

In this study, the three-dimensionalNavier–Stokes equation for the
viscous compressible perfect-gas flows are solved:

∂�ρ
∂t

� ∂�ρ ~ui
∂xi

� 0 (1a)

∂
∂t
��ρ ~ui� �

∂
∂xj

��ρ ~ui ~uj� � −
∂p
∂xi

� ∂
∂xj

��tij � �τsgsij � (1b)

∂
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��ρ ~E� � ∂

∂xj
��ρ ~uj ~E� ~ujp� −

∂
∂xj

� ~ui��tij � �τsgsij �� (1c)
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∂xj

� μsgsT Cp

PrT

∂ ~T
∂xj

�
�
μ� μsgsT

σk

�
∂ksgs

∂xj

�
(1d)

p � �ρR ~T (1e)

where − and ∼ represent the Reynolds and Favre average,
respectively; the superscript “sgs” represents the subscale term; ui is
the velocity in the xi direction; ρ is the density;T is the temperature;p
is the pressure; E is the total internal energy; ksgs is the subgrid

turbulent kinematic energy; μ is the dynamic viscosity; μsgsT is the

subgrid turbulent eddy viscosity; κ is the thermal conductivity; Cp is

the specific heat capacity at constant pressure; and σk andPrT are the
model coefficients. The set of the conservation equations is closed
with the constitutive relations for a Newtonian fluid, whereby the

viscous stress tensor �tij and subgrid stress tensor �τ
sgs
ij are prescribed as

�tij � 2μ ~Sij −
2

3
μ ~Skkδij �τsgsij � 2μsgsT

�
~Sij −

1

3

∂ ~ui
∂xi

δij

�
−
2

3
�ρksgsδij

(2)

where Sij is the strain-rate tensor. In the low-dissipative solver, a

hybrid RANS/LES method is used to model the effect of unresolved
part and dealwith the near-wall flow,whichwill be briefly introduced
at the end of this section.
The general formulation of a hybrid low-dissipative scheme is

accomplished by the linear combination of the nondissipative central
scheme and a conventional dissipative scheme through the shock
sensor. In this study, the dissipative flux is calculated by using the
Kurganov–Tadmor scheme. The scheme is a new central-upwind
scheme developed based on the Lax–Friedrichs scheme [18] and the
Nessyahu–Tadmor scheme [19], and it bears a much smaller
numerical viscosity than its counterparts [17]. Within the FVmethod
framework, the formulation of the convective terms is written as
follows [20]:

Z
V
∇⋅ �Uφ�dV�

Z
S
�Uφ� ⋅ dS≈

X
f

Sf ⋅Ufφf�
X
f

ψfφf

�
X
f

h
αψf�φf���1−α�ψf−φf−�ωf�φf−−φf��

i

�Fd (3)

where Ψf is the volumetric flux Sf ⋅ Uf; φf stands for conservative
variables (�ρ; ρU; ρE�f; α is the weighing factor; ωf represents the
diffusive volumetric flux; Fd is the dissipative interference flux; and
Sf is the normal surface vector.
As to the nondissipative part, to ensure the numerical stability of

the solver, the central scheme in its skew-symmetric form is often
used, which usually has the following formulation proposed by
Feiereisen [21]:

∂ρuiϕ
∂xi

� 1

2

∂ρuiϕ
∂xi

� 1

2
ϕ
∂ρui
∂xi

� 1

2
ρui

∂ϕ
∂xi

(4)

whereϕ stands for a generic transported scalar property, such asU for
the momentum equation and E for the energy equation, but unity for
the continuity equation.
Although it is proved to minimize the aliasing error of the central

scheme, such arrangement seems suitable for incompressible flow or
the flow with weak density variations. For that reason, Kennedy and
Gruber [22] put forward a more robust formulation for the flow with
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strong density variations through fully expanding the convective

derivatives with the triple products:

∂ρuiϕ
∂xi

� α
∂ρuiϕ
∂xi

� β

�
ρ
∂uiϕ
∂xi

� ϕ
∂ρui
∂xi

� ui
∂ρϕ
∂xi

�

� �1 − α − 2β�
�
ρui

∂ϕ
∂xi

� ρϕ
∂ui
∂xi

� uiϕ
∂ρ
∂xi

�
(5)

where α and β are the adjustable parameters. Pirozzoli [23] found that

this arrangement leads to semidiscrete energy conservation in the

case α � β � 1∕4. Such arrangement could be easily be transformed

into the flux-based form as follows [24]:

