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controlled wrinkling. Despite a variety 
of methods to induce strain, the strain 
forms realized in 2D materials until now 
are constricted to three modes, i.e., uni-
axial and biaxial uniform tensile strain as 
well as the nonuniform strain induced by 
wrinkling, which could hardly satisfy the 
sharply increased requirements to design 
specific strain forms, such as the pseudo-
magnetic field proposed in graphene,[10] 
funnel effect of excitons in MoS2,[13] and 
also inverse funnel effect reported in 
black phosphorus several months ago.[14] 
In this sense, the progress in experiments 
lags far behind theoretical predictions 
restricting the developments of strain 
engineering in 2D materials, and thus a 
long-standing challenge in this field is to 
find a feasible scheme that can be used 
to design the given strain forms in 2D 
materials.

Relative to the dilemma faced in strain engineering, the syn-
thesis experimental technique for 2D materials has made rapid 
progress recently. Especially, the in-plane heterostructures could 
be designed to aimed geometries assisting the study of their 
novel properties. Typical examples are the in-plane graphene/ 
h-BN heterostructure[15–22] and TMDs heterostructures such as 
MoS2/MoSe2,[23] WS2/WSe2,[23] WS2/MoS2,[24] MoSe2/WSe2,[25] 
and WSe2/MoS2.[26] As the pattern design for in-plane 2D het-
erostructures becomes now available, the internal stress and 
strain states in the system could be controlled in terms of 
meso-mechanics theory, which provides an opportunity to over-
come the long-standing challenge for strain engineering in 2D 
materials.

In this article, we demonstrate that stress or strain states 
in 2D materials could be accurately designed by utilizing the 
elegant Eshelby inclusion theory.[27] Although Eshelby inclu-
sion theory has been discussed long ago in mesomechanics, 
it is usually used to analyze stress and strain states of bulk 
materials embedded with inclusions. As inclusions are exposed 
outside in 2D materials, a new feature introduced in Eshelby 
inclusion theory is to design given strain\stress fields. Indeed, 
it is found that with the designed patterns of heterostructures, 
internal stress or strain states could be induced and accurately 
controlled at nanoscale to manipulate physical properties. Com-
paring with general strain engineering, here not only external 
forces but also the internal stress could be utilized to design 
strain states for tuning physical properties, and thus it is called 
internal stress assisted strain engineering. With internal stress 
assisted strain engineering, arbitrary uniform tensile strain 

Conventional methods to induce strain in 2D materials can hardly catch up 
with the sharp increase in requirements to design specific strain forms, such 
as the pseudomagnetic field proposed in graphene, funnel effect of excitons 
in MoS2, and also the inverse funnel effect reported in black phosphorus. 
Therefore, a long-standing challenge in 2D materials strain engineering is 
to find a feasible scheme that can be used to design given strain forms. In 
this article, combining the ability of experimentally synthetizing in-plane 
heterostructures and elegant Eshelby inclusion theory, the possibility of 
designing strain fields in 2D materials to manipulate physical properties, 
which is called internal stress assisted strain engineering, is theoretically 
demonstrated. Particularly, through changing the inclusion’s size, the stress 
or strain gradient can be controlled precisely, which is never achieved. By 
taking advantage of it, the pseudomagnetic field as well as the funnel effect 
can be accurately designed, which opens an avenue to practical applications 
for strain engineering in 2D materials.

Strain Engineering

1. Introduction

In 2004, monolayer graphene was obtained experimentally by 
mechanical exfoliation[1] giving rise to a surge in searching 2D 
materials. Until now, various 2D materials have been found, 
such as hexagonal boron nitride (h-BN), transition metal 
dichalcogenides (TMDs), black phosphorus, etc. These novel 
materials exhibit remarkable electronic, thermal, and optical 
properties,[2–4] and also show superior mechanical perfor-
mance,[5] especially their high stretchability, which provides a 
possibility to manipulate their physical properties via mechan-
ical strain, called strain engineering.

Strain engineering in 2D materials has been intensively 
studied in the past decade.[6–12] At the moment, there are five 
conventional ways to induce strain in 2D materials:[12] Bending 
of a flexible substrate, elongating the substrate, piezoelectric 
stretching, exploiting the thermal expansion mismatch, and 
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forms could be obtained. Even more amazing, as there is no 
characteristic length scale in Eshelby inclusion theory, the 
stress and strain distribution only depends on the shape of 
the inclusion, implying that the stress or strain gradient could 
be controlled precisely through changing the inclusion’s size, 
leading to an accurate design for pseudomagneitc field and 
funnel effect. In the following, graphene/graphane heterostruc-
tures will be taken as an example to show the power and versa-
tility of our internal stress assisted strain engineering.

