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A B S T R A C T

Computation of shale permeability is challenging owing to the complicated physics of gas flow and the small-
scale heterogeneity in nanometer pores. In this study, a statistical-coupled model (SCM), based on the combi-
nation of FIB/SEM and SEM imaging measurements and statistical analysis is proposed to bridge the nanopore-
scale with the organic representative elementary volume (oREV)-scale. FIB/SEM imaging is adopted to get the
nanometer pores properties in organic matter (OM), and SEM imaging is used to get the OM content distribution.
With the analysis of nanopores of a Longmaxi shale sample from the Chongqing Province, China, it is demon-
strated that the pore size distribution obtained from FIB/SEM images of typical samples is representative con-
sidering the principal parts of the pore radii are similar comparing with 2D SEM image. Then, the SCM is
constructed based on the combination of the statistical method, the series-parallel model and the equivalent
model for microstructures, and the rationality of SCM are also investigated. The obtained characteristic para-
meters show an excellent performance in calculating the SCM element permeability with a small deviation of less
than 3% and a significantly faster computation speed comparing with the previous literature by approximately
400 times. Using the SCM, a method for the construction of oREV and the determination of oREV-scale per-
meability for the organic-rich shale is presented. Finally, the sensitivity analyses of oREV-scale permeability are
conducted and the results show that the permeability is sensitive to the OM content distribution, the district of
shale sample and the permeability of IOM. The influence of OM permeability on macroscale is also analyzed. The
new model can advance the understanding of the multiscale phenomena and establish a relationship between
microscale properties and macroscale behavior.

1. Introduction

Organic-rich shale has attracted significant attention to meet world's
increasing energy demand. Differing from conventional reservoirs, gas
shale, is rich in nanopores with extremely low porosity and perme-
ability. Special techniques are necessary to be used in the gas ex-
ploitation for the unconventional reservoirs. For a shale reservoir, hy-
draulic fracturing is widely used which causes a complex multiscale
system for gas transport (Chen et al., 2015b; Osiptsov et al., 2017; Yang
et al., 2017; Zhiming et al., 2014). And the strong heterogeneity of
organic matter (OM) and inorganic matter (IOM) in shale also adds
significant complexities into the multiscale problem (Yan et al., 2018).
The macroscopic properties of shale such as porosity, permeability and
adsorption are dependent on its micro-structures, components and flow
regimes. It is of significant importance to get the properties of the re-
presentative elementary volume (REV) which serves as the bridge of
microscale and macroscale. Over several years since the concept of REV
was floated by Bear, it is known that REV is the volume at which the

averaging of the reservoir attribute becomes stable (Bear, 1972). An
REV can be defined for each porous medium property or system con-
dition of interest such as porosity, moisture saturation, permeability
(Costanza-Robinson et al., 2011). In recent years, several approaches
are proposed for determining the REV. Lake and Srinivasan (2004)
presented a method to determine the REV of an attribute from a log-log
plot of the variance of attribute's linear average vs. length scale. Singh
et al. proposed a sophisticated approaches to estimate REV using var-
iance-based approach (Singh, 2014, 2017; Singh and Srinivasan, 2014).
It is hypothesized that accurate assessment of the scaling characteristics
of reactive-transport processes in reservoirs requires analysis of the
spatiotemporal variability of the underlying rock properties of the re-
servoir. A semi-analytical model considering both the spatial and
temporal characteristics of the reservoir attribute is used to derive the
REV of attribute in combined space and time. Naraghi and Javadpour
(2015) compared the sensitivity of the total apparent permeability to
the local heterogeneity by changing the sample size. They calculated
the mean permeability and the standard deviation of several stochastic
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realizations to determine the REV when the standard deviation goes
approximately to zero. In this study, the REV is defined for the volume
that is sufficient to involve the heterogeneity caused by organic matter,
referred to as organic REV (oREV). As the flow scale in shale spans
widely, a reasonable approach for its multiscale modeling involves
obtaining the oREV-scale permeability from a micro- or pore-scale and
then followed by substituted into larger scale simulators, which can
convert the complex multiscale phenomena into a computer-tolerable
simulation model. Recently, numerous researchers have noticed the
superior performance of multiscale models and applied them to in-
vestigate gas flow in shale (Akkutlu et al., 2017; Cao et al., 2017; Chen,
2016; Geng et al., 2016; Jiang et al., 2017; Singh and Javadpour, 2016;
Song et al., 2016; Talonov and Vasilyeva, 2016).

In gas shale reservoirs, gas is stored in interconnected pore space or
adsorbed onto OM and often sourced from the same reservoir rock
(Darabi et al., 2012). From focused ion beam scanning electron mi-
croscope (FIB/SEM) images, it is obvious that there are abundant na-
nopores in OM. Gas flow in the nanopores is of significant nonlinear
behaviors such as slip effect, Knudsen diffusion and adsorption. And the
permeability equation proposed by Javadpour (2009) which considers
the slip and Knudsen diffusion is widely used. In 2013, Mehmani et al.
(2013) implemented Javadpour's equation for the throats of pore net-
work model (PNM), then calculated the permeability of the entire pore
network. However, using PNM in the whole region of shale is un-
suitable: in IOM, the pores are highly dispersed and the main flow
channel consists of natural and hydraulic fractures; while in OM,
though the pores form pore network as the main gas storage space, the
OMs are dispersed in IOM and isolated from one another (Cao et al.,
2017). Natural gas production from shale formations involves highly
complex geological features consisting of OMs embedded spatially-
distributed in IOM. Based on the different characteristics of OM and
IOM in shale, treating them separately in a model has become a re-
cognized idea, and there are two categories of models as follows.