Z
V
∇ ⋅ �ρUϕ� dV ≈

X
f

Sf ⋅
ρP � ρN

2

UP � UN

2

ϕP � ϕN

2
� Fc (6)

where subscripts P andN stand for the values of owner and neighbor

cells, respectively, and Fc represents the nondissipative interference

flux. The relationship of the aforementioned elements in the FV

method is illustrated in Fig. 1.
In the hybridization formulation, the shock sensor is used as a

switch, which dynamically adjusts the solver for conditions near to

and away from flow discontinuities. The Ducros sensor represents a

simple and frequently adopted choice, which is capable of selectively

isolating genuine shocks compared with other shock sensors. In this

paper, a modified formulation of the Ducros sensor proposed by

Bhagatwala and Lele [25] is adopted as follows:

Θ � 1

2

�
1 − tanh

�
2.5� 10

Δ
c
∇ ⋅U

��

×
�∇ ⋅U�2

�∇ ⋅U�2 � �∇ ×U�2 � ε
(7)

where c is the local speed of sound, ϵ is a small value to prevent

division by zero, and Δ is the cell length scale. For the sake of

numerical stability, the shock sensor in this study is bounded by 0.1

and 1.0, unless otherwise specified. It is worth noting that the

vorticity field is none in the one-dimensional case, and so we have to

specify a finite value to limit the dissipative part only taking effect in

regions with large divergence.
In summary, the convective term in the hybrid low-dissipative

solver is implemented as follows:

Z
V
∇ ⋅ �ρUϕ� dV ≈ ΘfFd � �1 − Θf�Fc (8)

whereΘf is the shock sensor on the interface. In this formulation, the

dissipative schemewill take effect when the shock sensor approaches

unity near the flow discontinuities, and the nondissipative scheme

will be dominant when the shock sensor diminishes to zero in the

continuous flow region.
The time integration of the low-dissipative solver is carried out by a

third-order strong stability-preserving Runge–Kutta scheme, as

described by Shu andOsher [26] andGottlieb et al. [27,28]. Let yn be
the value after n time steps; then, the general form can be written as

y�1� � yn � ΔtL�yn�

y�2� � 3

4
yn � 1

4
y�1� � 1

4
ΔtL�y�1��

yn�1 � 1

3
yn � 2

3
y�2� � 2

3
ΔtL�y�2�� (9)

Here, y represents the conservative variables ρ, ρU, and ρE.Δt is the
time-step size, and L�y� is the spatial derivative. The residuals are
updated after each substep by using the latest values of the
conservative variables. The time step of an explicit method is limited
by the stability criterion set by the Courant–Friedrichs–Lewy (CFL)
coefficient [28], which has an optimal value of 1.0 for the currently
used formula.
To better treat the near-wall boundary layer and the internal

turbulent flow, a hybrid RANS/LES approach known as improved
delayed-eddy simulation (IDDES) based on the k − ω shear-stress
transport (SST) model is applied for the modeling of the scramjet
combustor. The IDDES approach is suitable for dealing with flow
separation and bears the merit of alleviating the mesh resolution
requirement in the near-wall regions by using the RANS mode and
the rest the LES mode. In this study, the construction of the IDDES
model follows the work of Gritskevic et al. [29], and constant
turbulent Prandtl number PrT � 0.9 is set to close the energy
equation.
In the following section, the low-dissipative solver, which adopts

the hybrid spatial discretization scheme and third-order total
variation diminishing Runge–Kutta temporal discretization method,
is named as hybridCentralFoam. The counterpart dissipative solver,
which is still named as rhoCentralFoam, follows the same
formulation but with the shock sensor set to a constant value of 1.0 to
revert to the shock-capturing scheme everywhere. Both solvers will
be computed and compared to validate the advantage of the new low-
dissipative hybrid scheme inmodeling the supersonic turbulent flows
via the LES approach.

III. Results

A. Sod Shock Tube

The Sod shock-tube problem [30] is a common test case to
examine the dissipative discontinuity-capturing schemes. The initial
flow variable distributions follow the shock-tube experiment
expressed by Eq. (10). The gas obeys the equation of state for
calorically perfect gas with the specific heat ratio of γ � 1.4:

�ρ; u; p� �
� �1; 0; 10�; x ≤ 0

�0.125; 0; 1�; x > 0
(10)

The flowfield evolves from the initial conditions at t � 0, just as
the diaphragm instantaneously bursts. The initial interface soon
forms a right-moving shock, a left-moving rarefaction fan, and an
intermediate contact discontinuity. Figure 2 shows the computed and
the analytic density (Fig. 2a) and pressure profiles (Fig. 2b) at a
nondimensional time of t � 0.007. With the current method, all
waves are correctly captured at their right propagation speed.
Although both the contact and the shock discontinuity are smeared
over a few cells, their behaviors (e.g., location and jump) are well
captured. The performance of the current shock-capturingmethods in
capturing one-dimensional discontinuity is satisfactory.

