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A B S T R A C T

Using a double-plate wave maker, a series of laboratory experiments of internal solitary wave (ISW) loads on
semi-submersible platforms were conducted in a density stratified fluid tank. Combined with experimental results,
a numerical flume based on the Navier-Stokes equations in a two-layer fluid is developed to simulate nonlinear
interactions between ISWs and a semi-submersible platform. The numerical results of horizontal and vertical
forces, as well as torques on the semi-submersible platform also agree well with the experimental measurements.
Besides, the numerical results indicate that the horizontal and vertical forces on the semi-submersible platform
due to ISWs can be divided into three components, namely the wave pressure-difference forces, viscous pressure-
difference forces, and the frictional force which is negligible. For the horizontal force, the wave and viscous
pressure-difference components are of the same order, implying that the viscous effect is significant. For the
vertical force, the contribution of the viscous pressure-difference is not important. Moreover, the diffraction effect
is significant for horizontal force and insignificant for vertical force. Hence, it is feasible to estimate the vertical
load using the Froude-Krylov approach.
1. Introduction

A large number of observations show that internal solitary waves
(ISWs) occur frequently and exist widely in the ocean due to density
stratification arising from salinity and temperature variations (Apel et al.,
1985), which present significant hazards in coastal and oceanic regions
where offshore petroleum exploration, production and sub-sea storage
activities are in progress. (Osborne and Burch, 1980). For instance, in
1990 a sudden strong current accompanied by an internal wave caused a
cable breakage in the extended test period of the Liuhua oilfield in the
South China Sea (Bole et al., 1994). Therefore, drilling rigs should be
built to withstand ISW loads in the areas where internal solitons may
occur (Ablowitz and Clarkson, 1991).

A semi-submersible floating structure can serve as a drilling platform
or an offshore wind turbine foundation. There is a large number of
experimental and numerical investigations on the performance of this
type of platform under the action of wind, waves and currents, and
methods and software have been developed to calculate the hydrody-
namic loads (Faltinsen, 1993; Kvittem et al., 2012). Nonetheless, there
in Fluid Solid Coupling System, Insti
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are relatively fewer studies on the loading mechanism of ISWs on floating
structures. In general, previous researches were mainly focused on cyl-
inder structures and adopted the Morison formula (Morison et al., 1950)
to calculate ISW loads (Cai et al., 2003, 2008, 2006; Si et al., 2012; Song
et al., 2011). However, the geometry of the semi-submersible platform is
much more complicated than a cylinder thus it is difficult to directly
calculate the ISW load by the Morison formula. Apparently, by modifying
its coefficients, theMorison formula can still be used to estimate the loads
on the cylindrical components of platforms, such as columns, horizontal
and diagonal braces. For instance, Huang et al. (2013) and Chen et al.
(2017) developed two sets of modified coefficients of the Morison for-
mula by fitting the experimental data. However, these modified co-
efficients are not universal and certainly depend on the model settings. It
is therefore questionable to extend the modified coefficients to other
circumstances. Owing to the practical significance of the problem and the
aforementioned discussion, a lot of ISW hydrodynamic issues on floating
platforms should be clarified, including the mechanism of various load
components, the influence of viscosity, and so on.

With the enhancement of computing capability, CFD simulations
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provide an effective way to analyze the problem mentioned above. As a
first step towards a comprehensive understanding, one of the key issues is
to develop an accurate and controllable numerical flume for the inter-
action between ISWs and structures. Previously Wang et al. (2017) pro-
posed a new method to generate ISWs by adding a mass source/sink term
to the continuity equation, which has been proved effective and accurate.
However, special attentions should be paid to such issues as whether the
numerical waveform can match the desired one in the presence of plat-
forms, the reliability of simulated ISW loads, and so on. In the present
paper, based on wave generation method proposed and with the aid of
laboratory experiments, we will develop a numerical flume to calculate
ISW loads on semi-submersible platforms. Furthermore, the components
of the ISW loads accounting for wave pressure, fluid viscosity and wave
diffraction as well will be discussed.