One category is based on abstract or direct modeling on physical
spatial images. Chen (2016) proposed a model on the basis of advanced,
multiscale CT and SEM imaging of shale samples. The study related
pore-scale information to larger-scale processes and applied sensitivity
analysis and uncertainty quantification to reduce system complexities
by characterizing the critical parameters. But it has limitations in the
upscaling process with no consideration of the influence of OM on the
macroscale permeability. Akkutlu and Fathi (2012) performed a study
on a multiscale dual-porosity model with local kerogen heterogeneity
by separating kerogen from inorganic matrix and representing both of
them using continuum. In 2015, Akkutlu et al. (2015) adopted multi-
scale asymptotic analysis method to solve an one-dimensional dual-
porosity continuum mode. The study obtained the macroscopic para-
meters with the solutions to the cell problem defined in representative
volume elements, which takes the fine-scale variations into account and
average their effects on the macroscale. Follow Akkutlu's work, in 2016,

Talonov and Vasilyeva (2016) modeled shale by generating 2D coarse
and fine grids on the SEM images, and utilized numerical homo-
genization technique to bridge the local problems to macro parameters.
However, 2D model is used without considering the 3D heterogeneity
and the continuum-scale simulator also needs the parameters obtained
from pore-scale information. Besides, Jiang et al. (2017) proposed a 3D
effective cluster-scale model to determine the characteristic parameters
of the pores and the gas transport features in the OMs of shale. The
study bridged the pore-scale morphology to cluster-scale parameters for
OM based on the nanometer-resolution FIB/SEM images in conjunction
with a high-precision pore network extraction algorithm (Axis & Ball
algorithm, AB (Yi et al., 2017)). Later, Cao et al. (2017) built a 3D
coupled model of OM and IOM based on FIB/SEM images. PNM was
utilized to represent the nanoporous OM to capture the complicated

Nomenclature

dm diameter of a gas molecule
Df surface fractal dimension
Kiom permeability of IOM
Kom permeability of OM
Kd,om absolute permeability of OM
Ke permeability of the SCM element
Ks permeability of SCM
M molecular molar mass of methane
P pressure
pL pressure when adsorption reaches half of the ultimate

adsorption amount
R universal gas constant

t time
T absolute temperature, K
Vabs,stp volume of gas adsorbed at STP
VL ultimate adsorption amount
Z compressibility factor
α TMAC
τ tortuosity
μg gas viscosity
ρ gas density
ρs shale density
Ψ OM content
μ, σ characteristic parameters of the OM content distribution
Φs porosity of shale matrix
Φf flowing porosity

Fig. 1. Definition of oREV. (a) oREV in the multiscale system in shale, (b) oREV
construction.
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pore characteristics and spatial topology within it, while the interaction
among IOM and fractures was homogenized as a single continuum
medium and modeled by finite volume method (FVM). The method is
applicable to capture the detailed interactions between OM and IOM in
the 3D space with the size of several micrometers. However, the model
is computationally limited to small domain size, accurate macroscale

modeling requires simulating under reasonable simplification. Ad-
ditionally, since the obtained information from the high-resolution
images is usually highly localized, measurements in larger scale should
also be involved.

Another category based on the statistics of microscale parameters.
Among them, plenty of works using average pore size into the

Fig. 2. Flowchart of the statistical-coupled model.

Fig. 3. Development procedure of the SCM element.
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permeability calculation of a porous medium to involve different flow
regimes (Civan et al., 2011; Javadpour, 2009; Klinkenberg, 1941; Song
et al., 2016). Considering the heterogeneity of OM and IOM, Naraghi
and Javadpour (2015) applied Expectation-Maximization algorithm
(EM) to separate pore size distributions of OM and IOM measured by
nitrogen-adsorption experiments. They calculated the permeability of
shale in representative equivalent size using an ensemble-based sto-
chastic model. Results show that although the method is stochastic, it
does not suffer much from uncertainty in permeability calculation.
After that, Wang et al. (2016) employed EM algorithm to separate the
pore size distribution of OM and IOM, then adopted the dusty gas model
(DGM) and generalized Maxwell-Stefan model (GMS) to calculate the
apparent permeability of the 2D shale matrix with 16× 8 μm2 size. The
study investigated on the distribution of OM and IOM and found it has a
negligible influence on apparent permeability. However, the models
have limitations in inserting pore-size distribution measured by the 3D
experiment into a 2D model, and the tortuosity and the fractal di-
mension of the pore surface are determined by macroscale pulse-decay
experiments.

As shown above, the permeability of shale can be calculated
through modeling in representations of real physical space or using

statistical information. Among them, models using 2D simulation can
hardly describe the shale characteristics integrally with no considera-
tion of the 3D structures and heterogeneity. While the previous 3D
models based on FIB/SEM are visually and computationally limited. It
is necessary to develop a 3D model which is able to reflect the gas
transport feature in the system of OM and IOM and obtain the dominant
characteristic parameters from the nanopore-scale information then
propagated to oREV-scale simulation.

In this study, we propose a statistical-coupled model (SCM) to
bridge nanopore-scale and oREV-scale shale gas transport. Multiscale
measurements are adopted in model, such as 3D FIB/SEM imaging with
high-resolution for nanopore-scale information and 2D SEM imaging
with larger field of view for ∼100 μm heterogeneity. Based on the 3D
structures from FIB/SEM images, reasonable equivalence is conducted
by neglecting the OM/IOM distribution within the range of several
micrometers which are not influential to model output, and the simu-
lation proves high-efficiency using a newly proposed equation based on
series-parallel model. And then, a larger SEM image is employed to
build a whole SCM conditioned to the OM content distribution to find
the oREV size. The permeability of oREV-scale shale is thus calculated
and then its sensitivities are also analyzed. With the oREV-scale per-
meability, the influence of the microstructures on the macroscale be-
havior is assessed.

Fig. 4. Schematic of the permeability calculation of the SCM element based on
the series-parallel model. The coupled model is divided into three parts with the
two blue cross sections and the OM block is entirely within the middle part of
the coupled model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 5. Establishment method of SCM. SEM image is used to get the normalized PDF of the OM content and then construct the SCM.

Fig. 6. Determination of oREV size. Eight sub-blocks of the SCM are generated
beginning from the vertexes and oREV size is determined when the relative
deviation of their permeability approaches zero.
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This paper is organized as follows:Section 2 presents the frame of
the research. In Section 3, the establishment method and the calculating
principle of the new model are presented. In Section 4, a shale sample
from the Longmaxi Formation from Chongqing Province, China is em-
ployed to construct the model and analyze its deviation, computational
efficiency and uncertainty. In Section 5, the oREV size is determined,
and the sensitivity analyses of the model in oREV-scale are conducted.
The influence of microscale parameters on gas recovery is analyzed and
the properties of two different shale samples are also evaluated. Finally,
the conclusions of this work are drawn in Section 6.