Fig. 1 Control volume for FV discretization in OpenFOAM.
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B. Shu–Osher Test Case

The Shu–Osher problem is a one-dimensional idealization of the

shock–turbulence interaction problem, where a shock at M � 3
propagates into a perturbed sinusoidal density field [31]. A complete

capture of the shock discontinuity and all relevant physical

wavelengths downstream of the shock requires a high-quality solver

with good resolution. This makes this simple case particularly

relevant to the modeling of the shock/turbulence interactions.
The case is conducted on the domain of x ∈ �−5; 5� with uniform

grid spacing Δx � 10∕300. The initial conditions for this problem
are given as follows:

�ρ; u; p� �
� �3.857143; 2.629369; 10.33333�; x < −4
�1� 0.2 sin�5x�; 0; 1�; x ≥ −4 (11)

Figure 3 shows the density and entropy profiles at t � 1.8, which
are compared with [32], which was obtained with 1600 points using

the seventh-order-accurate WENO solution. The entropy is defined

by Δs∕cv � ln �p∕ργ�, where cv is the specific heat at constant

volume. From Fig. 3a, the two solvers can accurately capture the

shock front and resolve the undisturbed region. However, the

dissipative solver obviously smears the short-wavelength oscillations

in the postshock region. In contrast, the low-dissipative solver

reasonably captures most of the short wavelengths by adaptively

employing the nondissipative scheme to resolve the postshock

region. Similar results are found in the entropy wave field shown in

Fig. 3b. For both solvers, the full entropy amplitude is accurately

predicted immediately behind the shock. However, in the postshock

region, the entropy wave substantially maintains its amplitude for the

low-dissipative solver but decreases rapidly for the dissipative solver

due to high numerical dissipation. The case demonstrates that the

low-dissipative solver is not only able to accurately capture shock

wave but also could properly deal with the flowfield away from the

discontinuities.

C. Taylor–Green Vortex Problem

The Taylor–Green vortex problems are typically used to assess the

discretization schemes for their scale-resolving performance. Here,

both the inviscid and viscous Taylor–Green vortex problems are

investigated. In the inviscid flow, the Taylor–Green vortex problem

by Johnsen et al. [32] is used to examine the stability of the

nondissipative scheme for severely underresolved scales and to test

its ability of temporally conserving the total kinetic energy. The

viscous Taylor–Green problem is used to assess the solver’s

performance in modeling the flowfield from a smooth initial

condition to fully developed turbulence after a series of vortex

b)a)
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Fig. 2 Profiles of a) density, and b) pressure, for the Sod shock-tube problem.
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Fig. 3 Profiles of a) density, and b) entropy, for the Shu–Osher problem.

t

N
or

m
al

iz
ed

K
in

et
ic

E
ne

gy

0 2 4 6 8 10 12 14 16 18 20
0

0.03

0.06

0.09

0.12

0.15

rhoCentralFoam

hybridCentralFoam

*

Fig. 4 Temporal evolution of total kinetic energy for the inviscid
Taylor–Green vortex.
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stretching and transition. In this case, the shock-capturing scheme is

disabled, and no subgrid-scale turbulence model is used.

Calculations are performed on three grid resolutions: 643, 1283,
and 2563, with uniform grid spacing throughout the domain. Periodic

boundary conditions are applied to all directions. The computational

time t is normalized by a characteristic time scale of t� � t∕�l∕U0�,
where reference length l � 0.01 m and the velocity U0 �
34.6115 m∕s. All the calculations are run until 20 characteristic

time scales and the maximum CFL number is no more than 0.3.