2. Resutls and Disscusion

2.1. Accurate Designs for Uniform Strain Forms

Consider an infinite linear elastic body contains an inclusion 
region, and in this region some physical or chemical transforma-
tions (such as localized thermal expansion and phase transition) 
take place, which induce an initial transformation strain. To find 
out the elastic state due to the initial transformation strain inside 
the inclusion is called the transformation problem. As the ini-
tial transformation strain is often called eigenstrain, the trans-
formation problem could also be called eigenstrain problem. 
Through a thought experiment, Eshelby obtained the solution 
to the eigenstrain problem. Note that in this problem, the elastic 
constants are the same for the inclusion and matrix. However, 
in a normal inclusion’s problem, the elastic constants of the 
inclusion are different from those of the matrix. Fortunately,  

equivalence could be established between these two problems 
(i.e., the eigenstrain problem and normal inclusion’s problem), 
so that the solution given by Eshelby could also be used to 
obtain the stress and strain distributions in the normal inclu-
sion’s problem, which is called Eshelby inclusion theory. A well-
known result from Eshelby inclusion theory is that the stress 
and strain field inside an ellipsoidal inclusion is uniform (the 
proof is reproduced in the Supporting Information). This con-
clusion remains in two dimensions, i.e., for 2D materials, a 
uniform strain state could be obtained in an elliptic inclusion 
area (the proof could be found in the Supporting Informa-
tion). Thanks to the electron-stimulated desorption technique, 
the adsorbed hydrogen atoms could be desorbed selectively in 
experiments leading to given patterns with nanometer scale 
resolution for graphene/graphane in-plane heterostructures.[28] 
Therefore, with an elliptic heterostructure design the uniform 
strain states are actually now experimental achievable in this 
system according to Eshelby inclusion theory. In this section, 
we will show how to accurately control the uniform strain form 
via the pattern design of the graphene/graphane heterostruc-
ture. Note that due to the large numbers of atoms involved, 
first principle calculations are nearly impossible to handle the 
inclusion problem, however, with mature empirical potentials, 
molecular dynamics (MD) simulations become a good choice 
and will be used in our study.

In Figure 1a, the atomic structures for graphene (upper) and 
graphane (lower) are plotted. Among all possible configura-
tions for graphane, the most stable one (chair configuration)[29] 
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Figure 1. The stress distribution for the circular graphene/graphane heterostructure. a) The atomic structure of graphene (upper) and graphane 
(lower), where the gray and yellow colored atoms represent carbon and hydrogen atoms, respectively. b) The uniaxial tensile tests are preformed in 
MD simulations, and the obtained stress–strain curves for graphene and graphane are shown. c) The top view of the circular graphene/graphane 
heterostructure model established in our MD simulations. d) The distribution of the stress component σyy obtained from inclusion theory of Eshelby, 
and the color reflects its magnitude and sign. e) The distribution of the stress component σyy obtained from MD simulations, and in panel (f) the 
inclusion region is zoomed in. g) Along with the dashed line marked in panel (f), the stress components obtained from two methods, i.e., inclusion 
theory of Eshelby and MD simulations, are compared.
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is applied here, which is obtained by decorating graphene with 
hydrogen atoms on both sides alternately. After sufficient relax-
ations, tensile tests are performed in MD simulations for gra-
phene and graphane, in terms of which the stress–strain curves 
are obtained (Figure 1b) and the mechanical quantities used in 
Eshebly inclusion theory could be quantified (details could be 
found in the Experimental Section). To confirm the validity of 
Eshebly inclusion theory, a circular graphene/graphane hetero-
structure model is established by removing the hydrogen atoms 
inside a circular region from graphane, and its top view is shown 
in Figure 1c. The distribution of stress component σyy around 
the circular inclusion according to Eshebly inclusion theory is 
plotted in Figure 1d (the inclusion problem is solved numeri-
cally, and the details can be found in the Experimental Section), 
and for comparison the atomic stress σyy distribution obtained 
from MD simulations is given in Figure 1e (the zooming cir-
cular inclusion region is shown in Figure 1f). There are two 
things, which should be noticed: first, hydrogen atoms are invis-
ible in Figure 1e,f to clarify the stress distribution of the carbon 
frame, which undertakes almost all of loads, and the following 
stress distributions will be plotted in this way unless otherwise 
noted; second, the sample in MD simulations is subject to 1% 
external biaxial tensile strain, and the corresponding external 
stress is used to set the stress boundary conditions in the inclu-
sion problem. It is obvious that the stress distribution from 
MD simulations agrees well with theoretical results, especially  