The present paper is organized as follows. Section 2 briefly describes
the developed numerical flume. Section 3 introduces the experimental
facility and procedure. Section 4 presents the numerical results, including
wave properties and the ISW load characteristics on the semi-submersible
platform. Finally, conclusions are given in Section 5.

2. Numerical methods

The present numerical experiments use the full Navier-Stokes equa-
tions to simulate the nonlinear interactions between ISWs and a semi-
submersible platform. The ISWs are obtained by adding a mass source/
sink term to the continuity equation.

2.1. Governing equations

For an incompressible fluid of density  ρi, the velocity components
ðui; vi;wiÞ in Cartesian coordinates Oxyz (its origin is at the interface, see
Fig. 1) and the pressure Pi satisfy the continuity equation and the Navier-
Stokes equations:

uix þ viy þ wiz ¼ 0; (1)

uit þ uiuix þ viuiy þ wiuiz ¼ �pix=ρi þ ν
�
uixx þ uiyy þ uizz

�
; (2)

vit þ uivix þ viviy þ wiviz ¼ �piy
�
ρi þ ν

�
vixx þ viyy þ vizz

�
; (3)

wit þ uiwix þ viwiy þ wiwiz ¼ �piz
�
ρi þ ν

�
wixx þ wiyy þ wizz

�� g; (4)

where g is the gravitational acceleration, the subscripts with respect to
space and time represent partial differentiation, and i¼ 1 (i¼2) denotes
the upper (lower) layer fluid.

In order to generate ISWs by using the mass source method, Eq. (1) is
modified as

uix þ viy þ wiz ¼
�

0; ðx; y; zÞ 62 Ω
Siðx; y; z; tÞ=ρi; ðx; y; zÞ 2 Ω

; (5)
Fig. 1. The front view of the
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where the additional mass source term Siðx; y; z; tÞ is a nonzero function
only in the source region Ω.

The computational domain is shown in Fig. 1, which consists of three
regions: the mass source region, wave propagation region and dissipation
region. Demarcated by ISW interface, the source region can be divided
into two subregions Ω1 and Ω2, which respectively denote the source
region and the sink region. Fluxes between the source and the sink are
forced to cancel each other in order to ensure the conservation of mass in
the computational domain.

For simplicity, we assume that the mass source functions vary with
time only (namely, Si is independent of spatial variables). We consider
the interface fluctuation in the mass source region during the wave
generation process, and define SiðtÞ as:

S1ðtÞ ¼ �ρ1c
ζðtÞ

h1 � ζðtÞ
1
Δx

; (6)

S2ðtÞ ¼ ρ2c
ζðtÞ

h2 þ ζðtÞ
1
Δx

; (7)

where c denotes the phase speed, Δx is the width of the mass source
region, and ζðtÞ is interface displacement of an ISW (Wang et al., 2017).

2.2. Boundary and initial conditions

The rigid-lid approximation is adopted on the top in the present
paper. It follows that the impermeability condition should be satisfied at
the top and bottom of the fluid domain:

w1jz¼h1
¼ 0; w2jz¼�h2

¼ 0: (8)

Moreover, the surface of the platform is set to the impermeability
boundary, the forces and torque on the surface are monitored during the
simulation.

The normal velocity is continuous, and so is the pressure, at the
interface z ¼ ζðx; y; tÞ which give the boundary conditions:

ζt þ u1ζx þ v1ζy ¼ w1; ζt þ u2ζx þ v2ζy ¼ w2; p1 ¼ p2: (9)

Only right-traveling ISWs are considered, so a symmetry condition is
posed on the left boundary. The right boundary is specified as a smooth
non-slip wall. In order to avoid wave reflection at the end, a buffering
region is allocated to dissipate ISWs in the numerical flume, which is
realized by adding a source term to the momentum equation in the
vertical direction:

wit þ uiwix þ viwiy þ wiwiz ¼ �piz
�
ρi þ ν

�
wixx þ wiyy þ wizz

�� g� δðxÞw;
(10)

where the damping function δðxÞ is nonzero only in the dissipation re-
gion, otherwise δðxÞ ¼ 0. In the present paper, we choose δðxÞ as a linear
function:
3D computation domain.
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δðxÞ ¼ α
x� xs
xe � xs

; (11)
where α is an empirical coefficient depending on the specific case, while
xs and xe respectively denote the horizontal coordinates of two end-
points of the dissipation region (xs < xe).