First, numerical investigations are conducted to examine the

stability of the smooth flow modeled by the nondissipative scheme

when the viscous terms are removed from the Navier–Stokes

equations. The temporal evolution of the total kinetic energy Ek in

the computational domain is plotted in Fig. 4, which shows that the

low-dissipative solver can preserve the kinetic energy at a constant

level for a long time. It should be mentioned that the total

kinetic energy with the dissipative solver diverges shortly after the

computation starts and then dissipates toward zero. Because there is

no physical dissipationmechanism in this case, the flowfield ought to

be able to recover its initial state if the time integration method is

exact enough, as revealed by Duponcheel et al. [33]. Here, the sign of

the velocity field is reversed at t� � 10, and the calculation is

advanced until t� � 20. As shown in Fig. 5, the flowfield begins to

evolve from the initial Green–Taylor vortex flowfield and develops

into “fully turbulent” at the reversed time, and then the flowfield

gradually returns to its initial state at the corresponding moment.

The time reversibility of the inviscid case further confirms the

kinetic energy conservation property of the skew-symmetric scheme

Fig. 5 Temporal evolution of the inviscidTaylor–Green vortexwith time reversed at t� � 10, visualized by the isosurface ofQ-criterionwithmapped-on
normalized velocity magnitude.

Fig. 6 Temporal evolution of the Taylor–Green vortex at Re � 1600 visualized by isosurface of Q-criterion with mapped-on normalized velocity
magnitude.
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implemented here, which is beneficial to the numerical stability of the

low-dissipative solver.

Second, the viscous Taylor–Green vortex problem is solved with a

Reynolds number of Re � 1600 based on the reference length l and
the velocityU0. No turbulence model is added, and the results will be

compared with the spectral direct numerical simulation (DNS)

[34,35]. The temporal evolution of the Taylor–Greenvortex flowfield

is visualized via the isosurface of the Q-criterion in Fig. 6. At the

earliest time, the initial large-scale vortex structures begin to evolve

and roll up. At around t� � 6.9, the smooth vertical structures induce

more coherent structures, and at around t� � 9.0, the coherent

structures begin to break down and start to transition to turbulence.

From this time, the flow becomes fully turbulent and proceeds

steadily to a decaying isotropic state until the flow comes to rest.

The evolutionary history of total kinetic energy Ek for the viscous

cases at different grid resolutions are plotted in Fig. 7, where the

results are in good agreement with the DNS data. To further validate

the performance of the skew-symmetric form in turbulence energy

transfer, the temporal development of the dissipation rate of total

kinetic energy ε � −dEk∕dt is plotted in Fig. 8. The good agreement

for all the three resolutions indicates that the energy cascades from

large to small scales in such a complex flow development have been

accurately predicted.

D. Fully Developed Turbulent Flow

To assess the capability of the low-dissipative solver in dealing

with compressible wall-bounded flows in the LES framework, a

supersonic crossflow over a flat plate with the freestream Mach

number 2.0 is investigated. Within the boundary layer, the large

vorticity will diminish the Ducros-type sensor to the threshold value,

and then the central scheme will become dominant. The turbulent

model is added in this case by activating the IDDES approach based

on Menter’s k − ω SST model.

The computational domain size for the LES calculation is 24δ,
2.5δ, and 5δ in streamwise, spanwise, and wall-normal directions,

respectively. Uniform grid spacing, dx� � 25 anddz� � 10, is used
in streamwise and spanwise directions up to x � 20δ. In the wall-

normal direction, the grid is clustered from y� � 60 at the upper edge
to y� � 1 at the wall, and the maximum grid stretching factor is no

more than 1.15. Periodic boundary conditions are applied in the

spanwise direction for all variables, and a no-slip boundary condition
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Fig. 9 Instantaneous streamwise velocity fluctuation field at awall-normal distance y� � 30, contour levels are shown for−0.25 < U 0
x∕U∞ < 0.25, from

dark to light shades.
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Fig. 10 Spanwise averaged mean velocity profile at location x � 6δ.
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velocity fluctuations and Reynolds shear stress profiles at location
x � 6δ.
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is imposed upon the adiabatic wall. A reformulated synthetic

turbulence generation method developed by Roidl et al. [36] is

employed to generate a time-varying inflow boundary conditions.

The time-step size in this case is set to Δt � 3e − 8 s, which

corresponds to a nondimensional time step of Δt� � Δtu2τ∕v �
0.1 in wall units. Here, uτ is the wall friction velocity, and v is the

kinematic viscosity.