the uniform stress distribution in the circular inclusion region. 
To see it quantitatively, the stress distribution in the circular 
inclusion region along the x-direction is shown in Figure 1g, 
where the little derivation between σxx and σyy stems from the 
slight mechanical anisotropy along different lattice orientations. 
It is surprising to find that the theoretical prediction could give 
a pretty good description of the stress distribution. More impor-
tantly, the theoretically predicted uniform stress/strain state 
could be well reproduced in a nanoscale system, which gives 
us much confidence that an accurate design of strain forms in 
nanodevices could be possible in experiments.

The biaxial uniform strain state realized in the circular heter-
ostructure model is actually not new, since it could be obtained 
by conventional methods, such as piezoelectric stretching or 
exploiting the thermal expansion mismatch. Here the challenge 
is to design new uniform strain forms, which are significant to 
experimentally clarify connections between physical properties 
and mechanical strain. As stated in Eshelby inclusion theory, 
the strain distribution is uniform inside an elliptic inclusion, 
based on which we could design new uniform strain forms by 
controlling the shape and also the orientation of the elliptic 
inclusion.

The elliptic graphene/graphane heterostructure model is 
shown in Figure 2a. Comparing with the circular one, there are 
additional freedoms in this model, i.e., the shape and the orien-
tation of the ellipse. Here m = (a − b)/(a + b) is used to define 
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Figure 2. The stress distribution for the elliptic graphene/graphane heterostructure. a) The top view of the elliptic graphene/graphane heterostructure 
model established in our MD simulations, where the gray and yellow colored atoms represent carbon and hydrogen atoms, respectively. Note that θ is 
the angle between the long axis of ellipse and the x-axis. b) The variation of stress components with respect to θ with m equals 0.2 (left) and 0.4 (right), 
where the dots are obtained from MD simulations and the dashed lines are calculated according to the Eshelby inclusion theory. c) The distributions 
of stress components σyy (left) and σxy (right) obtained from MD simulations, where θ = 36° and m = 0.4. d) The distributions of stress components 
σyy (left) and σxy (left) obtained from inclusion theory of Eshelby, where θ = 36° and m = 0.4.
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the shape of the ellipse, where a and b represent the length of 
the long and short axis, and θ describes the orientation of the 
ellipse, which is marked in Figure 2a. The samples subject to 
1% biaxial tensile strain are simulated via MD simulations, 
and the stress components (σxx, σyy, and σxy) inside the elliptic 
inclusion as functions of the angle θ are shown in Figure 2b 
with m equaling 0.2 (left) and 0.4 (right), respectively. It is 
important to note that in MD simulations, the values of these 
stress components are taken from the central atom, since the 
stress distribution is uniform inside the inclusion no matter for 
Eshelby inclusion theory or MD simulations. With 1% biaxial 
strain boundary condition set in the inclusion problem, the the-
oretical prediction (the dashed lines in Figure 2b) agrees quite 
well with the MD simulations (the dots in Figure 2b).

As our goal is to obtain new uniform stress\strain states in 
2D materials, it should first be able to distinguish stress\strain 
states. Here, the values of principal stresses are used to do this 
job. It is found that with fixed applied biaxial tensile strain, θ 
and m determine the direction and values of principal stresses, 
respectively. To be specific, in Figure 2b, the values of principal 
stresses remain for different θ, which can be found by solving 
the eigenvalues of the stress tensor, while with m increasing, 
the difference between two principal stresses components 
becomes bigger, and the corresponding stress\strain form could 
change from biaxial tensile stretching (m = 0) to uniaxial tensile 
stretching (m = 1). It is surprising to find out that in principle, 
arbitrary uniform tensile strain forms could be designed by 
tuning m, i.e., the shape of the elliptic inclusion. With θ = 36° 
and m = 0.4 for the elliptic heterostructure, the distributions of 
stress components σyy and σxy obtained from MD simulations 
(Figure 2c) and theoretical predictions (Figure 2d) are shown, 
which once again demonstrates that the stress/strain states 
could be well predicted in terms of Eshelby inclusion theory.