There is no wave or current in the computation domain at the initial
moment, indicating that both the velocity and velocity gradient are zero
at t ¼ 0.
2.3. Interface treatment

The VOF (volume of fluid) method (Hirt and Nichols, 1981) is
employed to track the ISW interface. The VOF equation can be written as
follows:

∂ai
∂t þ

∂
∂x ðaiuÞ þ

∂
∂y ðaivÞ þ

∂
∂z ðaiwÞ ¼

sai
ρi

; (12)

where ai is the volume fraction for fluid i ði ¼ 1;2Þ. For every single
controlled volume, the total volume fraction is unit (i.e. a1 þ a2 ¼ 1), and
each component meets one of the following situations: (1) ai ¼ 0: the cell
is empty of fluid i; (2) ai ¼ 1: the cell is full of fluid i; (3) 0 < ai < 1: the
cell contains the interface between two fluids.
2.4. Forces on a semi-submersible platform

At the experiment stage, the horizontal force Fx, vertical force Fz and
torque My are measured by the three-component force balance. Corre-
spondingly these loads and torque are also monitored during the simu-
lation. Lateral force Fy (caused by periodic trailing vortex behind the
semi-submersible platform) is much less than Fx or Fz, so it is not dis-
cussed in the paper. The Fx and Fz on a semi-submersible platform can be
expressed as:

Fx ¼ μ∫
s

��
∂u
∂y þ

∂v
∂x

�
ny þ

�
∂u
∂z þ

∂w
∂x

�
nz

�
dsþ ∫

s
�pnxds; (13)

Fz ¼ μ∫
s

��
∂u
∂z þ

∂w
∂x

�
nx þ

�
∂v
∂z þ

∂w
∂y

�
ny

�
dsþ ∫

s
�pnzds; (14)

where μ denotes the dynamic viscosity of water (1:01� 10�3 N⋅ s
m2), S is

the wetted surface of the semi-submersible platform, and ðnx,  ny ,  nzÞ is
the outward unit normal vector of the surface. In the formulas, the forces
consist of two parts, where the first term represents the friction (fx, fz)
and the second one represents the pressure-difference force (Fp

x , F
p
z ).

Fp
x ¼ ∫

s
�pnxds; (15)
Fig. 2. Principle of internal solitary wave generated by
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Fp
z ¼ ∫

z
�pnzds; (16)

fx ¼ μ∫
s

��
∂u
∂y þ

∂v
∂x

�
ny þ

�
∂u
∂z þ

∂w
∂x

�
nz

�
ds; (17)

fz ¼ μ∫
s

��
∂u
∂z þ

∂w
∂x

�
nx þ

�
∂v
∂z þ

∂w
∂y

�
ny

�
ds: (18)

Furthermore, according to the contribution of the viscosity, the
pressure-difference force can be divided into two components: wave
pressure-difference force (Fpw

x , Fpw
z ) and viscous pressure-difference force

(Fpv
x , Fpv

z ). The wave pressure-difference force is associated with the
fluctuation of water parcels, which can be calculated based on the Euler
equations, while the viscous pressure-difference force is associated with
the viscous effect, which can be calculated by subtracting the wave
pressure-difference force obtained by the Euler equations from the one
obtained by the Navier-Stokes (N-S) equations. The expressions of (Fpw

x ,
Fpw
z ) and (Fpv

x , Fpv
z ) are given as:

Fpw
x ¼ ∫

s
� pnxds ðEulerÞ; (19)

Fpw
z ¼ ∫

s
� pnzds ðEulerÞ; (20)

Fpv
x ¼ ∫

s
� pnxds ðN�SÞ � ∫

s
� pnxds ðEulerÞ; (21)

