
A
cc

ep
te

d
A

rt
ic

le
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 2017; 00:1–21

Published online in Wiley Online Library (www.onlinelibrary.wiley.com). DOI: 10.1002/fld.4480

Novel local smoothness indicators for improving the third-order
WENO scheme

Shengping Liu1,2,Yiqing Shen1,2∗, Bei Chen1,2, Fangjun Zeng1,2

1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Science,
Beijing, China, 100190,
2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China, 100049

SUMMARY

The local smoothness indicators play an important role in the performance of a weighted essentially
non-oscillatory (WENO) scheme. Due to having only two points available on each sub-stencil, the local
smoothness indicators calculated by conventional methods of Jiang and Shu[1] make the third-order WENO
scheme too dissipative. In this paper, we propose a different method to calculate the indicators by using all
the three points on the global stencil of the third-order WENO scheme. The numerical results demonstrate
that the WENO scheme with the new indicators has less dissipation and better resolution than the ones of
Jiang and Shu’s for both smooth and discontinuous solutions. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The weighted essentially non-oscillatory (WENO) scheme was first proposed by Liu et al.[2].

The main idea is that, instead of choosing the smoothest stencil in the ENO (essentially non-

oscillatory) scheme[3], the WENO scheme uses a convex combination of all candidate stencils

(sub-stencils) to obtain high order accuracy in smooth regions while keeping the ENO property near

shock waves. The analysis of Jiang and Shu[1] showed that, with the local smoothness indicators

introduced by Liu et al.[2], the WENO scheme constructed from the rth order ENO scheme is

only (r + 1)th order accurate. Then, Jiang and Shu[1] proposed a classical way to calculate the

local smoothness indicators, with which the WENO (WENO-JS) scheme can achieve (2r − 1)th
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order. Balsara and Shu[4] extended the WENO schemes up to eleventh-order and designed a

class of monotonicity preserving WENO schemes. However, Henrick et al.[5] pointed out that

the indicators of Jiang and Shu[1] failed to improve the accuracy of WENO scheme at critical

points and then proposed a mapping function to modify the weights. The new WENO (WENO-M)

scheme can achieve the optimal convergence order at critical points. Gerolymos et al.[6] further

extended both WENO-JS and WENO-M schemes up to the seventeenth-order. In [7], Borges et

al. designed a global smoothness indicator (WENO-Z scheme) to improve the accuracy of the

fifth-order WENO-JS scheme directly. Later, Castro et al.[8] developed higher order WENO-Z

schemes. Ha et al.[9] derived a different method that measures the local smoothness of the numerical

solution inside a stencil and devised a sixth-order global smoothness indicator to construct the fifth-

order WENO-Z-type scheme. Recently, Fan et al.[10] constructed higher order (up to eighth-order)

global smoothness indicators, with which the associated WENO-Z-type schemes can obtain fifth

convergence order in smooth regions, even at the second order critical points where both the first

and second derivatives vanish.

Compared with higher order WENO schemes, the third-order one has several advantages, for

example, it is more robust for shock problems, it uses less grid points and hence it reduces

the difficulty of boundary treatment and can be easily generalized to unstructured meshes, and

also it provides a suitable compromise of the computation cost and the accuracy in some cases.

However, the third-order WENO scheme with the smoothness indicators of Jiang and Shu[1] is

too dissipative. And those techniques, such as the mapping function of WENO-M scheme[5] and

the global stencil indicator of WENO-Z scheme[7], can effectively improve the accuracy of higher

order WENO schemes[5, 6, 7, 8], but they cannot get satisfactory improvement on the third-order

one. In [11], Yamaleev and Carpenter developed a third-order energy stable WENO (ESWENO)

scheme, which can decrease the dissipation of the third-order WENO scheme apparently. However,

the two tuning parameters ε and δ, which are designed for calculating the weight function and the

artificial dissipation term of ESWENO scheme, are both dependent on the mesh size (or the total

number of grid cells), and ε is also determined by the initial solution. Hence, the applications of the

ESWENO scheme are limited. In [12], Wu et al. proposed a new global smoothness indicator and

developed a less dissipative third-order WENO-Z-type (WENO-N3) scheme. Because WENO-N3

cannot reach the expected goal of high accuracy and low-dissipation, later, in [13], they suggested

using the power function of the global indicator as the new one to construct the WENO-NP3 scheme.

