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In conventional foams, electrical 
property often plays a secondary role. 
However, this scenario becomes different 
for 3D GrFs. In fact, one of the motiva-
tions for synthesizing 3D GrFs is to inherit 
the remarkable electrical property of indi-
vidual graphene sheet. Especially, much 
attention has been paid on electrical con-
ductivity, since it decides the performance 
of 3D GrFs on supercapacitors, flexible 
electronics, strain sensors, etc. Comparing 
with the direct density dependence in con-
ventional foams,[31] the decisive factors for 
electrical conductivity in 3D GrFs are not 
clear until now, despite a lot of measure-
ments have been performed. As a matter 
of fact, the variation of electrical conduc-
tivity in 3D GrFs with respect to density 
has been recently summarized according 
to existing experimental data, and no 
direct link has been shown.[32] This could 
be attributed to multiple freedoms intro-
duced by graphene sheets, that is, their 
number of layers, characteristic length 

scale, and arrangement, which makes the fabrication of GrFs 
still dominated by a reverse engineering approach, that is, 
“aiming to study the properties of materials to be then able to 
build structures with improved mechanical and electrical char-
acteristics by rational design.”[32] To alleviate this situation, a 
theoretical study to figure out the decisive factors for electrical 
conductivity is in an urgent need.

Among various synthesis approaches, chemical vapor depo-
sition method stands out as a successful way to obtain 3D GrFs 
with both high electrical conductivity and excellent mechanical 
properties.[15,33–37] A common feature in these experiments is 
that compression could lead to the remarkable increase of elec-
trical conductance suggesting the vital role of van der Waals 
contact between graphene sheets. Intuitively, this might origi-
nate from the rising contact area and contact nodes density 
between graphene sheets. However, to prove this point of view, 
both the microstructure of 3D GrFs and the conducting prop-
erty of van der Waals bonded graphene sheets should be clari-
fied. While the former could be figured out with coarse-grained 
MD simulations, to the best of our knowledge the latter has 
never been systematically studied, despite there are compre-
hensive transport studies about graphene nanoribbons.[38–40]

In this article, combining with the transport modeling as 
well as coarse-grained MD simulations, a theoretical frame-
work has been established to systematically study the electrical 
conducting properties of 3D GrFs with or without deformation. 
First, large-scale and massive transport calculations, where the 
size of graphene sheets could reach to 125 nm (at least one 

In conventional foams, electrical properties often play a secondary role. 
However, this scenario becomes different for 3D graphene foams (GrFs). 
In fact, one of the motivations for synthesizing 3D GrFs is to inherit the 
remarkable electrical properties of individual graphene sheets. Despite 
immense experimental efforts to study and improve the electrical prop-
erties of 3D GrFs, lack of theoretical studies and understanding limits 
further progress. The causes to this embarrassing situation are identified 
as the multi ple freedoms introduced by graphene sheets and multiscale 
nature of this problem. In this article, combined with transport modeling 
and coarse-grained molecular dynamic (MD) simulations, a theoretical 
framework is established  to systematically study the electrical conducting 
properties of 3D GrFs with or without deformation. In particular, through 
large-scale and massive calculations, a general relation between contact 
area and conductance for two van der Waals bonded graphene sheets is 
demonstrated, in terms of which the conductivity maximum phenomenon 
in GrFs is first theoretically proposed and its competition mechanism is 
explained. Moreover, the theoretical prediction is consistent with previous 
experimental observations.