Fpv
z ¼ ∫

s
� pnzds ðN�SÞ � ∫

s
� pnzds ðEulerÞ: (22)

To facilitate comparison with experiment measurements, the moment
center is placed at the joint point of the experiment model and the three-
component force balance (see Fig. 4(a)). Considering the symmetry of the
model and neglecting the slightly nonuniform distribution of the vertical
force over the horizontal wetted surfaces of the structure, we have the
torque My   given by

My ¼ μ∫
s

��
∂u
∂y þ

∂v
∂x

�
ny þ

�
∂u
∂z þ

∂w
∂x

�
nz

�
⋅d⋅dsþ ∫

s
� pnx⋅d⋅ds; (23)

where d is the arm of the horizontal force of each wetted cell of the
structure, namely the vertical distance between the cell center and the
moment center.

3. Experimental facility and procedure

A series of experiments is conducted in the large-scale density strat-
ified tank (length: 30m, width: 0.6m, height: 1.2m) at Shanghai Jiao
Tong University (see Fig. 2). The fluid in the tank is stratified into two
a double-plate wave maker (identified by black).



Fig. 3. The density (a) and Brunt–V€ais€al€a frequency (b) of the stratified fluid in the tank for h1 : h2 ¼ 20 : 80.

Table 1
The numerical experiments under the action between ISWs and platforms.

Case ID h1/(m) h2/(m) A/(m) ISW theory Re

A1 0.2 0.8 0.053 KdV 5.5e4
A2 0.2 0.8 0.106 eKdV 7.8e4
A3 0.2 0.8 0.148 eKdV 9.8e4
A4 0.2 0.8 0.172 eKdV 1.1e5
A5 0.2 0.8 0.225 MCC 2.1e5
B1 0.25 0.75 0.049 KdV 6.0e4
B2 0.25 0.75 0.097 eKdV 8.7e4
B3 0.25 0.75 0.109 eKdV 9.4e4
B4 0.25 0.75 0.135 eKdV 1.1e5
B5 0.25 0.75 0.154 eKdV 1.2e5
C1 0.3 0.7 0.0652 KdV 8.1e4
C2 0.3 0.7 0.078 eKdV 9.0e4
C3 0.3 0.7 0.094 eKdV 1.0e5
C4 0.3 0.7 0.1075 eKdV 1.1e5
C5 0.3 0.7 0.134 eKdV 1.4e5

(Re ¼ λUmax
ν , where Umax is the maximum horizontal velocity induced by ISWs).
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layers with the injection method. We first inject fresh water (density:
ρ1 ¼ 998kg=m3) till its depth equal to h1, then slowly inject salt water
(density: ρ2 ¼ 1025kg=m3) from two mushroom-type inlets at the bottom
of the tank until the total depth reaches to h, as a consequence, the salt
water is of the depth h2 ¼ h� h1. Fig. 3 shows the density and
Brunt–V€ais€al€a frequency of the stratified fluid in the tank as
 h1 : h2 ¼ 20 : 80, where the Brunt–V€ais€al€a frequency is defined as
NðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðg=ρ1Þð∂ρ1=∂zÞ

p
.

Different from the gravity collapse method (Du et al., 2016), at the
experimental stage ISWs are generated using a double-plate (identified
by black) wave maker, and the procedure is similar to that described by
Wessels and Hutter (1996). In order to generate nonlinear ISWs with
higher amplitudes, the drive mechanism of the wave-maker is signifi-
cantly upgraded and the control software of two plates is modified. Be-
sides, a steel plate (with adjusted size through tests) is put on the top of
the wave-maker to weaken the disturbance of the free surface. In addi-
tion, a wedge-shape wave breaker is set up at the end (right end in Fig. 2)
of the tank to prevent solitary waves from reflecting. The two steel plates
Fig. 4. (a) The experimental model; (b) the front view; (c) the right view (d) the top view (Unit: cm).
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move along the opposite directions at different speeds, so as to generate
an ISW at the interface between two layers. At the preparation stage, two
plates are set to the same heights as undisturbed fluid layers. During the
generation process, the speed of the upper and lower plates (u1; u2) are
controlled by a computer and can be expressed respectively as:

u1 ¼ �c⋅
ζðtÞ
h1

	
; u2 ¼ c⋅

ζðtÞ
h2

; (24)

where c is the phase speed, and ζðtÞ denotes the interface displacement of
the desired ISW.
Fig. 6. Comparisons of profiles of ISWs between CFD simulations (dotted curves), theoretical m
and Case A5 (Note that the scales are different in the three panels).