However, the new global smoothness indicator and the local smoothness indicators have different

dimensions, this makes the results of the WENO-NP3 scheme uncertain in applications, in addition,

WENO-NP3 generates apparent oscillatory solutions in many problems with shock waves.

As discussed in [1], the local smoothness indicators play a key role in the performance of a

WENO scheme. Those works in [11, 12, 13] paid attention mainly to design the global smoothness

indicators based on the two local smoothness indicators, which are calculated on each of sub-

stencils. Hence, those improved third-order WENO schemes are still not so satisfactory. In this

paper, we propose a novel way to calculate the two local smoothness indicators by using all three

points on the global stencil. Analysis shows that, in monotonic smooth regions, the two new local

indicators presented in this paper are the same, hence the calculated weights are equal to the optimal

weights. Because of this important advantage, the new WENO scheme can greatly decrease the

numerical dissipation.

This article is protected by copyright. All rights reserved.
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This paper is organized as follows: in Section 2, we briefly describe the third-order WENO-JS

scheme and some improved methods. The new local smoothness indicators and their properties

are given in Section 3. In Section 4, various numerical examples are presented to validate the low

dissipation property of the new scheme. Concluding remarks are given in Section 5.

2. THIRD-ORDER WENO SCHEMES

In this section, we briefly describe the WENO schemes by using the one-dimensional scalar

conservative law equation[1]
∂u

∂t
+

∂f

∂x
= 0 (1)

where u(x, t) is a conserved quantity, f(u) describes its flux, and x and t denote space and time,

respectively. By defining the points xi = iΔx, (i = 0, . . . , N ), where Δx is the uniform grid spacing,

the (1) can be approximated by a conservative finite difference formula

dui

dt
= −

f̂i+1/2 − f̂i−1/2

Δx
(2)

where f̂i±1/2 is the numerical flux.

The flux f̂i+1/2 of a third-order WENO scheme can be written as

f̂i+1/2 = ω0q0 + ω1q1 (3)

where, qk is the second-order flux on the sub-stencil Sk = (i− 1 + k, i+ k) and is given by

⎧⎨
⎩
q0 = −1

2
fi−1 +

3

2
fi

q1 =
1

2
fi +

1

2
fi+1

(4)

the weight ωk is constructed as

ωk =
αk

α0 + α1
, αk =

ck
(ISk + ε)p

, k = 0, 1 (5)

where, ISk is the local smoothness indicator that measures the smoothness of numerical solution

on the sub-stencil Sk. c0 = 1/3 and c1 = 2/3 are called the optimal weights since they generate

the third-order upstream scheme. ε is a positive real number introduced to avoid the denominator

becoming zero. ε = 10−40 is recommended by Henrick et al.[5] and used in this paper. The larger

power p can make the weight assigned to the non-smooth sub-stencil approach to zero faster, and

also result in more dissipative WENO schemes[8]. Numerical results in [11, 12, 13] showed that

p = 1 is adequate for a third-order WENO scheme to preserve ENO property and also is used in all

tested third-order WENO schemes in this paper.

This article is protected by copyright. All rights reserved.
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2.1. The WENO-JS scheme

In [1], Jiang and Shu proposed the classical smoothness indicator as

ISk =

r−1∑
l=1

∫ xi+1/2

xi−1/2

(Δx)2l−1(q
(l)
k )2dx (6)

where, q(l)k is the lth order derivative of qk(x), and qk(x) is the interpolation polynomial on sub-

stencil Sk. For the third-order WENO scheme, r = 2, and

eqrefeq:jiang gives the same formula as those of Liu et al.[2]

⎧⎨
⎩
IS0 = (fi − fi−1)

2

IS1 = (fi+1 − fi)
2

(7)

In smooth regions, the Taylor series expansions of (7) at xi give

⎧⎨
⎩
IS0 = (f ′

iΔx− 1

2
f ′′
i Δx2 +O(Δx3))2

IS1 = (f ′
iΔx+

1

2
f ′′
i Δx2 +O(Δx3))2

(8)

(8) can be written as

ISk = A(1 +O(Δx)) (9)

where, A is independent of k. Substituting (9) into (5), we have

ωk = ck +O(Δx) (10)

Similar to the work of Henrick et al.[5], Yamaleev and Carpenter[11] derived the necessary

and sufficient conditions that provide third-order convergence of a third-order WENO scheme. A

sufficient condition is given by

ωk = ck +O(Δx2) (11)

Note that (11) imposes a more severe constraint on the weights compared with (10). And

numerical experiments[11, 12] also showed that the WENO-JS scheme with the indicators (7) is

too dissipative.