In fact, the method proposed here is compatible with previous 
methods (e.g., elongating the substrate, piezoelectric stretching, 
etc.), with the assistance of which not only the form but also 
the magnitude of the uniform strain state could be accurately 
designed. It is therefore called internal stress assisted strain 
engineering that could provide a new avenue for this field.

2.2. Nonuniform Strain—Pseudomagnetic Field

The issue about opening an energy gap in graphene has always 
been discussed since its birth. Until now, various methods 
have been proposed including periodically structural modi-
fication,[30–34] quantum confinement,[35] chemical modifica-
tion,[36,37] etc. However, all of these methods lack controllability, 
since the energy gap could be hardly manipulated after these 
modifications. This situation does not change until the con-
cept of pseudomagnetic field is introduced by Guinea et al.[10] 
In this paper, they argue that a nonuniform strain field could 
induce an effective magnetic field, called pseudomagnetic field, 
by making use of which the energy gap in graphene could be 
opened. To generate a spatial uniform energy gap in graphene, 
a spatial uniform pseudomagnetic field is required, which 
means stress field should satisfy the following relation[10]

,Cy Cxxx yy xyσ σ σ= − = =  (1)

where C is a constant. Unfortunately, this specific nonuni-
form strain forms could not be induced by conventional ways. 
Despite in experiments, over 300 T pseudomagnetic field 
(nearly uniform) has been observed on graphene nanobub-
bles,[38] the uncontrollability makes it impossible to be adopted 
in industrial design. In the following, we will show that with 
internal stress assisted strain engineering a nearly uniform 
pseudomagnetic field could be realized.

In Figure 3, the triangular graphene/graphane heterostruc-
ture is designed to realize uniform pseudomagnetic field in 
graphene. With a theoretical calculation, the stress σyy distribu-
tion (1% biaxial tensile strain is assumed at infinity) is shown 
in Figure 3a. Since there is no characteristic length scale in 
Eshelby inclusion theory, in principle triangular inclusion 
regions with different sizes should give the same distribution 
if the distance is normalized with the length scale of triangle. 
To confirm this issue, MD simulations are performed. Two 
triangular heterostructure models with their inclusion regions 
being different in size are established, and the distribution of 
stress component σyy for the larger triangular inclusion and the 
smaller one can be found in Figure 3b,c, respectively. To quanti-
tatively compare MD simulations with Eshelby inclusion theory, 
all of the stress components distribution along the x- and 
y-directions (the route is marked in Figure 3d) in the inclusion 
region obtained by the two methods are given in Figure 3e,f.  
Note that although both two models in MD simulations are 
subject to 1% external biaxial tensile strain, the corresponding 
external stresses are slightly different, which are considered 
and used to set the stress boundary conditions in the inclusion 
problem. In general, MD simulations agree well with Eshelby 
inclusion theory for both cases, and especially for the model 
with smaller inclusion region, where two methods nearly com-
pletely match with each other (Figure 3f). There are two things 
should be noticed. First, Eshelby inclusion theory describes 
the smaller triangular inclusion better than the larger one, 
since with the same size of the simulation box, the boundary 
effect has less influence to the smaller triangular inclusion area 
relatively, in other word, it is more close to the infinite body 
assumption in Eshelby inclusion theory. Second, the size effect 
is nearly negligible, since both the larger and smaller triangular 
inclusion regions could be well described by the Eshelby inclu-
sion theory, in which there is no characteristic length scale. By 
following the procedures introduced in the Experimental Sec-
tion, the atomic stress in MD simulations is used to calculate 
the pseudomagetic field for the smaller triangular inclusion 
sample, which is nearly uniform and up to 140 T as shown in 
Figure 3g. Note that the local value of pseudomagnetic field is 
obtained by interpolation and then taking its average within an 
area of 1.6 Å (slight longer than the CC bond length) around, 
so that the discreteness brought by the atomic structure could 
be eliminated. The pseudomagetic field according to Eshelby 
inclusion theory is shown in Figure 3h for comparison. As can 
be seen, the results from MD simulations and Eshelby inclu-
sion theory are consistent, and the major difference occurs at 
the sharp atomic interface, which could be accepted by noting 
that the Eshelby inclusion theory is based on the continuum 
assumption (more comparisons in details could be found in 
the Supporting Information). Since there is no characteristic 
length scale in Eshelby inclusion theory, with the inclusion size  
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normalized, the stress\strain distribution remains unchanged. 
As a result, the magnitude of the stress\strain gradient should 
be inversely proportional to inclusion size. Therefore, in experi-
ments, triangular heterostructure patterns with different sizes 
could be used to obtain the uniform and controllable strain 
gradient. To confirm this point of view, the variation of strain 
gradient (the average value of ∂σyy/∂y inside the triangle) with 
respect to the side length of the triangular inclusion is shown 
in Figure 3i, and there is a good agreement between MD simu-
lations and Eshelby inclusion theory. It demonstrates that with 
the triangular heterostructure design proposed in this article, 
the strain gradient and thus pseudomagnetic field could be 
accurately designed.