2. Research frame

Unlike conventional reservoirs, in shale, hydraulic fracturing is a
critical technique for gas production, and there are many natural and
hydraulic fractures in IOM. The permeability of shale is primarily re-
levant to the relatively large pore and fractures in IOM, but the mole-
cular behaviors (diffusion transport and nonlinear adsorption) relevant
to the pores in OM (Akkutlu and Fathi, 2012). The OMs can be hardly
seen in a quite large domain such as cores or reservoirs. However, high-
resolution imaging techniques such as FIB/SEM and SEM make it pos-
sible to observe the microscopic structures of OMs. In this study, we
proposed a conception of oREV for shale permeability, as shown in
Fig. 1. oREV is achieved when the volume is sufficient to involve the
heterogeneity of IOM and OM. The permeability at the oREV-scale or
larger will be constant and scale independent. Indeed, there will be
potential macroscale heterogeneity in Region 3, which mainly caused
by the heterogeneity of hydraulic fractures, such as Type 1 in Fig. 1a. In
this study, our focus is on the microscale heterogeneity, and a simple
type with a homogeneous spatial distribution of fractures (Type 2) is
supposed for the macroscale simulation. oREV can determine the
macroscopic parameters from microscopic measurements and be used
to analyze the influence of microstructures on macroscale.

The determination of oREV-scale permeability of shale has proven
difficult as: (1) because of the existence of very small pores (in na-
noscale) in OM, using conventional approaches (such as Darcy's law) for
fluid flow is challenging, (2) the gas pathway in shale is a complex
system of OM and IOM which have different pore features and flow

Fig. 7. (a) FIB/SEM images, (b) PNMs extract from the FIB/SEM images.

Table 1
Parameters of the extracted PNMs.

PNM number Np Nt CNavg Rpavg (nm) Rthavg (nm) Df

1 280 300 2.14 13.27 7.42 2.17
2 51 53 2.08 14.52 7.35 2.17
3 79 83 2.10 11.93 6.26 2.19
4 103 124 2.41 16.88 9.35 2.24
5 124 125 2.02 15.74 8.04 2.19
6 203 233 2.30 16.28 9.12 2.19
7 47 47 2.00 15.12 7.57 2.15
8 67 66 1.97 13.01 7.51 2.21
9 106 105 1.98 14.06 7.43 2.17
10 181 194 2.14 14.24 7.68 2.12

Np and Nt are the numbers of pores and throats in the pore network, respec-
tively. CNavg is the average coordination number. Rpavg is the arithmetic mean
pore radius. Rthavg is the arithmetic mean throat radius.

Fig. 8. Distributions of OM parameters, normalized PDF of (a) pore-radius, (b) throat-radius, and (c) coordination number.
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patterns, (3) shale has strong heterogeneity with a permeability sig-
nificantly varies in different scales, and (4) though multiscale mea-
surements can get plenty of information in shale, how to synthesize
those information and extract the critical parameters remains difficult.
In nanopore-scale, nanometer-resolution imaging technique, FIB/SEM
imaging is a method to capture the 3D fundamental geometrical and
transport properties. In our previous study (Cao et al., 2017), we built a
3D coupled model of OM and IOM based on FIB/SEM images. However,
when it comes to the oREV-scale, the FIB/SEM imaging is insufficient
as: (1) FIB/SEM imaging is limited to microscale with high expense and
time-consuming (for example, a 4× 4×4 μm3 sample needs about
32,000 RMB and 14 h in China), (2) an extremely detailed character-
ization of a small sample cannot involve larger-scale heterogeneity, and
(3) the computing complexity will be extremely large though one can

get a 3D model with ∼100 μm length and ∼nm resolution through
other methods. So measurement other than FIB/SEM should be in-
volved to take consideration of the heterogeneity in larger sizes. In this
study, SEM image with the size of about 320× 320 μm2 is used to
construct a model big enough for oREV searching. And the FIB/SEM
images are used to obtain the 3D nanopore-scale properties of the
model. Additionally, the statistical method is also introduced into the
multiscale modeling, as it can no longer focus on the characterization
and calculation accuracy of a small individual part but pays more at-
tention to the statistical result of the whole parts with certain degree of
microscopic similarities.

The research frame in this study is as follows: firstly, we analyze the
properties of the nanopore based on the FIB/SEM and SEM images and
find that the average pore-radius, throat-radius and coordination
number of different OM blocks are basically the same. Results in Cao
et al. (2017) have showed that the spatial distribution of OM/IOM has a
weak effect on microscale permeability. And thus, the SCM element is
established by neglecting the week-influence factors such as the dis-
tribution of OM/IOM and homogenizing some parameters such as the
fractal dimension of the pore surface. In the SCM element, the OMs
which disperse in the IOM are integrated into one block to get an
equivalent result. Through reasonable equivalence without changing
the distribution of characteristic parameters (pore-radius, throat-radius
and coordination number), the error caused by the integration is small
and will be analyzed in Section 4. Finally, the overall SCM is formed
conditioned to the distribution of OM content based on SEM. The SCM
is composed of the SCM elements which contain different OM content
randomly selected from the OM content distribution. Using the SCM,
the oREV size is determined and the permeability in oREV-scale is
calculated.

Fig. 9. Nanopores in SEM. (a) SEM image, (b) one of the OM blocks in the SEM image.

Fig. 10. Equivalent pore radii of the OMs in the SEM.

Fig. 11. Comparison of the equivalent pore radius distributions in FIB/SEM and SEM.
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3. Model establishment

The establishment process of the SCM is presented in this section, as
shown in Fig. 2. Multiscale measurements as 3D FIB/SEM and 2D SEM
imaging of the same shale sample are adopted in the calculation of
shale permeability in oREV-scale. Some assumptions in establishing the
model are made as follows:

(1) the type and pore-scale characteristic parameters of the OMs are the
same;

(2) the OM content is positive correlation to its volume.

Additionally, the estimation methods of fluid properties are pre-
sented in Appendix A.