2.2. The WENO-M scheme

In [5], Henrick et al. proposed a mapping function to improve the approximation accuracy of ωk to

ck. The mapping function is defined as

gk(ωk) =
ωk(ck + c2k − 3ckωk + ω2

k)

c2k + ωk(1− 2ck)
(12)

Applying the mapping function, the new weights for the third-order WENO-M scheme are

ωM
k =

αk

α0 + α1
, αk = gk(ωk) (13)

This article is protected by copyright. All rights reserved.
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Using the similar analysis in [5], it is easy to find that

ωM
k = ck +O(Δx3) (14)

(14) indicates theoretically that the weights (13) go beyond the sufficient condition (11) for a third-

order WENO scheme. However, the numerical results (See Section 4.1) showed that the WENO-M

scheme cannot reach the third-order accuracy. And hence the issue of improving the third-order

WENO scheme is still open.

2.3. The WENO-Z-type schemes

As pointed out by Borges et al.[7], the mapping function used to construct the WENO-M scheme

is computationally expensive. Hence, similar as the fifth-order WENO-Z scheme[7], one can easily

construct a third-order WENO-Z-type scheme by introducing a global smoothness indicator τ , and

the weights are calculated as

ωZ
k =

αk

α0 + α1
, αk = ck

(
1 +

τ

ISk + ε

)
(15)

For example, by directly generalizing the method of Borges et al., one can obtain a global

smoothness indicator as

τ3 = |IS1 − IS0| (16)

Yamaleev and Carpenter[11] proposed a different indicator for the ESWENO scheme as

τE = (fi−1 − 2fi + fi+1)
2 (17)

and Wu and Zhao[12] constructed a indicator for the WENO-N3 scheme as

τN =

∣∣∣∣IS0 + IS1

2
− IS3

∣∣∣∣ (18)

where, IS3 = 13
12 (fi−1 − 2fi + fi+1)

2 + 1
4 (fi−1 − fi+1)

2 is the local smoothness indicator at the

second sub-stencil S1 = (xi−1, xi, xi+1) in the fifth-order WENO scheme[1]. In fact, the two

indicators (17) and (18) have the same expression as τ = γ(fi−1 − 2fi + fi+1)
2, in which, γ = 1

and γ = 5/6 are taken in (17) and (18), respectively. Hence, in this paper, we only discuss the

WENO-N3 scheme with τN .

In smooth regions, by means of the Taylor series expansion and simple derivation, one can get

ωτ3
k = ck +O(Δx) (19)

and

ωτN
k = ck +O(Δx2), f ′

i �= 0 (20)

It should be pointed out that, if f ′
i = 0, the global smoothness indicator τN /τE and the local ones

(7) have the same order of magnitude. The numerical results in [12] showed that the improved

third-order WENO schemes above cannot reach the expected goal.

This article is protected by copyright. All rights reserved.
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In [13], Wu et al. proposed a modified indicator τNP = (τN )p (p = 3/2) to construct the WENO-

NP3 scheme to improve the accuracy of the WENO-N3 scheme in smooth regions. However, such

a modification of τN destroys the requirement that the global smoothness indicator and the local

ones should have the same dimension. The numerical testing also showed the WENO-NP3 scheme

cannot preserve the ENO property. Hence, the third-order WENO-NP3 scheme constructed in [13]

is unavailable in applications.

3. THE NEW LOCAL SMOOTHNESS INDICATORS

In this section, we present a new way to calculate the indicators, which are used to replace (7) to

improve the third-order WENO scheme.

First, the first-order derivatives of flux f at node i+ 1, i and i− 1 are approximated by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F ′
i+1 =

3fi+1 + fi−1 − 4fi
2Δx

F ′
i =

fi+1 − fi−1

2Δx

F ′
i−1 =

4fi − 3fi−1 − fi+1

2Δx

(21)

Then, the new indicators are constructed as follows

⎧⎨
⎩
IS0 = (|F ′

iΔx| − |F ′
i−1Δx|)2 =

1

4
(|fi+1 − fi−1| − |4fi − 3fi−1 − fi+1|)2

IS1 = (|F ′
iΔx| − |F ′

i+1Δx|)2 =
1

4
(|fi+1 − fi−1| − |3fi+1 + fi−1 − 4fi|)2

(22)

Next, we discuss the important properties of the new indicators.