Fig. 5. The grid distribution for the wet surface of the semi-submersible platform.
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ISWs are measured using two rows of conductivity probes which are
arranged with 3m apart. Each row consists of 13 equally distributed
probes, and the distance between two consecutive probes is 3 cm. It is
known that the conductivity has a linear relationship with density, so we
can get density variations by post-processing the conductivity signal
measured with the two rows of probes. As a consequence, we can easily
obtain ISW interface displacement, as well as the phase speed.

In the experiment, there is always trailing-waves phenomenon behind
the leading ISW. The existence of trailing waves implies the dissipation of
wave energy during wave generation. Therefore, the measured ampli-
tude is very difficult to reach the desired amplitude for a specific case. In
order to generate the desired ISW waveform for a specific density strat-
ification, firstly we have to seek the relation between the measured
amplitude am and the desired amplitude ad based on a series of experi-
ments, and then the desired amplitude can be achieved by adjusting input
parameters according to the relation.

The experimental model and the dimensions of the underwater part
are shown in Fig. 4. The forces (Fx; Fz; My) on the semi-submersible
platform during the ISW propagation are measured by the three-
component force balance, which is connected to the model and fixed
on the top of the tank. Before the experiment, an additional weight is
introduced to ensure the balance between gravity and buoyancy of the
model. Afterwards, we load and unload weights on the model along the
horizontal and vertical directions respectively in order to obtain the
calibration relationship between the measured electronic signals and
loads. During the experiment, ISW loads on the model can be calculated
from the electrical signals according to the calibration relationship.
odels (solid curves), and laboratory experiments (dash-dotted curves) for Case A1, Case A2



Fig. 8. The vertical profiles of horizontal velocities at the wave trough (t¼ 50s).
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4. Numerical results and discussions

4.1. Numerical implementation

A numerical flume is established to generate ISWs using UDF (User
Defined Function) redevelopment tools on the platform of Fluent soft-
ware. The numerical model works as follows: first calculate the ISW
interface displacement ζðtÞ by a suitable ISW theory as in Table 1, then
put ζðtÞ in the mass source function given by Eqs. (6) and (7), and finally
the ISW is excited in the source term region. During the propagation of
the ISW, the forces on the semi-submersible platform are monitored in
real time.

Structured elements are used to ensure the mesh quality of the
computational domain. With regard to the flume, the grids in x- and y-
direction are refined to λ=25 and λ=30 respectively. The constant λ is
defined as λ ¼ 1

A ∫
∞
xm
ζðxÞdx introduced by Koop and Butler (1981), where

xm is the location of the wave crest and A is the amplitude of the ISW. In z
direction, the computational domain is divided into three parts:
�h2 � z < �A, �A � z < 0, and  0 � z � h1. Local grid refinements are
employed to reduce the numerical dispersion, in the region of wave
motion (�A � z < 0), where the grid is refined to A=10. In the upper and
lower regions, the grids are set to the geometric progression (common
ratio is 1.03). Particularly, For the wet surface of the platform (shown in
Fig. 5), the grid size need to be further refined to about λ=300.