One thing should be noted is that although the fundamental 
equations (i.e., equilibrium equations, constitutive equations, 
etc.) are the same, the boundaries conditions in this article are 
quite different from ref. [10], which makes that our results pre-
sented in Figure 3g are distinct from those reported in ref. [10].  
Here the force boundary conditions are applied on graphene, 
which is direct but hard to realize in experiments. This is 
because only uniaxial and biaxial stretching are now available in 
experiments, which cannot afford the accurate force boundary 
conditions setting in ref. [10]. However, combing the trian-
gular in-plane heterostructure design with the biaxial external 
stretching, internal stress assisted strain engineering enables to 
realize a nearly uniform pseudomagnetic field.

Small 2018, 1703512

Figure 3. Pseudomagnetic field for the triangular graphene/graphane heterostructure. a) The distribution of stress components σyy obtained from the 
inclusion theory of Eshelby. The distributions of stress components σyy for b) the larger triangular inclusion sample and c) the smaller one obtained 
from MD simulations. Note that the side length of the triangle is about 9.2 and 4.7 nm for the larger and smaller one, respectively. d) The inclusion 
region of the smaller triangular inclusion model is zoomed in. Along the x- and y-direction (the route is marked with black dashed lines in panel (d)), 
stress components obtained from two methods, i.e., inclusion theory of Eshelby and MD simulations, are compared for e) the larger triangular inclu-
sion model and f) the smaller one, respectively. Note that the distance is normalized with the size of the triangle. The corresponding pseudomagnetic 
fields for the smaller triangular inclusion model obtained by g) MD simulations and h) Eshelby inclusion theory are shown. i) The variation of the strain 
gradient (the average value of ∂σyy/∂y inside the triangle) with respect to the side length of the triangular inclusion.
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2.3. Nonuniform Strain—Funnel Effect

The funnel effect of excitons in MoS2 monolayers, a poten-
tial application for strain engineering in photonics, has been 
reported by Feng et al.[13] recently. They demonstrated that 
strain gradients could induce the continuous varying profile of 
optical gap in MoS2, which serves as a force that could push 
excitons toward the regions of maximum tension. This concept 
could enhance the efficiency for solar energy harvesting and 
lead to significant performance gains in photovoltaic solar cells.
Without much time, the existence of the funnel effect in MoS2 
has been verified in experiments,[39,40] and several months ago, 
inverse funnel effect of excitons has been theoretically pre-
dicted in black phosphorus,[14] which suggests this effect could 
be ubiquitous in 2D materials. Although much attention has 
been paid in theory and experiment, now only two methods, 
i.e., winkling[39] and indentation,[40] enable to experimentally 
realize the funnel effect. Since both of them take advantage 
of the interaction between the substrate and 2D materials, 
the properties of 2D materials could be affected. Here we will 
take the graphene/graphane heterostructure as an example to 
show that with the internal stress assisted strain engineering, 
the funnel effect in 2D materials could be realized without the 
assistance of the substrate, and thus should be convenient for 
applications.

To this end, the strain dependence of the gap should be 
clarified first. Take monolayer MoS2 as an example, in this 
system 1% strain could lead to 45 meV variation for energy gap 
according to the pervious experimental studies,[26,39,41–45] which 
means the tensile and compressive strain give an equivalent 
variation of the gap except the opposite signs. Note that since 
only some simple strain forms could be realized in experi-
ments, the strain dependence of the gap cannot be completely 
determined. If we assume that the trace of strain tensor is 
proportional to the variation of the energy gap, except at the 
interface between the inclusion and matrix, the gradient for 
the trace of strain tensor and thus the variation of the bandgap 
will vanish according to Eshelby inclusion theory (the proof 
could be found in the Supporting Information). To overcome 
this problem, the compressive instability of 2D materials, 
which leads to asymmetric mechanical responses for tension 
and compression, should be made use of. Note that here we 
focus on realization of a nonzero gradient for the trace of strain 
tensor, and as mentioned above, the graphene/graphane het-
erostructure will be taken as a model system to show how this 
could be accomplished.