The instantaneous streamwise velocity fluctuation field is

illustrated in Fig. 9, which exhibits the typical streak pattern of the

wall-bounded turbulence. The time- and spanwise-averaged velocity

profile at x � 6δ is shown in Fig. 10. The van Driest-transformed

velocity profile solved by the low-dissipative solver exhibits a

satisfactory agreement with the DNS [36] and accords with the log

law. Figure 11 shows the streamwise, spanwise, and wall-normal rms

of velocity fluctuations and Reynolds shear-stress profiles at x � 6δ.
One can notice that all the velocity fluctuations agree convincingly

with the statistical distributions obtained by pure LES [36] and DNS

[37]. In general, this case proves that the low-dissipative solver is

appropriate in resolving wall-bounded turbulence, and thus it has the

potential to deal with complicated wall-bounded turbulent flows.

E. Application to Realistic Flow

To validate the low-dissipative solver’s performance in the

modeling of a realistic scramjet, a supersonic flow flushing over a

rearward-facing step and subsequently reattached along an inclined

wall is investigated. The flow contains massive flow separations as

well as shock-wave/turbulent-boundary-layer interactions, which are

commonly encountered in hypersonic propulsion flowpath. Thus, a

detailed validation against the measurements, especially for the

velocity profiles along the shear layer and above the ramp wall,

will be conducted to build confidence in the accuracy of the low-

dissipative solver in modeling complex supersonic turbulent flows.

The flow chosen for the current investigation has been extensively

studied by Baca [38] and Settles et al. [39] in a high-Reynolds-

number, blowdown, supersonic wind tunnel. Nominal conditions in

the experiment tests are set as a stagnation pressure of p0 �
0.69 MPa	 1%, a stagnation temperature of T0 � 258 K	 4%, a

freestream Mach number of M∞ � 2.92	 0.015, and a freestream

unit Reynolds number of 6.7 × 107∕m	 4%. Figure 12 schemati-

cally shows the basic geometry used in the experiment. The test

model consists of a wedge-shaped plate with a 25.4-mm-deep and

61.9-mm-long cavity, followed by a 160-mm-long ramp at an

inclination angle of 20 deg. To promote the two-dimensionality of the

experiment, aerodynamic fences were attached to the ramp and

extended above the cavity.

Fig. 12 Geometry sketch of the experimental model.

Fig. 13 Isometric view of the computational domain with coarsened
grids for visual clarify.
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Fig. 14 Comparison of experimentallymeasured and extracted boundary-layer profiles: a) velocity, b) density, and c) temperature at 25.4mmupstream
of the cavity.

Fig. 15 Instantaneous flow structure of the computational domain:
a) streamwise velocity field, and b) turbulent structures visualized via the
Q-criterion with mapped-on streamwise velocity.
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Simulations are performed on a three-dimensional grid with
approximately 16 million cells, as shown in Fig. 13. The physical
dimensions in the streamwise, spanwise, and wall-normal directions
of the computational domain are respectively 26.2, 1.3, and 5.0 cm.
The flat plate extended upstream for a distance of two step heights to
allow sufficient distance for the inflow turbulence to develop into the
fully developed state. Downstream of the backward-facing step, a
more isotropic grid is generated for the free shear layer. The grid is
clustered to provide a nominal y� ≈ 1.0 adjacent to the surface. The
flowfield is initialized with a converged flowfield simulated by a
RANS simulation on a coarser grid. Statistics are taken after the
flowfield evolves for a minimum of three characteristic flow-
through times.
Accurate description of the turbulence behaviors in the upstream is

a key step in modeling the complex shock/turbulence interaction in
the downstream. In the current simulation, adiabatic and no-slip
boundary conditions are assumed for all the walls, and periodic
boundary conditions are applied in the spanwise direction. To

introduce coherent turbulent structures on the inflow boundary, the
synthetic turbulence generation method is employed for the velocity
and temperature profiles. As a preliminary verification of the
synthetic turbulence method, Fig. 14 compares the time-averaged
velocity (Fig. 14a), density (Fig. 14b), and temperature profiles
(Fig. 14c) between the experimental measurements and the extracted
boundary layer from current modeling at 25.4 mm upstream of the
cavity. The results demonstrate that the synthetic turbulence method
can correctly reproduce the mean flow condition upstream of the
cavity. The synthetic turbulent inflow will provide massive turbulent
fluctuations and rich coherent turbulent structures for the
downstream, which are mostly resolved by the current grid setting
and IDDES approach.
The instantaneous streamwise velocity contours are highlighted in