The governing equations are discretized on three-dimension struc-
tured grids using finite volumemethod (FVM) andwell-chosen numerical
schemes are taken to avoid the spurious effects. In particular the pressure
implicit with splitting of operators (PISO) algorithm is adopted to solve
the pressure velocity coupling, where the spatial gradient are discretized
with the Green-Gauss Node Based method together with a second-order
upwind scheme for VOF volume fraction. Moreover, the temporal terms
are discretized using a second-order implicit scheme, and the time step is
Fig. 7. The numerical results of w
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set to 0.005s during the simulation.
Nonlinearity and dispersion are two fundamental mechanisms which

govern the physics of ISWs (Camassa et al., 2006). ISWs are commonly
described by the Korteweg-de Vries (KdV) equation, extended KdV
(eKdV) equation, Miyata-Choi-Camassa (MCC) equation and others (Choi
and Camassa, 2000; Helfrich and Melville, 2006). In the present paper,
15 numerical experiments are carried out for the interaction between
ISWs and a platform under different depths and wave amplitudes
(Table 1), which are in line with the experiment cases. The length of the
flume is 30m (in which Δx ¼ 0:04m and the width of damping region is
ave amplitudes for the ISWs.
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6m), the total depth is 1 m, the draft of the semi-submersible platform d is
0.633m, the displacement volumer  is 1:918� 10�3 m3, the upper layer
fluid density ρ1 is 998kg=m3, and the lower layer fluid density ρ2 is
 1025kg=m3.
4.2. Numerical simulations for ISWs

Fig. 6 shows the comparisons for wave profiles of ISWs between CFD
Fig. 10. The numerical results for the ISW wavefor

Fig. 9. The vertical profiles of density at the ISW trough (t¼ 25s, 125s).
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simulations, theories and laboratory experiments. As shown in Table 1,
Case A1, Case A2 and Case A5 represent the weakly, moderately and
strongly nonlinear ISWs, respectively. The wave profiles obtained by the
CFD simulation are in good agreement with both the theoretical and
experimental results (the relative errors are within 3%), which indicates
that the numerical wave maker can accurately generate the waveform in
the presence of platforms, no matter it is a weakly nonlinear ISW or a
strongly nonlinear one.

The numerical results of wave amplitudes in all cases are shown in
Fig. 7, where the dots represent the simulated results, and the dashed line
represents the desired amplitude. It shows that the simulated amplitudes
are in good agreement with the desired ones, with the maximum error
less than 5%.

In order to further test the accuracy of the proposed wave generating
method, the validation of velocity fields induced by ISWs in the presence
of platforms is very important. Fig. 8 shows the comparisons of vertical
profiles of horizontal velocities at wave troughs between the CFD simu-
lation and theoretical prediction (t¼ 50s) for Case A2. In the figure, the
theoretical results is based on the strongly nonlinear asymptotic
approximation model in a two-fluid system proposed by Camassa et al.
(2006). The Leading-order horizontal velocity can be written as:

Upper layer fluid:

u1ðX; zÞ ¼ c

"
1� h1

η1
þ
 
η21
6
� ðh1 � zÞ2

2

! 
h1η''1
η21

� 2h1
�
η'1
�2

η31

!#
; (25)

Lower layer fluid:

u2ðX; zÞ ¼ c

"
1� h2

η2
þ
 
η22
6
� ðzþ h2Þ2

2

! 
h2η''2
η22

� 2h2
�
η'2
�2

η32

!#
; (26)
ms with two different simulations for Case A2.
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where X ¼ x � ct; η1
' ¼ η1X ; η2

' ¼ η2X ; η1
'' ¼ η1XX ; η2

'' ¼ η2XX ;

η1 ¼ h1 � ζ, and η2 ¼ h2 þ ζ:
Except the region near the interface, the vertical distributions of

horizontal velocities alter little in the upper and lower fluid. Overall, the
results show that velocity distributions agree well with the theory.

It is worth mentioning that the proposed numerical model is based on
the two-layer fluid approximation. Due to numerical diffusion, the den-
sity features a smooth transition near the interface in the beginning.
Fig. 9 shows that the actual density profile at the trough of an ISW
(t ¼ 25s;125s) for Case A2. Although the density distribution does not
satisfy the two-layer fluid assumption, the deviation is not significant.
Fig. 11. Results of numerical and experimental am
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Moreover, from 25s to  125s, the profile still remains the same. These
facts suggest that the influence of numerical diffusion is limited though
unavoidable.