Firstly, in monotonic smooth regions, the derivatives F ′
i−1, F ′

i and F ′
i+1 in (21) have the same

sign, thus (22) becomes

⎧⎨
⎩
IS0 =

1

4
[fi+1 − fi−1 − (4fi − 3fi−1 − fi+1)]

2
= (fi+1 − 2fi + fi−1)

2

IS1 =
1

4
[fi+1 − fi−1 − (3fi+1 + fi−1 − 4fi)]

2
= (fi+1 − 2fi + fi−1)

2
(23)

Hence we have

IS0 = IS1 (24)

Substituting (24) into the weight function (5) of the third-order WENO scheme, there is

ω0 = c0, ω1 = c1 (25)

That means, in monotonic smooth regions, the new weights are exactly equal to the optimal weights,

i.e. the fully third-order upstream scheme is recovered. Hence the new indicators (22) do not bring

any additional dissipation for the WENO scheme. This property makes the new WENO scheme

superior to the others in reducing numerical dissipation.

This article is protected by copyright. All rights reserved.
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Secondly, if there is a discontinuity inside a sub-stencil, for example, sub-stencil S0 = (i− 1, i),

and the other one S1 = (i, i+ 1) is smooth. Let

⎧⎨
⎩
β0 = (fi − fi−1)

β1 = (fi+1 − fi)
(26)

Since |β0| is much larger than |β1|, i.e. |β0| � |β1|, the new indicators of (22) can be approximated

by ⎧⎨
⎩
IS0 =

1

4
(|β0 + β1| − |3β0 − β1|)2 = (β0 + β1)

2 = O(β2
0)

IS1 =
1

4
(|β0 + β1| − |3β1 − β0|)2 = (2β1)

2 = O(β2
1)

(27)

(27) shows that the new indicators approximate the ones of Jiang and Shu (7). Hence, the ENO

property can be maintained for problems with discontinuities.

Finally, at a critical point, f ′
i = 0, the Taylor series expansions of (22) give

⎧⎪⎨
⎪⎩
IS0 = (|f

′′′
i Δx3

6
+O(Δx5)|+ |f ′′

i Δx2 − f ′′′
i Δx3

6
+O(Δx4)|)2

IS1 = (|f
′′′
i Δx3

6
+O(Δx5)|+ |f ′′

i Δx2 +
f ′′′
i Δx3

6
+O(Δx4)|)2

(28)

Similarly, (28) can be expressed as

ISk = B(1 +O(Δx)) (29)

where B is independent of k. Although the weights with the new indicators (22) do not meet

the sufficient condition (11) near the critical points, owing to the advantage in monotonic smooth

regions, they can still greatly decrease the numerical dissipation of the third-order WENO scheme,

even near critical points.

4. NUMERICAL EXAMPLES

In this section, several linear advection problems, one-dimensional (1-D) and two-dimensional (2-

D) Euler problems are calculated to test the performance of the new third-order WENO scheme.

The time derivative is approximated with the third-order TVD Runge-Kutta method[14].

4.1. Linear advection problems

In the following we test the accuracy of WENO schemes on the linear advection equation

⎧⎨
⎩

∂u

∂t
+

∂u

∂x
= 0, x0 � x � x1

u(x, t = 0) = u0(x), periodic boundary
(30)

The exact solution of (30) is given by

u(x, t) = u0(x− t) (31)

This article is protected by copyright. All rights reserved.
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x

ω
0
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0.8

WENO-JS
WENO-M
WENO-N3
Present
c0

Figure 1. The distribution of ω0 at initial step t = 0 of Case 1

4.1.1. Case 1

u0(x) = sin

(
πx− sinπx

π

)
,−1 ≤ x ≤ 1 (32)

This particular initial condition[5] has two critical points at which f ′ = 0 and f ′′ �= 0. The errors

and the convergence order in L∞ and L1 norm of the different schemes at t = 2 with Δt = 8Δx5/3

are given in Table I. It can be seen that, all improved third-order WENO schemes can not achieve

the expected third-order accuracy, but the present one performs best in all tested schemes, the L1

error of the present scheme is only half of the one of WENO-N3. Fig.1 displays the behavior of the

weight ω0 of different WENO schemes at initial step t = 0 with a grid of 100 and shows the weight

calculated by present local smoothness indicators is the same as the value of the ideal weight in

monotonic smooth regions.