The algorithm presented in Fig. 2 is as follows:

● On the one hand, the pore-scale characteristic parameters of OM are
determined based on 3D FIB/SEM images with the size of
4× 4×4 μm3 and resolution of 4 nm. High-resolution images and
simulations in nanopore-scale not only provide improved measure-
ment of fundamental geometry, it also helps advance the under-
standing of the influence of non-Darcy effect. Instead of assuming an
average pore size throughout the system, the SCM element coupled
of OM and IOM is built conditioned to the true pore-radius

distribution, throat-radius distribution, coordination number dis-
tribution and the content of OM etc.

● In the SCM element, reasonable equivalence is conducted by re-
moving redundant parameters which are not influential to model
output such as the spatial distribution of OM/IOM. The permeability
of OM is calculated by Jiang's equation (Jiang et al., 2017), and then
the permeability of SCM element is calculated using a newly pro-
posed equation based on series-parallel model.

● On the other hand, since the obtained information from the high-
resolution images is usually highly localized and the nanopore-scale
models are computationally limited to small domain size, mea-
surements and simulation in larger scale are involved. A 2D SEM
image with the size of 320×320 μm2 and resolution of 4 nm is
applied to get the OM content distribution to involve the ∼100 μm
magnitude heterogeneity.

● A stochastic SCM with the size of 320× 320×320 μm3 is con-
structed conditioned to the OM content distribution and then di-
vided into 4× 4×4 μm3 elements. The pore-scale properties of OM
in those elements are assumed to be the same, but a different se-
lected OM content from its distribution is assigned at the randomly
selected element.

● A Dirichlet boundary condition is applied to SCM with constant inlet
and outlet pressure. And the apparent permeability of the coupled
model can be calculated. The oREV size is determined by comparing
the permeability of different size of sub-blocks of the SCM.

3.1. Establishment of the SCM element

3.1.1. Introduction of the SCM element
From FIB/SEM images, the pore-scale parameters of shale are ob-

tained. Then, the SCM element is built based on the statistics in-
formation of the characteristic parameters: the pore-radius distribution,
throat-radius distribution and coordination number distribution and the
content of OM etc., as shown in Fig. 3. In the SCM element, a generation
method of random PNM based on the work of Idowu and Blunt (2010)
is adopted for the reconstruction of 3D structures of OM. The equiva-
lence changes the dispersed OMs into a composite block. It is also worth
mentioning that the sectional porosity of the boundary face of OMs,
defined as the ratio of the pore surface to the sectional surface in the
boundary face, are averaged into the SCM element to reflect the ani-
sotropy of OM. And the surface fractal dimension of the OMs obtained
from FIB/SEM images are also homogenized.

3.1.2. Permeability calculation for the SCM element
As to the IOM in the SCM element, the interaction among IOM and

microfractures was homogenized as a single continuum medium. Gas
flow in IOM is considered to be dominated by Darcy flow and modeled
by FVM. The steady conservation equation for FVM is

Fig. 12. Models generated from the FIB/SEM images in Fig. 7a.

Table 2
Three calculating methods for the SCM element.

Methods OM modeling IOM modeling Coupling method

Method 1 PNM FVM Mortar
Method 2 Pore cluster equation FVM Mortar
Method 3 Series-parallel model as Eq. (6)

Table 3
Characteristic parameters of OM using Eq. (3).

Parameter Rnt (nm) Ravg (nm) Φf τ Df Kd,om (nD)

Value 9.06 6.43 0.49% 3.06 2.18 8.10

Table 4
Base case input parameters.

State parameters Value

Average pressure of the inlet and outlet boundaries (MPa) 0.2–40
Absolute temperature, T (K) 311
Gas type Methane, 16 g/mol
Diameter of a gas molecule (nm) 0.38
TMAC 0.8
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As to the OM in the SCM element, the nanopores of OM form
complex topological pore networks, PNM is used to describe the gas
transport with considering non-Darcy effect. The general approach to
PNM is to impose a mass conservation equation at each pore in the
network. For compressible steady flows, the conservation equation for
pore i is described as

∑ − =
K πr

μ l

p M

ZRT
p p( ) 0

j

ij ij

g ij

avg
i j

2

(2)

where pi and pj are the pressure of pore i and its adjacent pore j. rij is the
radius of the throat which connects pore i and pore j; lij is the throat
length; pavg is the average pressure in the throat = +p p p( )/2avg i j ; Kij is
the apparent permeability of the throat considering the viscous flow,
slip effect, Knudsen diffusion and pore surface roughness (Darabi et al.,
2012; Jiang et al., 2017).

In addition to PNM, Jiang et al. (2017) proposed a simple equation

Fig. 13. Ke of the SCM element in the three calculating methods for SCM element at four Kiom. (a) Kiom=500nD, (b) Kiom=1000nD, (c) Kiom=5000nD, (d)
Kiom=10000nD. For comparison, the permeability calculated by RPCM is also plotted in the same figure.

Table 5
Computational efficiency of RPCM and SCM element.

Methods Mortar grid at per interface Total number of Mortar nodes Computing time (s) Ke (nD)

RPCM 1×1 80 2063.28 894.30
SCM element by PNM-Mortar-FVM 1×1 8 189.31 890.56
SCM element by Pore cluster-Mortar-FVM 1×1 8 56.05 892.37
SCM element by Series-parallel model – – 5.03 895.42
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to speed up the permeability computation in the pore networks by
determining the characteristic parameters of the pore cluster. The
permeability of the pore cluster is defined as:
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where Φf is flowing porosity, defined as the ratio of the void volume
with flux magnitudes larger than 0 to the total volume. dm is the dia-
meter of a gas molecule (0.38 nm), ri is the radius of throat i.

The permeability of the SCM element, Ke, can be calculated by
Mortar coupling of OM and IOM. Mortar is a domain decomposition
method convenient for parallel computing, and it is extended to pore-
scale models by Balhoff (Balhoff et al., 2008; Mehmani and Balhoff,
2014). In Cao et al. (2017), Mortar is applied for the first time to
connect OM and IOM in shale. In this study, a new equation is proposed
to accelerate the computation by series-parallel model according to the
water-electric similarity principle. Taking x-direction as an example,
the system of OM and IOM is divided into three part with two cross
sections, as shown in Fig. 4.