3D Graphene Foams

1. Introduction

Graphene consists of 2D, one-atom-thick sheet of 
sp2-hybridized carbon atoms and has attracted tremendous 
interest in a variety of fields, due to its outstanding electronic, 
thermal, and mechanical properties.[1–4] To tame these proper-
ties for applications in macroscale, both large-scale synthesis 
and integration of graphene sheets are indispensable. In the 
past few years, it witnesses the rapid development of syn-
thesis technique in this field, 3D GrFs are now endowed with 
extreme properties encompassing superelasticity,[5–8] ultralow 
density,[7] high specific surface area,[9] and good electrical 
conductivity.[8,10–15] This could be the reason for their diverse 
potential applications, for example, energy storage and conver-
sion,[16–19] bioelectronics,[20–23] strain sensors,[24] supercapaci-
tors electrodes,[25] oil absorbers,[26–28] and shock damping.[29,30]
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order greater than the size of graphene nanoribbons normally 
used in transport theoretical studies), have been performed to 
demonstrate a general relation between contact area and con-
ductance for two van der Waals bonded graphene sheets. Based 
on this result, the electrical conductivity of GrFs is then inves-
tigated, which is found to be closely related to the number of 
layers, especially there exists an optimum number of layers to 
obtain the conductivity maximum. As the classical optimization 
of foam density for thermal insulation is well known,[31] which 
stems from the competition between the thermal conduction in 
solids and radiation to pass through solids, the existence of an 
optimum number of layers for the conductivity of 3D GrFs and 
the corresponding mechanism are first theoretically proposed 
and investigated, paving a way to optimize the conducting per-
formance of 3D GrFs.

2. Results and Discussion

2.1. Transport Modeling for Two van der Waals  
Bonded Graphene Sheets

While a lot of theoretical studies have carefully studied the 
conductance of graphene nanoribbons, that for two van der 
Waals bonded graphene sheets has seldom been paid attention 
to.[41,42] Especially, the influence of their size, twist angle, layer 
number, and contact area to the conductance is not clear. Since 
these factors are essential for understanding the conducting 
properties of GrFs, a transport model in this system needs to be 
established. To this end, a tight-binding (TB) model for multi-
layer graphene should be introduced first.

A TB model proposed in ref. [43] is used, and the total 
Hamiltonian is given by H = H1 + H2 + Hint, where H1 and H2  
are Hamiltonians for the first and second layer of graphene, 
and Hint represents the interaction between two layers (the 
details of this TB model are introduced in the Experimental 
Section). In Figure 1a, the configuration of AB-stacked bilayer 
graphene is shown with the top and side view of its unit cell 
in Figure 1b. Then, the corresponding band structure obtained 
in first principle calculations could be used to fit parameters 
in the TB model, and the comparisons between the TB model 
and first principle calculations are shown in Figure 1c, which 
is zoomed in Figure 1d. It can be seen that at low energy (less 
than 1.0 eV deviation from Fermi level), the TB model could 
well describe the band structure. More importantly, the TB 
model is further validated when the twist angle is nonzero for 
the two van der Waals bonded graphene sheets, which could be 
found in the Supporting Information, as it will be used to con-
sider the twist influence to the contact conductance.

With the TB model well established, the contact conductance 
could be systematically investigated. The top and side views 
of our transport model are shown in Figure 2a schematically, 
where different colors of atoms represent different layers. There 
are three regions in this model, that is, left lead region, con-
ductor region, and right lead region. Note that a circular contact 
area is assumed and the hopping between the two layers is only 
turned on inside this contact area, which is marked in Figure 2a 
and used to consider the influence of the contact area to the 
conductance. In Figure 2b, the contact conductance for two van 

der Waals bonded graphene sheets with 30 nm in width and 
eight different contact areas is shown. With the energy devi-
ating from Fermi level, a nearly linear increase in conductance 
could be clearly seen. Except the smaller magnitude, the energy 
dependence of conductance is similar to that of the monolayer 
graphene nanoribbon in the same width, which is marked with 
the pink solid line in Figure 2b. With voltages at two ends set 
to −1 and 1 V, the corresponding variation of total conduct-
ance versus contact area is shown Figure 2c, and the conduct-
ance gradually reach its saturation as the size of contact area 
approaches the width of the graphene sheet. In experiments, 
3D GrFs could be consisted by graphene sheets with different 
numbers of layers, and it is reported that the average number of 
layers could be controlled.[15] Therefore, besides the size of the 
graphene sheets, the number of layers becomes another impor-
tant factor to control the physical properties of 3D GrFs. Here, 
we simply extend the TB model of bilayer graphene for multi-
layer graphene, that is, ∑ ∑= + int;,