In order to study the ISW loads, it is necessary to analyze the influence
of fluid viscosity on the generation and propagation of ISWs, simulations
based on the Navier-Stokes equations and the Euler equations are carried
out. The wave profiles for Case A2 simulated by the two systems are
shown in Fig. 10. We can see that the waveforms generated by the two
simulation patterns remain stable and the amplitude does not decay
obviously during the propagation of the ISW, with the relative error less
than 5%. It is shown that the influence of fluid viscosity is limited.
plitudes for dimensionless loads and torques.
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4.3. Load characteristics on the semi-submersible platform

To facilitate discussion, we define Fx ¼ Fx=ðρ1grÞ, Fz ¼ Fz=ðρ1grÞ
and My ¼ My=ðρ1gdrÞ as the dimensionless horizontal vertical forces,
and the torque respectively on the semi-submersible platform due to
ISWs. The dimensionless loads and torques versus amplitudes are shown
in Fig. 11, demonstrating that amplitudes for the horizontal and vertical
forces, as well as the torque obtained numerically are in good agreement
with the experimental results, with the maximum error less than 14%.
The maximum error often shows up in the later stage (for example, Case
Fig. 12. The time variations of dimensio

Fig. 13. The time variations of the pressure-d
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B4 and Case B5) for each experimental setting. One possible reason is the
deviation of the density structure from the strict two-layer configuration
after several rounds of experiments.

Fig. 12 depicts the time variations of the dimensionless loads and
torque for Case A2. The numerical and experimental results are in good
agreement, whichmeans that it is reasonable and feasible to calculate the
loads and torque on the semi-submersible platform based on the pro-
posed numerical flume. According to Eq. (15), the torque My is propor-
tional to the horizontal load Fx. Hence, we primarily focus on Fx and Fz in
the subsequent analysis.
nless loads and torque for Case A2.

ifference and friction forces for Case A2.

http://dict.baidu.com/s?wd=accurate
http://dict.baidu.com/s?wd=controllable


Fig. 14. The time variations of wave pressure-difference force (solid curve) and viscous pressure-difference force (dotted curves) for Case A2.
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From Eqs. (13) and (14), it can be seen that the pressure-difference
and frictions are two components of horizontal and vertical forces. The
time variations of these two components for Case A2 are shown in
Fig. 13. The results indicate that the pressure-difference force (Fp

x , F
p
z ) is

the dominant component, while the friction (fx, fz) is ignorable.
The time variations of wave and viscous pressure-difference forces

due to ISWs for Case A2 are shown in Fig. 14. For the horizontal force, the
viscous effect is significant (the absolute maximum of (Fp

x , F
pv
x ) is (2.9e-3,

0.8e-3)), whereas for the vertical force, the viscous pressure-difference
force is not important (the absolute maximum of (Fp

z , F
pv
z ) is (9.8e-3,

1.3e-3)).

4.4. Numerical convergence

In order to verify the numerical convergence, simulations are per-
formed with 3 different spatial resolutions of Case A2, and the measured
maximum loads ( Fmax

x , Fmax
z Þ and the relative errors of experimental

results are listed in Table 2. The (Nx; Ny ; Nz) represents the grid number
in the x; y; z direction. Note that the grids are not uniformly distributed in
Table 2
The numerical results for the grid-independence test (iteration step: 0.005s).

(Nx ; Ny ; Nz) Grid quantity Fmax
x ð%Þ Fmax

z ð%Þ
(308,15,103) 1,901,898 2.86e-3 (6.79%) 9.91e-3 (2.15%)
(435,20,145) 3,403,996 2.90e-3 (5.49%) 9.85e-3 (1.53%)
(615,28,205) 7,531,188 2.90e-3 (5.49%) 9.84e-3 (1.42%)

Fig. 15. The Froude-Krylov force and the diffraction for
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the whole computation domain and the specific grid generation rule is
already introduced in section 4.1.