The permeability of the middle part of the model Ke,mid can be
calculated in the parallel of OM and IOM as:

= + −K ψ K ψ K(1 )e mid om iom,
2/3 2/3 (4)

And the permeability of the whole model can be calculated in the
series of the three parts as:

=
+ −

K K
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Substituting Eq. (4) into Eq. (5), and then combining it with Eq. (3),
one obtains:
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3.2. Establishment of SCM

From 2D SEM images, it is obvious that the heterogeneity still exists
out of the visual range of FIB/SEM images, as shown in Fig. 5. In order
to reconstruct a model with big enough size for oREV searching, the
normalized probability distribution function (PDF) of the OM content, ψ
(defined as the volumetric fraction of OM in an element) is obtained
through element division of the SEM image, as shown in Fig. 5. From
the analysis of the SEM images, we found that the distribution of OM
content ψ is lognormal, and the probability distribution satisfies:

= = − −
y f ψ μ σ A

σ π ψ
e( , )

2

ψ μ
σ

(ln ln )
2

2

2

(7)

where μ and σ are the characteristic parameters of the distribution. μ
affects the principal part of the distribution, while σ inflects the dis-
persion degree.

With the PDF of ψ, a 3D SCM is generated by assigning a selected ψ
at a randomly selected location. The pore-scale characteristic para-
meters of OM in the SCM are the same with the SCM element in Section
3.1 to take the 3D high-resolution information into consideration. And
the SCM element serves as a cell of the SCM. It is worth emphasizing

Fig. 14. Permeability of five random realizations of SCM element
(SCM_element_r1∼r5) with the data in Section 4.2. For comparison, the per-
meability calculated by RPCM is also plotted in the same figure.

Fig. 15. Distributions of OM parameters generated by computer, normalized PDF of (a) pore-radius, (b) throat-radius, and (c) coordination number. The distributions
are assumed to be lognormal with fixed mean values and standard deviations.

Table 6
Parameters of the computer-generated data.

State parameters Value

Total volumetric fraction of OM 6.4%
Mean pore-radius (nm) 20
Mean throat-radius (nm) 14
Mean coordination number 5
Standard deviations 0.05
Porosity of OM 10%
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that after the SCM is built, ψ is certain in each SCM element but varied
in the whole SCM and subjected to its distribution.

Gas flow in SCM is modeled by FVM. A Dirichlet boundary condition
is applied to the coupled model with a constant inlet pressure pin and
outlet pressure pout . And the definition of apparent permeability of SCM,
Ks is given by:

=
−

K
ZRTQ μ L

A M p p

2

( )s
g g s

s in out
2 2 (8)

where Qg is the average flux at the inlet and outlet, As is the sectional
area of the model, Ls is the length along the flow direction.

3.3. Determination of oREV

In order to determine the oREV size and its permeability, eight sub-
blocks (Sub1∼Sub8) are generated beginning from the vertexes of the
SCM, as shown in Fig. 6. Each sub-block has only one element at first
and then will be enlarged until the size reaches the boundary. Their
permeability is calculated with the same condition. Their permeability
will have a big difference when the size of the sub-blocks is small but
the relative deviation will approach zero when it comes to oREV-scale.
Thus, the oREV size is determined by calculating the permeability in a
series of sizes of the sub-blocks. In this study, the relative deviation ε is
defined as the ratio of the standard deviation (σKs) to the mean value
(Ks) of the permeability of the sub-blocks, =ε σ K/K ss . Since that the
magnitude of acceptable variation in the measured property and what
constitutes a ‘‘clear plateau’’ causes a subjective judgment, a criterion of

<ε 10
00 is chose.

4. Rationality analysis

In this section, the rationality analysis for the model is presented
using a Longmaxi shale sample from the Chongqing Province, China
(Sample 1). Firstly, the pore-scale data from FIB/SEM and SEM images
are analyzed to verify the assumption that the type and pore-scale
characteristic parameters of the OMs are the same. Then, the SCM
element is built through an equivalence process. The error caused by
the equivalence process in the SCM element and its computational ef-
ficiency are analyzed. Finally, the uncertainty caused by the stochastic
realization is also investigated. The Longmaxi shale is an organic-rich
shale, and is widely developed in the Upper Yangtze region of southern
China. The depositional environment of Longmaxi Formation in this
study is deep shelf environment. The lithology of the Lower Silurian
Longmaxi Formation in the Sichuan Basin, China is mainly the marine
organic-rich and quartz-rich siliceous shale. The bottom of the forma-
tion is black and grayish-black graptolite rich shale, which is distinct
with the lithology on the upper of the formation, dark gray silty shale
unequal interbedded with dark gray argillaceous limestone and silt-
stone laminaes. The TOC of the shale is above 2.0% at the bottom of the
formation (20–50m thickness). Its vitrinite reflectance (Ro) values
range from 1.8 to 4.2% (Chen et al., 2015a; Liang et al., 2008; Zhang
et al., 2018).

Fig. 16. Models generated from the computer-generated data.

Fig. 17. Permeability of five realizations of SCM element
(SCM_element_r1∼r5) for the computer-generated data. For comparison, the
permeability calculated by RPCM is also plotted in the same figure.

Fig. 18. OM content distribution of the SEM images.
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4.1. Analysis of organic nanopores

4.1.1. Organic nanopores in FIB/SEM
There are 10 PNMs of OMs extracted from the 4 nm resolution FIB/

SEM images, as shown in Fig. 7. Fig. 7 demonstrates that the PNMs are
isolated from one another and their sizes are different. The parameters
of the extracted PNMs are shown in Table 1. As can be seen, the average
pore characteristic parameters such as CNavg, Rpavg, Rthavg, Df are close
to each other among those OMs while the numbers of pores and throats
have a big difference. Results show that the pore properties in those
OMs are similar, and the heterogeneity is mainly caused by their sizes.
The results suggest that the types and the nanopore properties of the
OMs within the several-micrometer size are similar.

The normalized PDFs of the pore-radius, throat-radius and co-
ordination number are obtained by compositing all the PNMs, as shown
in Fig. 8. It can be seen that the peak values of the pore-radius, throat-
radius and coordination number are about 8 nm, 4 nm and 4. The pore-
scale heterogeneity is strong and should be taken into consideration.