H H Hii iji j
 (i, j = 1, …, N and 

| j −i | = 1), so that the contact conductance of two van der Waals 
bonded graphene sheets with more than one layer, different 
twist angles, and different contact areas could be studied. Since 
graphene possesses both sixfold rotation and mirror symmetry, 
the twist angles ranging from 0° to 30° are sufficient to under-
stand the twist influence to conductance. To be specific, the 
contact conductance for twist angles equaling 0°, 6.59°, 10.89°, 
16.1°, 23.41°, and 30° are calculated and shown in Figure 2d, 
where each graphene sheet has three layers with ABA-stacking, 
and is 30 nm in width. A clear tendency is that with the twist 
angle becomes larger, the transport electrical gap enhances 
and the number of conducting channels decreases due to the 
aggravated lattice mismatch between the two graphene sheets. 
Note that in the real situation, the twist angle varies from dif-
ferent contact areas, and in fact they could even change in the 
same contact area. Therefore, the contact conductance for van 
der Waals bonded graphene sheets will be averaged with twist 
angles in the following.

2.2. The Layer Number and Size Dependence of the Contact 
Conductance for Two van der Waals Bonded Graphene Sheets

Next, our transport model is used to investigate the layer 
number and size dependence of the contact conductance 
for two van der Waals bonded graphene sheets. In principle, 
when the width of the graphene sheet is much larger than 
the carbon–carbon bond length, the size effect should be neg-
ligible. In this situation, given the same number of layers for 
graphene sheets, the evolution of normalized contact conduct-
ance σ σ σ= =/ d w with respect to the normalized contact area 

π π= = 
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d w  should yield to one curve, where d and 

w represent the diameter of the circular contact area and the 
width of the graphene sheet, respectively.

To confirm this point of view, the contact conductance for 
graphene sheets with different widths and numbers of layers 
is calculated, and it is normalized with that of monolayer gra-
phene sheets, that is, σ σ σ= = =/ , 1d w n , where n is the number 
of layers. Indeed, it is found that the contact conductance 
for the graphene sheets with the same number of layers but 
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different sizes shares the same change rule. Especially, when 
the contact conductance and area are normalized, they fall on  
one curve, which is consistent with the theoretical conjecture 
(see Figure 3a). However, with different numbers of layers,  
the rule may change. This could be understood physically, 
since with more layers for each graphene sheet the conducting 
efficiency slows down. For example, the contact conductance 
between bilayer graphene sheets is always less than two times 
of that between monolayer graphene sheets. To quantitatively 
describe the size dependence of contact conductance for dif-
ferent numbers of layers, the formula

( )= +/y ax x b  (1)

is used to fit the calculation results, where a and b are two fit-
ting parameters. This formula gives two limits for the normal-
ized conductance, that is, the lower limit (equals 0) and upper 
limit (approaches a constant a), which are corresponded to the 
noncontact and full-contact situations, respectively. Note that 
for different numbers of layers, the values of parameters can 
be different. The fitting results are plotted with solid lines in 

Figure 3a, and different layers are marked with different colors. 
This fitting could well describe the calculation results, and the 
evolution of parameters with respect to the number of layers 
is shown in Figure 3b. It could be seen that as the number of 
layers increases, the values of both parameters increase sug-
gesting the rising normalized conductance and the declined 
conducting efficiency. Note that the voltages at two ends are set 
to −1 and 1 V, respectively, and this setting will be used in the 
following conductivity calculations unless otherwise stated. As 
complementary, different external voltages are tested and the 
change rule for the contact conductance is found to be similar 
(see the Supporting Information).

Besides, the variation of reference conductance, that is, the 
conductance for monolayer graphene sheets, with respect to 
the width of graphene sheets follows a power law as shown in 
Figure 3c. It provides a quantitative expression for the reference 
conductance, which combining with Equation (1) enables to 
predict the contact conductance for the van der Waals bonded 
graphene sheets with arbitrary width and number of layers.