Generally the more grid number, the smaller the numerical error.
However, when the grid number is above a critical value, the error will
not be significantly decreased but the computation cost increases. In
Table 2, both the Fmax

x and Fmax
z are almost unchanged when grids are

finer than the configuration (435, 20,145) employed in the present
paper. It indicates that the numerical results with such grid distribution
are stable and convergent.
4.5. The Froude-Krylov force and the diffraction effect

In this section, we discuss the interference of the platform in flow
fields. For regular incident waves, the total non-viscous forces (Fpw

x , Fpw
z )

acting on a floating structure include two parts: the Froude-Krylov force
and diffraction force. The former is based on the Froude-Krylov
assumption that the pressure distribution due to the incident wave is
not affected by the presence of structure. The diffraction force is owing to
the effect of the floating body which disturbs the waves.

Specifically, the Froude-Krylov forces (Fk
x ; F

k
z ) on a semi-submersible

platform due to ISWs can be obtained by integrating the dynamic pres-
sure P over the wetted surface S of the platform. Thus, the horizontal and
vertical force components can be described as follows:

Fk
x ¼ ∫

S
Pnxds; (27)
ce in the horizontal (a) and vertical (b) directions.
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Fk
z ¼ ∫

S
Pnzds; (28)

where P is determined by the Bernoulli equation. Taking the Froude-
Krylov assumption (i.e. the pressure distribution due to the incident
wave is not affected by the presence of the structure) into consideration,
we have v2i ¼ 0. Hence, the dynamic pressure P induced by ISWs can be
written as:

P ¼ �ρi

�
∂ϕ
∂t þ

1
2

�
u2i þ w2

i

��
; (29)

where ϕ denotes the potential of the wave-induced velocity field, the
horizontal velocities ui are obtained by Eqs. (25) and (26), and the first-
order approximation of vertical velocities wi are given by:

wi ¼ ð � 1Þiþ1�hi þ ð � 1Þiz�uix; with uix ¼ ð�1Þicζ��hi þ ð � 1Þiζ�:
(30)

Next, we can get the diffraction forces (Fd
x ; Fd

z ) by subtracting the
Froude-Krylov forces (Fk

x ; F
k
z ) from the non-viscous forces (Fpw

x , Fpw
z ).

The Froude-Krylov force Fk
x , the diffraction force Fd

x , and the non-
viscous force Fpw

x are shown in Fig. 15(a). The Fk
x makes a considerable

contribution to Fpw
x , which imply that the diffraction effect is not

negligible.
In Fig. 15(b), it can be seen that the Froude-Krylov force Fk

z behaves
very much similar to the non-viscous force Fpw

z as time evolves, and the
diffraction force Fd

z is relatively limited. In addition to the conclusion
drawn in Section 3.2 that the effect of fluid viscosity for the vertical force
can be neglected, it is feasible to estimate the vertical ISW load by
adopting the Froude-Krylov force.

5. Conclusions

Combined with laboratory experiments, a numerical flume based on
the Navier-Stokes equations in a two-layer fluid is developed to simulate
the nonlinear interactions between ISWs and a semi-submersible plat-
form, where ISWs are generated by adding a mass source term and a sink
term to the continuity equation in the source region located within the
computational domain. The conclusions are summarized as follows:

(1) The waveform and amplitude of the ISW based on the developed
numerical flume are in good agreement with the experimental and
theoretical results. Moreover, numerical results for the horizontal
and vertical forces, as well as torques on the semi-submersible
platform due to the ISW are in good agreement with experi-
mental results. Hence, it is feasible to simulate the nonlinear in-
teractions between ISWs and semi-submersible platforms by the
developed numerical flume.

(2) In general, hydrodynamic force of an offshore structure consists of
three components: the wave and viscous pressure-difference
components, and the friction component. However, for the case
of a semi-submersible structure under the action of ISWs, the
friction component is proved to be very small and can be
neglected both for the horizontal and the vertical forces, and the
viscous pressure-difference component is insignificant for vertical
308
force. But the viscous pressure-difference component accounts for
noticeable percentage of the horizontal force, implying significant
effect of fluid viscosity. In addition, the vertical force of the
structure exerted by an ISW can be estimated by means of the
Froude-Krylov approach, which is of practical implication for
engineering.
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