4.1.2. Organic nanopores in SEM
In order to analyze the properties of the nanopores within a large

domain, the SEM image with the size of 320× 320 μm2 is applied in the
section, as shown in Fig. 9a. Using the SEM, twenty OM blocks with the
resolution of 4 nm are obtained and one of them is shown in Fig. 9b.
The image shows that nanopores in OM are abundant. The statistic
results of the equivalent pore radii in the OMs are shown in Fig. 10.
Fig. 10 illustrates that the OMs have a similar pore property: the pri-
mary parts of the pore radii in different OMs are almost the same, from
3 nm to 7 nm. The results also suggest that the types of the OMs are
basically the same and the pore radius distributions can be considered
to be constant within several hundred micrometers.

4.1.3. Comparison of the organic nanopores in FIB/SEM and SEM
In this section, the equivalent pore radius distributions of the or-

ganic nanopores in FIB/SEM and SEM are compared. Fig. 11 shows that
the pore radius in the peak frequency are the same in FIB/SEM and
SEM. And the pore radii within 10 nm accounted for 90% in both FIB/
SEM and SEM, which indicates that the principal parts of their pore
radii are similar. Results also suggest that the FIB/SEM can be con-
sidered to be typical in the SEM. We conclude that pore-size distribu-
tion of OM obtained from FIB/SEM is representative. Because the pore-
size distribution is mainly dependent on the type of kerogen which can
be the same in the sample. However, the porosity, kerogen volume and
permeability of FIB/SEM will not be representative which is mainly
caused by the OM/IOM heterogeneity in larger scales. FIB/SEM images

are not a suitable oREV for shale. The results is consistent with Kelly
et al. (2015). With comprehensive consideration of all the results in
Section 4.1, the assumption that the type and pore-scale characteristic
parameters of the OMs are the same is reasonable.

4.2. Deviation analysis of the SCM element

In this section, the SCM element is built through the integration of
OMs, as shown in Fig. 12a. For comparison, a real-physical-coupled
model (RPCM) as our previous study (Cao et al., 2017) is also built.
RPCM is direct modeling of FIB/SEM images. In RPCM, OM is re-
presented by PNM, IOM is represented by FVM and their interfaces are
connected by Mortar. Results in our previous work (Cao et al., 2017)
has showed that OM/IOM distribution has a negligible influence on
shale permeability. For real shale, different blocks of OM can be in-
tegrated and thus, the volumetric fraction of OM, pore size distribution
and anisotropy etc. can be reflected in the equivalent OM block for a
larger scale simulation. In the SCM element, all the OMs are integrated
into a single block to get an equivalent result.

In this study, neglecting the OM/IOM distribution within the range
of several micrometers, the SCM element is built conditioned to the
statistics information of the characteristic parameters: the pore-radius
distribution, throat-radius distribution and coordination number dis-
tribution and the OM content etc. And there are three calculating
methods for the SCM element, as listed in Table 2. The three methods
have different treatment for OM and IOM. In method 1, OM is re-
presented by PNM, IOM is represented by FVM and their interfaces are
connected by Mortar. In method 2, PNM is replaced by the pore-cluster
equation (Jiang et al., 2017) to simplify the calculation of OM. The
critical parameters in the pore-cluster equation are shown in Table 3. In
method 3, Mortar method is replaced by series-parallel model as Eq. (6)
to simplify the calculation of the whole coupled model for a larger scale
simulation. As shale is strongly anisotropic with the presence of bed-
ding, permeability varies in the directions perpendicular and parallel to
bedding. In this study we merely calculate the permeability parallel to
bedding, a similar simulation can be conducted to other directions.

In order to analyze the error caused by the integration of OMs, the
permeability of the SCM element and RPCM is calculated with the
characteristic parameters listed in Table 2 and the base case input
parameters listed in Table 4 at four Kiom: 500nd, 1000nD, 5000nD and
10000nD. And the permeability results are shown in Fig. 13.

From Fig. 13, it can be seen that Ke decreases as pressure increases
in all those models. It indicates that the non-Darcy effects are captured.
When Kiom=500nD or 1000nD, the deviation of those models tends to
be steady by approximately 1% for pressure greater than 5Mpa, as gas

Fig. 19. Determination of oREV size: (a) the calculation results of permeability of the eight sub-blocks, (b) relative deviation ε.
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Fig. 20. Maps of the calculated parameters in oREV-scale: (a) 3D maps of ψ, (c) 3D maps of Ks, (e) 3D maps of pressure; the 2D maps of the corresponding parameters
of the center section in y-direction are also shown for clarity in (b), (d) and (f).
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flow tends to be Darcy's flow, and the decrease in pressure increases the
deviation with a maximum error of 3% in 0.2Mpa. When
Kiom=5000nD or 10000nD, the deviations between those models are
within 2% in a pressure range from 0.2MPa to 40MPa, because Kiom is
much larger than Kom at such conditions and the non-Darcy effects
occurring in OM have a small influence on Ke. In general, the results
show that the Ke curves of both the coupled models based on physical
images (the RPCM) and the statistical information (the SCM element)
are close to each other with the permeability deviation<3%. The re-
sults suggest that although stochasticity is introduced by statistics
method, the error of SCM element is acceptable. Results also suggest
that the spatial distributions of pores and throats also have a negligible
influence on Ke.

Additionally, the computational efficiency of SCM element is ana-
lyzed. The computing times of the different models are presented with
Kiom of 1000nD and average pressure of 40MPa, as shown in Table 5. In
general, the SCM element using different calculating methods all show
a much faster computing than that of RPCM. When both the SCM ele-
ment and RPCM are calculated using Mortar coupling, the SCM element
has a faster computing with a much smaller total number of Motar
nodes. And when the SCM element is calculated using series-parallel
model, the calculation is extremely simple by Eq. (6). Results show that
the efficiency of SCM element using series-parallel model is approxi-
mately 400 times that of RPCM. The equivalent model shows a good
performance on permeability calculation with a significantly fast
computing and an acceptable deviation. For a larger scale simulation,
calculating the permeability of shale with several-micrometer size using
the SCM element as Eq. (6) is reasonable and high-efficiency.