One thing should be emphasized is that comparing with 
previous theoretical studies for the transport properties of 

Small 2018, 1801458

Figure 1. a) The configuration of AB-stacked bilayer graphene, and the unit cell used in our first principle calculation is shown. b) Top view (upper) 
and side view (lower) of the unit cell. c) The electronic band structure of bilayer graphene, where the dispersions from first principle calculations and 
TB model are marked with black solid line and red triangle, respectively. Inset: first Brillouin zone in the reciprocal space. d) Zoom in the dispersions 
at vicinity of K point.
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graphene nanoribbons whose widths are usually limited to 
several nanometers, here large-scale and massive transport cal-
culations have been performed to obtain Figure 3a, where the 
largest width for graphene sheets could reach to 125 nm and 
the largest layer number come up to eight. Multiple freedoms 
for graphene sheets, that is, the size, number of layers, twist 
angles, and contact area are considered in our calculations, and 
the cost for single calculation could be thousand times more 
than that for several nanometers wide graphene nanoribbons.

2.3. The Conductivity Maximum Phenomenon in 3D GrFs

The high conductivity is one major property pursued in 3D 
GrFs, which is directly related to its functional applications. 
While a lot of experimental efforts have been devoted to 
measure and study the conductivity in GrFs, the theoretical 
studies and analyses are exceeding deficient or even nonex-
istent. As a result, its fundamental law is unclear and thus 
absent of effective optimization strategies. Next, the conduct-
ance of 3D GrFs and that of two van der Waals bonded gra-
phene sheets will be correlated to form a theoretical framework, 
which, we believe, could help the researchers in this field get 
rid of the current awkward situation.

As mentioned above, the electron transport in 3D GrFs 
originates from the contact conductance of two van der Waals 

bonded graphene sheets. Physically, the 3D GrFs could be 
imaged as a network, where lines represent the individual gra-
phene sheet, and nodes are on behalf of their contact regions. 
Therefore, the conductance of 3D GrFs is given by the contact 
conductance of the graphene sheets in series-parallel connec-
tion. A major concern here is whether the disordered distri-
bution of graphene sheets in GrFs endows them with a novel  
conductivity behavior. To address this issue, a simple theoret-
ical analysis is provided to compare the conductivity behavior in 
3D GrFs with that for ordered stacked graphene sheets.

In Figure 4a, the evolution of conductivities for trian-
gular attached graphene sheets (upper inset in Figure 4a) and 
ordered stacked graphene sheets (lower inset in Figure 4a) with 
respect to number of layers is shown. Note that the triangular 
attached graphene sheets model is used to simulate the state 
of graphene sheets in GrFs, which are bended and attached 
with each other, and the corresponding conductivity is calcu-
lated by assuming a GrFs system possessing the same contact 
area per node and contact nodes density. With the enhanced 
number of layers, the structural and mechanical consequences 
are the increasing thickness and bending stiffness for graphene 
sheets. In ordered stacked graphene sheets, only the thickness 
of graphene sheets plays a role since no bending takes place, 
while for triangular attached graphene sheets the comparison 
between bending and adhesion energy determines the contact 
area, characteristic length scale, and thus conductivity. It could 
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Figure 2. a) The schematic diagram of the mesoscopic transport model for AA-stacked van der Waals bonded graphene sheets. b) The energy 
dependence of contact conductance for two van der Waals bonded graphene sheets with 30 nm in width, where radiuses for contact areas equal 2, 4, 
6, 8, 10, 12, 14, 15 nm and are marked with different colors. Note that the contact conductance of the 30 nm wide monolayer graphene nanoribbon is 
also given for comparison, which is marked with pink solid line. c) With voltages at two ends set to −1 and 1 V, the variation of contact conductance 
versus contact area for AA-stacked van der Waals bonded graphene sheets. d) The evolution of the energy dependence of contact conductance for the 
van der Waals bonded ABA-stacked trilayer graphene sheets with six different twist angles, that is, 0°, 6.59°, 10.89°, 16.1°, 23.41°, and 30°.
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be seen in Figure 4a that a conductivity maximum phenom-
enon emerges for triangular attached graphene sheets. How-
ever, this phenomenon is absent for ordered stacked graphene 
sheets. Note that the length and width of graphene sheets are 
set to 125 nm, so that the theoretical result could be compared 
with the following calculations. More details about theoretical 
derivations and analyses could be found in the Supporting 
Information.