This article is protected by copyright. All rights reserved.
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Figure 2. Solution of Case 2
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Figure 3. Enlarged plot around discontinuities of Fig.2

Table I. Convergence properties in L∞ and L1 norm of linear case

N
WENO-JS WENO-M

L∞(order) L1(order) L∞(order) L1(order)

100 2.424E-2( — ) 9.568E-3( — ) 1.575E-2( — ) 5.086E-3( — )
200 9.201E-3(1.40) 2.274E-3(2.07) 5.628E-3(1.48) 1.099E-3(2.21)
400 3.418E-3(1.43) 5.170E-4(2.14) 1.954E-3(1.53) 2.242E-4(2.29)
800 1.260E-3(1.44) 1.150E-4(2.17) 6.675E-4(1.55) 4.396E-5(2.35)
1600 4.590E-4(1.46) 2.522E-5(2.18) 2.244E-4(1.57) 8.492E-6(2.37)

N
WENO-N3 Present

L∞(order) L1(order) L∞(order) L1(order)

100 1.666E-2( — ) 5.556E-3( — ) 1.173E-2( — ) 3.284E-3( — )
200 5.977E-3(1.48) 1.204E-3(2.21) 4.003E-3(1.55) 6.760E-4(2.28)
400 2.083E-3(1.52) 2.460E-4(2.29) 1.351E-3(1.57) 1.298E-4(2.38)
800 7.133E-4(1.55) 4.860E-5(2.34) 4.479E-4(1.59) 2.446E-5(2.41)
1600 2.405E-4(1.57) 9.399E-6(2.37) 1.465E-4(1.61) 4.529E-6(2.43)

4.1.2. Case 2

u0(x) =

⎧⎨
⎩
1, if |x| < 0.5

0, otherwise
(33)

This case is used to test the shock capturing capability of the WENO schemes. The numerical

solution at t=8 with N=200 and time step Δt = Δx/2 are shown in Figs.2 and 3. It can be seen

that, as mentioned previously, the WENO-NP3 scheme[13] generates apparent oscillations near

discontinuous regions. The present scheme keeps the best behavior.

4.1.3. Case 3

u0(x) = e−(x−90)2/400
(
cos

(π
8
(x− 90)

)
+ cos

(π
4
(x− 90)

))
, 50 ≤ x ≤ 130 (34)

This article is protected by copyright. All rights reserved.
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Figure 6. Solution of Case 4
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Figure 7. Enlarged plot of Fig.6

This case is used to test the performance of WENO schemes for a smooth solution with several

critical points[15]. Fig.4 shows the numerical solutions with grid number N = 200 and Δt = Δx/2

at t = 160. As mentioned above, although the present scheme cannot achieve optimal convergence

order, it still can greatly decrease the dissipation of the WENO scheme, even near critical points.

This example is also calculated by the further improved schemes (WENO-M-type and WENO-

Z-type schemes), which are based on the WENO scheme with the new local smoothness indicators

(22) and by means of the mapping function (12) of the WENO-M scheme and the global smoothness

indicator (16) of the WENO-Z scheme, respectively. The results shown in Fig.5 indicate that the

mentioned methods can also be directly used to improve the performance of the new scheme. Since

the purpose of this paper is mainly to show the benefits from the new local smoothness indicators,

both the further improved schemes are no longer discussed and compared in this paper.

This article is protected by copyright. All rights reserved.
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4.1.4. Case 4

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

6
(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)), −0.8 � x < −0.6

1, −0.4 � x < −0.2

1− |10(x− 0.1)|, 0 � x < 0.2
1

6
(F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)), 0.4 � x < 0.6

0, otherwise

G(x, β, z) = e−β(x−z)2 , F (x, β, a) =
√

max(1− α2(x− a)2, 0) (35)

This is a classical testing case, which contains a Gaussian, a triangle, a square-wave and a semi-

ellipse. It is often used to test the robustness and dissipation of high order schemes. The constants

are z = −0.7, δ = 0.005, β = log(2)/(36δ2), a = 0.5 and α = 10. It is solved with N = 200 and

time step Δt = Δx/2. Figs.6 and 7 display the results at t = 2. Same as shown in the previous case,

the present scheme resolves all four waves better than the others.