Fig. 15a. The major flow features observed in the experiment are all
well reproduced in the modeling. The turbulent inflow evolves along
the flat plate and then detaches at the corner of the backward-facing
step, creating a free shear layer over the cavity. When it reattaches
along the ramp, the free shear layerwill interactwith an oblique shock
front standing off the ramp, and the flow will be entrained into the
cavity near the reattachment point. Figure 15b presents the contour
image of the turbulent structure visualized via the isosurfaces of
Q-criterion with mapped-on streamwise velocity, which shows that
fine-scale wall-bounded turbulent structures slowly evolve along the
flat plate in the upstream. As the flow detaches from the corner of
the backward-facing step, much larger vortex structures come into
being in the free shear layer and recirculation zone. The recompression
shock after reattachment alsohas a pronounced effect on the turbulence
structure, which merits further studies.
The measurements at different locations denoted in Fig. 16 for the

shear layer above the cavity and the boundary layer along the ramp
are compared to validate the modeling results. Here, the streamwise

Fig. 16 Sketch of the locations for profile surveys.
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Fig. 17 Normalized velocity profiles through the shear layer: a) x � 0.5D, b) x � 1.5D, c) x � 2.5D, and d) x � 3.5D.
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and normal distances have been normalized by the step height
of D � 25.4mm. Comparisons of the time-averaged normalized

velocity profiles through the shear layer are presented in Fig. 17.

In the modeling, the flowfield is actually treated as a quasi-two-
dimensional problem because the cyclic boundary conditions are

applied in the spanwise direction. However, such treatment may lead
to the flow not being totally reproduced. In this case, the lower

pressure in the cavity, the downward deflection of the free shear layer,
and the slight expansion above the cavity can possibly be attributed to

insufficient consideration of the three-dimensionality, which causes a

slight inclination of the predicted shear direction [40]. To make a

better comparison of the spreading rate of the shear layer, the
predicted shear layer is rotated by a small angle to line up with
the actual direction of the shear layer in the experiment. After the
rotation, the velocity profiles through the shear layer agree quite well
with the measured spreading rate, as depicted in Fig. 17.
Comparisons of the normalized static pressure along the rampwall

and velocity profiles across the ramp boundary layer are shown in
Figs. 18 and 19, where the predictions are in reasonable agreement
with the measurements but still with some discrepancies at some
locations. The discrepancies are possibly caused by the lower
pressure at the bottom of the ramp due to a slight expansion of the
upstream shear layer, and the earlier pressure rising as the downward
deflection of the shear layer collides with the ramp. Those also
explain the mismatch of the predicted velocity profiles with the
measurements in the inner boundary layer on the reattachment ramp
in Fig. 19.As the free shear layer deflects downward, the downstream
flowfield will experience an earlier occurrence of flow reattachment.
Thereby, the inner velocity profiles along the ramp in the downstream
will undergo premature boundary-layer recovery state, though the
velocity profiles in the outer boundary layer agree well with the
experimental data.

IV. Conclusions

In this study, a low-dissipative hybrid compressible solver for
supersonic turbulent flows is developed within the unstructured
OpenFOAM framework. The new solver adopts a hybridized
scheme, combining a dissipative scheme with excellent shock-
capturing capability and the central scheme with nondissipative
property, for the purpose of accurate modeling of both shock and
turbulence in the supersonic turbulent flows. The shock sensor plays
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Fig. 18 Normalized wall pressure distribution along the reattachment
ramp.
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a key role in the hybridization formulation and determines the
numerical dissipation of the flow modeling to a large degree. Here, a
modified Ducros sensor is employed to activate the dissipative
scheme only in the vicinity of strong shock waves. Furthermore, the
third-order total variation diminishing Runge–Kutta time-marching
method and a hybrid RANS/LES approach based on the k − ω
SST model is implemented in the low-dissipative hybrid solver to
reduce the temporal dissipation and to deal with wall-bounded
turbulent flows.
The hybrid-scheme-based solver was validated by a series of

benchmark problems, including the Sod shock-tube test, the Shu–
Osher problem, the Green–Taylor vortex evolution, and a wall-
bounded turbulent flow. The performance of the low-dissipative
solver in both resolving turbulence and capturing flowdiscontinuities
was validated through extensive comparisons with the experimental
data and the DNS results. In addition, the synthetic turbulence
method coupled with the low-dissipative solver proved to be an
effective method in generating compressible turbulence inflow
for LES. The modeling of supersonic flow over a cavity ramp
configuration further validated the low-dissipative solver’s reliability
and robustness in resolving the flowfield with both flow
discontinuities and multiple-scale turbulence. At the same time, the
test case also emphasizes the importance of three-dimensional effects
in modeling realistic flows.
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