To figure out the essence of this difference, the competition 
mechanism should be clarified first. With the number of layers 
increase, there are three consequences, that is, the increasing 
bending stiffness, thickness for each graphene sheets, and 
contact conductance between them. The increasing bending 
stiffness could lead to the decrease in contact area per node 
(see Figure 4b), while the increasing thickness enhances the 

characteristic volume and thus lowers the contact nodes density 
(see Figure 4c). Despite in different ways, the first two conse-
quences could reduce the conductivity, and the competition 
between the first two consequences and the third one could 
induce the conductivity maximum phenomenon. It is clear 
that if one of these consequences dominates, then the conduc-
tivity maximum phenomenon disappears. In fact, this is the 
case for the ordered stacked graphene sheets. In this system, 
nodes density is inversely proportional with the thickness of 
graphene sheets, and its declining rate is always larger than 
the growth rate of contact conductance between two van der 
Waals bonded graphene sheets, since the contact conductance 
for N-layer graphene sheets are always less than N times of 
its monolayer counterpart. As a result, the thickness variation 
for graphene sheets dominates the conductivity behavior and 
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Figure 3. a) Normalized conductance with respect to normalized contact area, where Equation (1) is used to fit the calculation results and marked 
with solid lines. Note that graphene sheets with different widths are marked with different symbols, while graphene sheets with different numbers of 
layers are marked with different colors. b) The evolution of fitting parameters a and b with respect to number of layers. c) The reference conductance 
versus the width of graphene sheets, and it follows a power law.
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the conductivity maximum phenomenon disappears. In GrFs, 
the graphene sheets are distributed in a disordered manner, 
relative to thickness, the bending stiffness plays a much more 
important role with the increasing number of layers, and thus 
both the evolution of their structure and conductivity should be 
similar to the triangular attached graphene sheets model. It is 
expected that the conductivity maximum phenomenon should 
occur in GrFs.

To confirm this point of view, 3D GrFs are generated through 
MD simulations and their conductivity are directly calculated. 
For theoretical simplicity, two approximations are used in this 
process. First, it is assumed that all of the graphene sheets 
have the same number of layers n and width w, which could 
be corresponded to the experimental average values. Second, 
the topological details for the connection of the network are 
neglected, instead two average quantities, that is, average con-
tact area per node and nodes density, are used to predict the 

conductivity of 3D GrFs at a mean field level. With average 
contact area per node S and nodes density ρ, the characteristic 
volume for one contact node V = 1/ρ, and the conductivity of 
3D GrFs is given as

σ ( ) ( )= ⋅ = ⋅ −, , / , , 1/3G S n w L A G S n w V  (2)

where L and A are characteristic length and area for one 
contact node, and G(S, n, w) is the contact conductance of 
two graphene sheets and it is determined by S, n, and w. Note 
that the isotropic approximation is used in the final step. (The 
detailed illustration can be found in the Experimental Section, 
besides based on Equation (2) the theoretical maximum con-
ductivity for given GrFs can be provided, see the Supporting 
Information)

Since the mesoscopic transport model could be used to 
obtain G(S, n, w), now it only needs to obtain the structural 
information, that is, S, n, w, ρ, to calculate the conductivity of 
3D GrFs by using Equation (2). To this end, the coarse-grained 
MD simulations are used to study the structure of 3D GrFs (the 
configuration generation and other simulation details could be 
found in the Experimental Section). In Figure 5a, a 3D GrFs 
sample with three layers and 125 nm in width is shown, where 
the contact regions are marked with red color, while the non-
contact regions are marked with gray. In the left corner of 
Figure 5a, another color scheme is used for this sample, where 
different graphene sheets are plotted with different colors. The 
periodic boundary conditions are used and the size of the simu-
lation box is about 460 × 460 × 460 nm3. In Figure 5b,c, the var-
iation of contact area per node and nodes density with respect  
to the number of layers are shown with graphene sheets 75 and 
125 nm in width. Comparing with the triangular attached gra-
phene sheets model, the variation of contact area per node 
becomes less significant, and a much more dramatic decrease for  
the nodes density is observed. This may stem from the struc-
ture reconfiguration in GrFs samples due to the changed layer 
number of graphene sheets, which is not considered in the 
simple triangular attached graphene sheets model.