4.3. Uncertainty analysis

As the SCM element have some randomness in the reconstruction of
the integrated OM block where the spatial distributions of pores and
throats are stochastic. In this section, several random realizations of the
same pore-scale data are built to analyze the uncertainty introduced by
the equivalence of SCM element. The real shale data in Section 4.2 are
used to generate several random realizations, and the permeability will
be calculated directly by the series-parallel model. Additionally, in
order to assess the uncertainty of SCM element in stochastic data bases,
an artificial case is also built with the computer-generated PDFs of pore-
radius, throat-radius and coordination number. The input parameters
for permeability calculation are listed in Table 4 and the Kiom is
1000nD.

Fig. 21. Sensitivity of Ks to μ.

Fig. 22. Sensitivity of Ks to σ.

Fig. 23. Another shale sample (Sample 2) from a different district with the sample in Section 4 (Sample 1). (a) FIB/SEM images, (b) SEM image.
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4.3.1. Real-Shale data
The real shale data in Section 4.2 are used to generate five reali-

zations of SCM element and the calculated Ke is shown in Fig. 14.
Fig. 14 demonstrates that when pressure is 0.2 MPa, the error caused by
the equivalence is 4%; while the pressure is higher than 0.5 MPa, the
error is within 1%. The results show that though stochasticity is

introduced among the equivalent process, permeability calculation does
not suffer much from uncertainty for the real shale data.

4.3.2. Computer-generated data
In this section, the PDFs of pore-radius, throat-radius and co-

ordination number of OM are assumed to be lognormal to extend the
application of our model to a stochastic case, as showed in Fig. 15. With
the parameters listed in Table 6, the RPCM and SCM element are
generated, as shown in Fig. 16. In order to analyze the uncertainty, five
random realizations of SCM element are generated and their perme-
ability values are calculated, the results are shown in Fig. 17.

Fig. 17 demonstrates that the error between the RPCM and the five
realizations of SCM element is less than 2%. The results suggest that
permeability calculation also does not suffer much from uncertainty for
a random data.

5. Results and discussions

5.1. oREV construction

Through element division of the SEM image in Fig. 9a of Sample 1,
the OM content distribution is obtained, as shown in Fig. 18.

From the analysis of the OM content distribution, we find that the
distribution of OM content, ψ is lognormal, and its probability satisfies:

= − −
×y

π ψ
e0.0161

1.373 2

ψ(ln ln 0.0131)
2 1.373

2

2

(9)

Using the OM content distribution, a 3D SCM is built by assigning a
selected ψ at a randomly selected location. And its pore-scale char-
acteristic parameters of OM are the same as the SCM element, as listed
in Table 3. In order to determine the oREV size of the SCM, eight sub-
blocks (Sub1∼Sub8) are generated beginning from the vertexes of the
SCM. The base case input data are the same as Table 4, and the Darcy's
flow is assumed here with the Kiom of 1000nD. The calculation results of
Ks of the eight sub-blocks and the relative deviation are presented in
Fig. 19. Ks fluctuates in the small sample size, and then reaches a pla-
teau of 952nD around sample size of 192× 192×192 μm3 and the
relative deviation between the eight sub-blocks goes approximately to
zero (< 1‰), meaning that the oREV size could be
192× 192×192 μm3.

In the oREV-scale, different sub-blocks have the same permeability,
and the permeability will still be constant in a relatively lager domain.
However, a model with the size smaller than oREV will induce large
errors. There is a trade-off between accuracy and efficiency, regarding
to them simultaneously, simulating in the oREV-scale is the optimal
way. We present the maps of ψ, Ks, pressure of a realization of SCM in

Fig. 24. (a) OM content distribution of the SEM images in Fig. 23, (b) determination of oREV size: the calculation results of permeability of the eight sub-blocks.

Table 7
Parameters comparison of the two shale samples.

Parameters Sample 1 Sample 2

Characteristic
parameters from
3D FIB/SEM
images

Rnt (nm) 9.06 11.89
Ravg (nm) 6.43 5.87
Φf 0.49% 0.28%
τ 3.06 1.75
Df 2.18 2.20
Kd,om (nD) 8.10 19.33

Characteristic
parameters from
2D SEM image

μ 0.013 0.056
σ 1.373 1.453

Parameters in oREV-
scale

oREV size
(μm3)

192×192×192 208×208×208

Darcy
permeability
(nD)

952 833

Fig. 25. Sensitivity of Ks to Kiom.
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oREV-scale, as shown in Fig. 20. Results show that (1) the heterogeneity
within the oREV-scale model is strong so a smaller model will be un-
suitable, (2) a higher ψ induces a lower Ks, as the permeability of OM is
lower than that of IOM, and (3) the pressure contours bend more ser-
iously as ψ increases in a local place as the pressure-drop is big in a low-
permeability area.

5.2. Sensitivity analyses in oREV-scale

In this section, the sensitivity analyses of the oREV-scale perme-
ability to the OM content distribution, shale sample and Kiom are con-
ducted.

5.2.1. Sensitivity of Ks to the OM content distribution
The sensitivities of Ks to the OM content distribution are performed

in oREV-scale using Sample 1. The value of pressure varies between
0.2MPa and 40MPa. Assuming a constant σ of 1.5, the sensitivity of Ks

to μ is presented in Fig. 21. Results show that the value of Ks decreases
as μ increases. The result can be explained as follows: a larger μ induces
a higher total OM content, because OM has a lower permeability than
that of IOM, permeability of the coupled system decreases as the total
OM content increases. Assuming a constant μ of 0.01, the sensitivity of
Ks to σ is presented in Fig. 22. Results show that the value of Ks de-
creases as σ increases. σ inflects the dispersion degree of OM content,
and the heterogeneity of the coupled system increases as σ increases.
More low-permeability parts and high-permeability parts will be in-
duced with increasing σ. Through the series-parallel analysis, the total
permeability will decreases as the low permeability parts increase.
Results suggest that the permeability of shale decreases as the hetero-
geneity of OM size increase.