In Figure 4a, a circular graphene/graphane heterostructure 
model for MD simulations is established, and the distribution 
for the trace of stress\strain (subject to 0.5% external biaxial 
tensile strain) is shown in Figure 4b. Due to the compressive 
instability, the inclusion region is protruding (see the Figure 4a  
left), and the nonzero gradient for the trace of strain tensor 
could be observed in Figure 4b. Note that the graphene area out-
side the inclusion region is focused, and the corresponding spa-
tial variation of the trace of strain tensor along the x-direction 
is shown in Figure 4c, which is remarkable when the distance 
is comparable with the radius of the circular inclusion region. 
The typical band structure of MoS2 according to density func-
tional theory (DFT) calculations with Perdew–Burke–Ernzerhof  

exchange-correlation potential[46] is shown in Figure 4d, and 
its unit cell and first Brillouin zone are given in the insets of 
Figure 4d. Here, the rectangle unit cell is chosen to facilitate 
applying strain. For the typical band structure of MoS2, three 
relevant energies are marked with V, C, and H in Figure 4d, 
respectively. To demonstrate that the designed strain field could 
induce the funnel effect in MoS2, the evolution of the bandgap 
in MoS2 is studied via DFT calculations with the exchange cor-
relation potential chosen the hybrid functional HSE06[47,48] 
(calculation details could be found in the Experimental Sec-
tion). Note that the strain state is extracted from the circular 
graphene/graphane heterostructure, and then used to calcu-
late the band structure of MoS2. The energy variation of V, C, 
and H, and the evolution of the direct gap (the energy differ-
ence between C and H) and indirect gap (the energy differ-
ence between C and V) are shown in Figure 4e,f, respectively. 
It could be seen that the energy of conduction band minimum 
(CBM), the highest occupied energy at L, and the direct gap 
increase with distance, which shows an inverse trend with the 
trace of stress and strain. Combining with the high and strain 
insensitive exciton binding energy (about 0.5 eV) reported in 
MoS2,[13] Type III scenario proposed in ref. [13] is satisfied. 
Therefore, the designed stress\strain field could be used to 
realize the funnel effect in MoS2. Since the assistance from 
substrates now becomes unnecessary and only simple external 
loads (i.e., biaxial stretching) need to be applied, this method 
should be friendly to various applications.

The only question left is how to design the pattern of hetero-
structure in experiments for these systems. With the successful 
functionalization of MoS2

[49] and black phosphorus[50] reported 
recently as well as the simple triangular and hexagonal TMDs 
heterostructures with nanometer resolution obtained in experi-
ments,[23–26] two possible ways could be chemical modification 
and epitaxial growth for heterostructures. Considering the rapid 
development of experimental technology, accurately patterning 
in these systems should be expected in near future.

2.4. Spatial Uniform Distributed Bandgap in the Triangular 
MoS2/WSe2 Heterostructure

In Figure 5a, the schematic diagram for the MoS2/WSe2  
in-plane heterostructure in experiments[26] is shown, where 
an interesting observation is that the spatial distribution of 
bandgap is uniform in the WSe2 region. Here, we try to explain 
this phenomenon via theoretical analysis. Note that in theo-
retical analysis, the solution of infinite body is used, since the 
finite boundary effect plays little role in the stress distribu-
tion inside the inclusion, which will be demonstrated in the 
following.

With the lattice constant of WSe2 (0.328 nm)[51] 2.5% larger 
than MoS2 (0.32 nm),[52] the eigenstrain equals 2.5% suggesting 
that the inclusion is subject to compression. As their elastic 
properties have been studied[53–55] (Young’s modulus and Pois-
son’s ratio are 270 GPa and 0.24 for MoS2, 251.64 GPa and 0.19 
for WSe2), the stress or strain state of the heterostructure could 
be obtained according to Eshelby inclusion theory. The distribu-
tion of stress components σxx and σxy is plotted in Figure 5b,c, 
and their spatial variation along the middle line (marked with 
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the red dashed line in Figure 5b,c) is plotted in Figure 5d, the 
maximum magnitude of which is about 8 GPa. In Figure 5e, 
the normal and tangential stress along one side of the triangle 
(marked with the black dashed line in Figure 5b,c) are given, 
as their magnitude are much smaller than that of the stress in 
the inclusion area, finite boundaries should have little effect 
for the stress distribution in the inclusion region. The trace of 
stress tensors has been plotted in Figure 5f, which is uniform 
in terms of Eshelby inclusion theory. Different from Figure 4b,  
here the compressive instability could be avoided due to the 
assistance from the substrate. Providing that the trace of strain 
tensor is proportional to the variation of the energy gap for 
WSe2, the spatial distribution of the bandgap should be uni-
form, which is just the case observed in experiments.[26]