Despite there are some quantitative differences between 
the theoretical model and calculation results, the qualita-
tive behavior remains, and thus the conductivity maximum 
phenomenon should take place. By using Equation (2), the 
evolution of conductivity versus the number of layers could 
be obtained and is shown in Figure 5d. The conductivity 
maximum occurs when the number of layers equals 3, which 
is robust even when the width of graphene sheets is slightly 
changed (75 and 125 nm are shown in Figure 5d, 50 and 
100 nm could be found in the Supporting Information). The 
reason is that with the normalized contact area around 10%, 
the contact conductance shows a noticeable enhancement for 
graphene sheets within three layers, and is nearly unchanged 
for graphene sheets with more layers, at which time the con-
tinuous decreasing nodes density takes over to suppress the 
conductivity. It should be emphasized that the competition 
mechanism is irrelevant with the specific arrangement of gra-
phene sheets, and thus the conductivity maximum phenom-
enon should be ubiquitous for 3D GrFs.

In fact, a lot of experiments have studied the conductivity 
behavior of GrFs,[8,10–15] and the existence of an optimum 
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Figure 4. a) The variation of conductivity with respect to number of layers 
for two different systems, that is, triangular attached graphene sheets and 
ordered stacked graphene sheets. The insets show their configurations, 
which reflect the disordered and ordered stacked states for graphene 
sheets, respectively. Note that for ordered stacked graphene, σxx is 
shown, and the conductivity is normalized with that of monolayer gra-
phene sheets. The evolution of contact area per node and contact nodes 
density with respect to number of layers is shown in (b) and (c), and both 
of them are normalized similarly.
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number of layers for the conductivity of 3D GrFs is recently 
reported,[15] which is shown in Figure 5e and the peak takes 
place at five layers. Despite a considerable difference in den-
sity for 3D GrFs, the conductivity maximum phenomenon is 
observed demonstrating the robustness of the competition 
mechanism. Since experimentally the graphene sheets in GrFs 
are usually at microscale, which are one order larger than the 
size of graphene sheets used in our simulations, the size effect 
in GrFs is carefully studied based on the triangular attached gra-
phene sheets model and shown in the Supporting Information. 
It could be concluded that the adhesion energy takes a more 
important part relative to bending energy with the increasing 
size of graphene sheets, and it leads to a rise in the contact 
area per node, which in turn enhances the optimum number 
of layers for the conductivity maximum. This may possibly 
explain why the optimum number of layers in experiments is 
larger than its value obtained from our simulations. To the best 
of our knowledge, the conductivity maximum phenomenon in 
3D GrFs and its competition mechanism are first theoretically 
proposed and investigated, based on which the conductivity of 
3D GrFs could be optimized.

Until now, many different kinds of 3D GrFs[5,8,44–52] are 
endowed with superelasticity, which combining with its well-
conducting performance enables their potential applications 
in flexible electronics, strain sensors, bioelectronics, etc. For 
this reason, it is important to understand the conducting prop-
erty of deformed 3D GrFs and to figure out its strain depend-
ence. In the following, this issue will be studied based on our 
framework.