5.2.2. Sensitivity of Ks to the district of shale sample
Another shale sample from Lower Silurian Longmaxi formations in

the Qiliao Section, Eastern Chongqing is employed to analyze the sen-
sitivity of Ks to the district of shale sample, as shown in Fig. 23. The OM
content distribution and the determination of oREV are presented in
Fig. 24. With comparison to the sample in Section 4, the characteristic
parameters of the two shale sample are listed in Table 7. The Darcy

permeability of OM in Sample 2 is about double that of Sample 1, shows
a higher conductivity. The value of μ in Sample 2 is about 5 times that
of Sample 1 which shows a higher total OM content. As the perme-
ability of OM is much lower than that of IOM, the permeability in
oREV-scale decreases as the total OM content increases. Though their
oREV sizes are similar, with a value of about 200×200×200 μm3,
their Darcy permeability has much difference with the value of 952nD
and 833nD.

5.2.3. Sensitivity of Ks to Kiom

The sensitivity of Ks to Kiom is also investigated using Sample 1.
Fig. 25 illustrates the Ks curves in different Kiom with pressure varying
from 0.2MPa to 40MPa. A few observations can be made from Fig. 25.
First, the increase in pressure decreases the Ks in oREV-scale. And Ks

increases as Kiom increases. Second, Ks is not linear superposition or
volumetrically weighted average of Kom and Kiom. As OM is isolated
from one another in the shale matrix, applying area- or volume-
weighted averaging method to calculate Ks will induce errors.

5.3. Influence of microscale properties on macroscale behavior

Using the permeability in oREV-scale, the gas production can be
calculated using the simulator presented in Appendix B. The well-
known diffusivity equation is selected, given as:
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Unlike a traditional way, Ks is calculated by the SCM with detailed
thinking about the influence of OM. Ks changes with pressure and
space, so it is dynamic value in the gas production process. Gas pro-
ductions with and without considering Kom in the multi-stage fractured
horizontal well are calculated, as shown in Fig. 26. When t=1000 day,
(1) for sample 1, the cumulative production will be underestimated by
0.2 million m3 without consideration of Kom; (2) for sample 2, the cu-
mulative production will be underestimated by 1 million m3. Results
show that the macroscale production will be influenced by the micro-
scale properties. Since OMs are dispersed in IOM, if the difference be-
tween the permeability of OM and IOM is not taken into consideration

Fig. 26. Difference between considering/without considering Kom.
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will induce errors in the gas production. And the impact degree depends
on the OM content and its pore abundance and topological structure.
Chen (2016) considered that OM has nothing to do with the transport
channel and gas flow only occurs in IOM. It's shown that their as-
sumptions hold under certain conditions. Our model can reflect the
microscale difference between the shale samples in the macroscale
behavior. The parameters of oREV can be used as a new way to evaluate
the properties of shale and help find the “sweet spot” and the high
quality reservoir. Meanwhile, the model establishes a relationship be-
tween microscale and macroscale, which affords a foundation for in-
vestigating the multiscale problem in shale.

6. Conclusion

This study proposed a statistical-coupled model of OM and IOM for
shale permeability calculation in oREV-scale. High-resolution 3D FIB/
SEM images of 4×4×4 μm3 are employed to determine the char-
acteristic parameters in OM (Rnt, Ravg, Φf, τ, Df, Kd,om). And then, a
larger SEM image is employed to build a 320×320 μm2 coupled model
conditioned to the OM content distribution with the characteristic
parameters (μ and σ) to find the oREV size. The permeability of oREV-
scale shale is thus calculated and then its sensitivities are also analyzed.
Following are the conclusions drawn from the study:

● The average pore characteristic parameters such as CNavg, Rpavg,
Rthavg and Df are close to each other among those OMs while the
numbers of pores and throats have a big difference caused by the
sizes of OMs.

● Results show that the Ke curves of both the coupled models based on
physical images (the RPCM) and the statistical information (the SCM
element) are close to each other with the permeability

deviation<3%. But the efficiency of SCM element using series-
parallel model is approximately 400 times that of RPCM. The SCM
element shows a good performance on permeability calculation with
a significantly fast computing speed and an acceptable deviation in
the several-micrometer scale.

● The oREV size of a Longmaxi shale sample from the Chongqing
Province, China is about 200×200×200 μm3.

● We performed sensitivity analyses of Ks to various parameters. The
model results show that an increase in μ, σ or average pressure will
decrease Ks. These results also suggest that permeability estimation
in shale systems solely based on average OM block size could be
erroneous as the permeability is sensitive to its content distribution.
Ks will also has a big difference in different shale sample. The in-
crease in Kiom increases Ks, and Ks is not linear superposition or
volumetrically weighted average of Kom and Kiom.

The new model can establish a relationship between microscale
properties and macroscale behavior, with deeply taking the influence of
OM into consideration.
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Appendix A. Estimation of fluid properties

The gas compressibility factor Z can be calculated using pseudo reduced pressure (ppr) and pseudo reduced temperature (Tpr) based on the
following equations (Mahmoud, 2013).
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where pc and Tc are the critical pressure and temperature, respectively.
Viscosity μg is obtained using the method proposed by Lee et al. (1966).
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where ρ is the gas mass density in g/cm3, T is the temperature in Kelvin, M is the molar mass in g/mol, and μg is in mPa·s.

Appendix B. Macroscale behavior simulator

Eq. (10) is discretized by FVM based on PEBI grid and solved by the implicit algorithm. The amount of adsorption is modeled by the Langmuir
isotherm equation:
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+
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L
,

(B-1)

VL and pL are set to be 0.01m3/kg and 7.5MPa, respectively (Civan et al., 2010). ρstp is the gas density at standard temperature and pressure, STP (set
to be 0.714 kg/m3). We assume a multi-stage hydraulic fractured horizontal well at a constant pressure of 0.3MPa in a homogeneous, isotropic,
isothermal, closed acting reservoir at initial pressure 55MPa. The reservoir size is 350m×200m. The half-length, spacing and aperture of the
fractures are 60m, 50m and 0.0015m (Singh and Cai, 2018), the simulation domain and the PEBI grids are shown in Fig. B1. Gas reservoir
temperature is 311 K. Φs is 0.05. Kiom is set to be 1000nD. The multi-stage hydraulic fracturing reservoir and its grids are shown in Fig. B1.
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Fig. B1. (a) Multi-stage hydraulic fracturing reservoir. (b) PEBI grids. In this paper, the hydraulic fractures are modeled as grids and the horizontal wellbore only
connects the fractures. The fractures are treated as infinite conductivity.
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