One relevant issue is whether the lattice mismatch near the 
interfaces of the heterostructures could induce dislocations to 
release the strain. Due to strong covalent bonds, dislocations 
could hardly slip in 2D materials, and for this reason most of 
2D materials lack plasticity at room temperature. Despite there 
is a lattice mismatch near the interfaces of the in-plane hetero-
structures, at low temperature it will not induce dislocations to 
release the strain. This is because the motions of dislocations  

are nearly forbidden in this situation, and as a result the 
internal strain field should be well reserved.

Thanks to the rapid progress of experimental technique 
in recent years, in-plane heterostructures could be synthe-
tized to aimed geometries. Recently, it has been reported that 
simple hexagonal and triangular patterns could be obtained for  
in-plane 2D TMDs heterostructures.[23–26] Not only that, but 
the pattern could be designed at nanoscale to write letters in 
graphene/graphane heterostructure[28] and even draw an owl  
in graphene/BN heterostructure.[15] With all these experimental 
advances, the broad applying prospect for internal stress 
assisted strain engineering might be right around corner.

3. Conclusion

In conclusion, with the Eshelby inclusion theory, the internal 
stress/strain could be utilized to accurately design strain states. 
From a fundamental perspective, with tuning the pattern of 
heterostructures, internal stress assisted strain engineering 
could be used to accurately design any uniform tensile strain 
field or precisely control the strain gradient in the nonuniform  

Small 2018, 1703512

Figure 4. The funnel effect realization. a) The top view (left) and side view (right) of the circular graphene/graphane heterostructure model, where the 
gray and yellow colored atoms represent carbon and hydrogen atoms, respectively. Note that in the side view, the cross-section of this model is shown. 
b) The distribution for the trace of stress tensor obtained from MD simulations, and it is set to zero in inclusion region, which is not interested in 
this case. c) The variation of the trace of the stress tensor along the x-direction with respect to the distance from the interface of the heterostructure. 
Note that the atoms in the path are marked with black circles in the inset. d) The typical band structure of monolayer MoS2 without strain is shown, 
and three relevant energies are marked with V, C, and H, respectively. Insets: the unit cell and first Brillouin zone. e) The dependence of V, C, and H 
with respect to the distance from the interface of the heterostructure. f) The corresponding evolution of the direct gap (the energy difference between 
C and H) and indirect gap (the energy difference between C and V) are shown.
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strain field, which can help experimentally clarify the fun-
damental relationship between physical properties and the 
mechanical strain. For applications, via internal stress assisted 
strain engineering the specific nonuniform stress\strain states 
could be obtained for realizing some interesting theoretical pre-
dictions such as the pseduomagnetic field and funnel effect of 
excitons. Even more amazing, as there is no characteristic size 
in Elsheby inclusion theory, the stress and strain distribution 
only depends on the shape of the inclusion, which suggests 
that the stress or strain gradient could be controlled precisely 
through changing the size of the inclusion region. As a result, 
the magnitude of pseudomagneitc field could be accurately 
designed. Internal stress assisted strain engineering opens an 
avenue to the practical applications for strain engineering in 2D 
materials, which injects new vitalities into this field, and with 
the rapid progress in experiments, the bright prospect of strain 
engineering should be worth looking forward to.

4. Experimental Section
MD Simulations Details: MD simulations were performed using 

LAMMPS[56] based on the adaptive intermolecular reactive empirical 
bond-order (AIREBO) potential,[57] with the interaction cutoff parameter 
set to 2 Å.[58,59] All graphene, graphane, and in-plane grahene/graphane 
heterostructure samples (about 50 nm × 50 nm) used in our simulations 
were prepared by running NPT dynamics (where the number of particles 
N, pressure P, and temperature T of the system are specified) at 1 K 
for 100 ps to allow the relaxation of the simulation box dimensions to 

attain the zero stress state, and then the biaxial or uniaxial tension was 
applied with a strain rate of 0.001 ps−1. Note that a time step of 1 fs, 
periodic boundary condition, and a temperature of 1 K are used in all of 
our simulations.

Besides, the atomic structures near the interface obtained by MD 
simulations and first principle calculations are carefully compared 
(details could be found in the Supporting Information), which suggests 
that MD simulations could well predict the graphene\graphane 
heterostructures even near the interface.