With coarse-grained MD simulations, the uniaxial tensile 
test is performed for a 3D GrFs sample composed by trilayer 
graphene sheets with 125 nm in width, and its microstructures 
at different strain levels are shown in Figure 6a. During the 

stretching process, it could be seen that the area and position 
of contact regions gradually evolve. Since in experiments the 
relative resistance is usually shown, its variation with respect 
to strain is given in Figure 6b, which presents an upward non-
linear increase. This is actually consistent with the measure-
ments in recent experiments.[14,15] Further, the cyclic loading 
is performed in our simulations. The variation of the rela-
tive resistance under the cyclic loading is shown in Figure 6c, 
where three tensile strain magnitudes, that is, 11, 32, and 
54%, are used. It is found the variation of resistance gradu-
ally becomes stable when the cyclic loading is more than five 
times, which is similar to the experimental observation.[8,10–15] 
Especially, the relative resistance for the sixth circle (ten-
sile strain magnitude equals 54%) with respect to the strain 
is plotted in Figure 6d, and a slight hysteretic loop is present 
which also appears in experiments.[15]

Until now, various kinds of 2D materials have been suc-
cessfully synthesized, which are accompanied by remark-
able electrical, thermal, optical, and mechanical properties. 
3D foam assembly serving as an effective, low-cost, and facile 
method to utilize these properties for macroscopic applications 
now becomes a new tendency. As the theoretical framework 
established here in principle could be used to study the con-
ducting-related properties for 2D materials based 3D foams, it 
may provide theoretical supports for this novel direction.

In fact, the conducting performance of graphene foam is 
dominated by contact area. If we consider the electrical states 
near defects are localized or some adsorbates exist between gra-
phene sheets, the general influence is to reduce the effective 
contact area. Thus, for different defects or adsorbates, we need 
to find the reduction of the effective contact area each defect, 
based on which we could predict the electric conductivity. 
Besides, when the concentration is up to some degree, the 
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Figure 5. a) The snapshot of 3D GrFs, where graphene sheets have three layers and are 125 nm in width. The evolution of b) contact area per contact 
node, c) contact nodes density, and d) the corresponding conductivity with respect to number of layers. e) The variation of conductivity with respect 
to average number of layers according to the experimental measurements in ref. [15] is shown as comparison.
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doping effect should be taken into account, Fermi level could 
deviate from zero in this case. Therefore, the defect effect could 
be an interesting topic in our further study.

3. Conclusion

Combining with the transport modeling as well as coarse-
grained MD simulations, we establish a theoretical framework, 
based on which, the electrical conducting property of 3D GrFs 
is systematically investigated. Particularly, a fundamental cor-
relation between contact conductance and contact area for two 
van der Waals bonded graphene sheets is uncovered, which 
serves as the cornerstone of our theoretical framework. Since 
this correlation has nothing to do with the exact arrangement 
of the graphene sheets, our theoretical framework is universal 
for 3D GrFs with arbitrary configuration, and in principle it 
could be extended to study the conducting property for other 
2D materials based foams.

By taking advantage of this framework, an interesting theoret-
ical prediction is that there exists an optimum number of layers to 
obtain conductivity maximum in GrFs. The competition mecha-
nism stems from the contact conductance enhancement between 
graphene sheets while a continuous decrease for the nodes den-
sity as the number of layers for graphene sheets increase, and it 
gives us much confidence to learn that our theoretical prediction 
is just consistent with the previous experimental observation. 
Besides, the strain-dependent conduction for 3D GrFs is inves-
tigated, and the primary experimental features are reproduced, 
which once again validate our theoretical framework.

4. Experimental Section
Variables Illustration: Equation (2) is the most important equation in 

the theoretical framework, which correlates the conductivity of GrFs with 
the contact conductance of two graphene sheets G. Here, the related 
variables used in this equation are illustrated carefully.

Characteristic volume for one contact node V = 1/ρ, which represents 
the average volume for one contact node. Based on the isotropic 
approximation (the structure is uniform and does not depend on 
direction), the characteristic length and area could be given as V1/3 and 
V2/3, respectively, which leads to the simplified form of Equation (2), that 
is, σ = G(S, n, w) · V−1/3. Note that ρ is nodes density, and it could be 
obtained in the simulations by counting the number of contact nodes 
inside the simulation box. Besides, G(S, n, w) is the contact conductance 
of two graphene sheets determined by average contact area per node S, the 
number of layers n, and the width of the graphene sheet w (see Figure 3).