First Principle Calculations Details: The geometrical configurations 
and electric band structures of monolayer MoS2 are obtained self-
consistently by using the projector augmented wave pseudopotential 
method implemented in the VASP package,[60] and the exchange-
correlation potential is treated with the hybrid functional HSE06.[47,48] 
In these calculations, energy cutoff, k-mesh, and convergence criteria 
are set to be 350 eV, 12 × 21 × 1, and 10−5 eV, respectively, and the 
maximum allowed force on each atom for structure optimization is less 
than 10−3 eV Å−1.

Quantify Mechanical Quantities used in Eshebly Inclusion Theory: 
With graphene and graphane sharing the same carbon frame at 
the beginning, the eigenstrain, which describes the variation of the 
inclusion’s volume when constraints from the matrix are relieved, could 
be estimated by comparing the sizes of the simulation boxes for these 
two systems after sufficient relaxations in MD simulations. As both the 
length and width of the simulation box of graphene are −4.47% smaller 
than that of graphane, the eigenstrain is set to −4.47% for graphene 
when including in graphane. After that, tensile MD simulations for 
graphene and graphane are preformed. The corresponding stress–strain 
curves are shown in Figure 1b, and also Young’s modulus and Poisson’s 
ratio could be obtained. To be specific, they are 960 GPa and 0.16 for 
graphene, 71.5 GPa and 0.07 for graphane, and are consistent with 
previous studies.[61,62] Note that the Poisson’s ratio for graphane can not 

Small 2018, 1703512

Figure 5. The uniform distribution of the trace of the stress tensor in triangular MoS2/WSe2 heterostructure obtained in experiments. a) The triangular 
MoS2/WSe2 heterostructure obtained in experiments.[26] The distribution of the stress components σxx and σxy obtained from the inclusion theory of 
Eshelby is shown in panels (b) and (c), respectively. d) The spatial variation of the stress components σxx and σxy along the middle line, which marked 
with the red dashed line in panels (b) and (c). e) The spatial variation of the stress components σnn and σnt along one side of the triangle marked with 
the black dashed line in panels (b) and (c), where n and t represent the normal and tangential direction, respectively. f) The distribution for the trace 
of stress tensor according to the inclusion theory of Eshelby.
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be accurately captured in MD simulations owing to the slight rippling 
originating from lack of the mirror symmetry with respect to the middle 
plane, and its value is taken from the pervious first principles result.[62]

Numerical Solution of Inclusion Problem: The inclusion problem 
depicts an infinite elastic matrix containing an inclusion with a uniform 
stress or strain field 0 0Lij ijkl klσ ε=  at infinity, where Lijkl are the elastic 
constants of the matrix. According to continuum mechanics, it could 
be concluded as equilibrium equations (Note that in the following 
derivations, a suffix preceded by a comma denote differentiation. For 
example, /, xij j ij jσ σ= ∂ ∂  and /, xij j ij jε ε= ∂ ∂ )

0,ij jσ =  (2)

the stress or strain boundary conditions at infinity

, ,
0

, ,
0orij j ij j ij j ij jσ σ ε ε= =  (3)

the connecting conditions at the interface between the inclusion (+) and 
matrix (−)

,u u
n n

i i

ij j ij jσ σ
=

=






+ −

+ −

 (4)

and the constitutive equations

,(in the matirx)

,(in the inclusion)

L

L
ij ijkl kl

ij ijkl
c

kl

σ ε
σ ε

=
=







 (5)

where Lijkl
c  are the elastic constants of the inclusion.

In this article, the inclusion problem is solved numerically based 
on the complex variable method, and with conformal transformation 
arbitrary boundary shapes could be handled. Besides, in this method 
either the strain or stress boundary condition at infinity could be set as 
required.

Calculation of Pseudomagnetic Field: A 2D strain field could induce a 
gauge field[10]

2
A

a
xx yy

xy

β ε ε

ε
=

−

−













 (6)

where β ≈ 2 and a represent the lattice constant. Note that the x-axis 
should be parallel to the zigzag direction. The corresponding magnetic 
field, called pseudomagnetic field, could be given as

B
A
x

A
yS

y x=
∂
∂ − ∂

∂  (7)

With the stress field in MD simulations, the strain field could be 
obtained in terms of constitutive relation, then by taking advantaging 
of Equations (6) and (7), the distribution of pseudomagnetic field could 
be calculated.
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