3D Numerical Sample of GrFs: The coarse-grained scheme of multilayer 
graphene sheet proposed by Cranford and Buehler[53] is adopted here. 
A square coarse-grained flake was used as a building block. All flakes 
were placed randomly in a cubic box with periodic boundary condition 
in three directions. Under the Berendsen barostat 1 barometric pressure 
and Langevin thermostat 300 K, the system reaches the final equilibrium 
state at about 10 ns with the criterion that the total energy fluctuation 
converges to less than 1%. With some spring bonds connecting 
the neighboring flakes, the ten cyclic uniform tension–compression 
simulations were adopted to study the variation of microstructural 
contact of the system. All simulations were implemented using an 
open source software Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS)[54] with a time step 10 fs. The open visualization 
tool (OVITO)[55] was used to generate configurational illustrations. More 
details could be found in the Supporting Information.

First Principle Calculations Details: The geometrical configurations 
and electric band structures of bilayer graphene were obtained self-
consistently by using the projector augmented wave pseudopotential 
method implemented in the VASP package.[56] The energy cutoff and 

Small 2018, 1801458

Figure 6. a) The structural evolution of 3D GrFs under stretching, where graphene sheets have three layers and are 125 nm in width. Three snapshots 
corresponding to different tensile strain levels, that is, 17, 46%, and 75%, are shown. b) The strain dependence of relative resistance. c) The variation 
of relative resistance with respect to the number of loading cycles, and three different magnitudes of tensile strain are used and marked with different 
colors. d) The variation of relative resistance with strain for the sixth cycle, where the tensile strain magnitude equals 54%.
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convergence criteria are set to be 400 eV and 10−5 eV, respectively, and the 
maximum allowed force on each atom for structure optimization is less 
than 10−3 eV Å−1. Besides, the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation potential[57] was adopted for electronic structure calculations.

TB Model: A TB model proposed in ref. [43] was used to study the 
conductivity of two van der Waals bonded graphene sheets, and the 
Hamiltonian is given by H = H1 + H2 + Hint, where H1 and H2 are 
Hamiltonians for the first and second layer of graphene according 
to Reich model,[58] and γ= β− −H e r dij ij

int t
| |/  represents the interaction 

between two layers. Here, r is the vector pointing from the ith atom to 
the jth atom, d is a vector with its magnitude equalling the interlayer 
distance and its direction pointing from the graphene layer including 
ith atom to another graphene layer including jth atom, and γt and β are 
hopping parameter and characteristic distance, respectively. The fitting 
values of parameters in Reich model are ε2p = 0.927 eV, γ0 = −3.105 eV, 
s0 = 0 eV, γ1 = 0.023 eV, s1 = 0 eV, γ2 = 0.273 eV, s2 = 0 eV, the definition 
of which could be found in ref. [58] and those in Hint are γt = 0.769 eV 
and β = 0.423 Å. Note that the zero overlap matrix elements, that is, 
s1 = 0 and s2 = 0, are assumed to facilitate calculations of the transport 
model. This model could be extended for multilayer graphene, that is, 

∑ ∑= +H H Hii iji j int;, , where i, j = 1,…, N and | j −i | = 1.
Note that at low energy (less than 1.0 eV deviation from Fermi level), 

the TB model could well describe the band structure and thus give an 
accurate prediction for the conducting property.

Recursion Green’s Function Method: As the system is quite large, the 
recursion Green’s function method[59] was used to obtain the contact 
conductance of two van der Waals bonded graphene sheets. The 
advanced Green’s function of the conductor region is written as

limC 0 C L R
1

G E i I Hη( )= + − − Σ − Σ η→
−

+
 (3)

where ΣL and ΣR are self-energies of left and right leads, respectively, 
and HC represents the Hamiltonian of the conductor region. The 
conductance is given as

( )( ) = Γ ΓG E e
h

Tr G G2 2

R C L C
†

 
(4)

where Γ = Σ − Σi[ ]L,R L,R L,R
*  are broadening matrices. The total 

conductance is written as

∫µ µ ( )= − µ

µ
G G E E1 d

2 1 1

2

 
(5)

where μ1 and μ2 are the voltages at two ends.
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