4.2. Nonlinear Burgers equation (Case 5)

The nonlinear Burgers equation with a periodic boundary condition

⎧⎨
⎩

∂u

∂t
+

∂(u2/2)

∂x
= 0, −1 � x � 1,

u(x, t = 0) = u0(x), periodic boundary,
(36)

is solved as case 5. For the initial data u0(x) =
1
2 + sin(πx), the exact solution is smooth up to

t = 1
π [2]. We list the errors and orders in Table II. It can be seen that, the present scheme can

decrease the errors by about 70% compared with the WENO-JS scheme and by about 40% compared

with the other two schemes.

Table II. Convergence properties in L∞ and L1 norm of nonlinear case

N
WENO-JS WENO-M

L∞(order) L1(order) L∞(order) L1(order)

50 8.193E-3( — ) 2.152E-3( — ) 6.219E-3( — ) 1.380E-3( — )
100 3.377E-3(1.28) 4.536E-4(2.25) 2.527E-3(1.30) 2.996E-4(2.20)
200 1.298E-3(1.38) 1.014E-4(2.16) 1.954E-3(1.53) 2.242E-4(2.29)
400 4.890E-4(1.41) 2.330E-5(2.12) 3.266E-4(1.50) 1.286E-5(2.31)
800 1.835E-4(1.41) 5.215E-6(2.16) 1.156E-4(1.50) 2.624E-6(2.30)

N
WENO-N3 Present

L∞(order) L1(order) L∞(order) L1(order)

50 6.297E-3( — ) 1.420E-3( — ) 4.705E-3( — ) 1.101E-3( — )
100 2.589E-3(1.28) 3.072E-4(2.21) 1.995E-3(1.24) 2.278E-4(2.28)
200 9.446E-4(1.45) 6.582E-5(2.22) 7.064E-4(1.50) 4.221E-5(2.38)
400 3.354E-4(1.49) 1.330E-5(2.31) 2.432E-4(1.54) 8.426E-6(2.41)
800 1.189E-4(1.50) 2.720E-6(2.29) 8.408E-5(1.53) 1.614E-6(2.43)
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Figure 8. Solution of Case 6
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Figure 9. Enlarged plot of Fig.8

4.3. One-dimensional Euler problems

The governing equations are as follows

∂U

∂t
+

∂F

∂x
= 0 (37)

where U = (ρ, ρu,E)T , F (U) =
(
ρu, ρu2 + p, u(E + p)

)T
. ρ, u, E, p are the density, velocity,

total energy and pressure, respectively. For ideal gas, E = p/(γ − 1) + ρu2/2. γ = 1.4 is the ratio

of specific heat. Time step is taken as

Δt =
σΔx

maxi (|ui|+ ci)
(38)

where, σ is CFL number, and 0.5 is used for all four 1-D cases in this subsection. c, the speed

of sound, is given by c =
√

γp/ρ. The local LF flux-splitting method is used and the WENO

reconstruction is carried out in local characteristic fields[11]. All the reference solutions were

obtained by the WENO-JS scheme with 2000 points.

4.3.1. Case 6 The first 1-D case is Shu-Osher problem[14], its initial condition is given as follows

(ρ, u, p) =

⎧⎨
⎩
(3.857143, 2.629369, 31/3) −5 ≤ x < −4

(1 + 0.2 sin(5x), 0, 1) −4 ≤ x ≤ 5
(39)

Figs.8 and 9 give the density distribution at t = 1.8 by using N = 800. As shown in the scalar case

3, for the solution with high frequency, the present scheme shows apparent improvement over the

others.
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Figure 10. Solution of Case 7
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Figure 11. Enlarged plot of Fig.10
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Figure 12. Solution of Case 8
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Figure 13. Enlarged plot of Fig.12

4.3.2. Case 7 The second 1-D case is Sod problem, with initial condition

(ρ, u, p) =

⎧⎨
⎩
(0.125, 0, 0.1) 0.5 ≤ x ≤ 1

(1, 0, 1) 0 ≤ x < 0.5
(40)

It is solved with N = 200 at t = 0.14. The results in Figs.10 and 11 show that the new scheme can

capture shocks and contact discontinuities well.

4.3.3. Case 8 The third 1-D case is Lax problem[7], with initial condition

(ρ, u, p) =

⎧⎨
⎩
(0.445, 0.698, 3.528) −5 ≤ x < 0

(0.5, 0, 0.571) 0 ≤ x ≤ 5
(41)
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Figure 14. Solution of Case 9
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Figure 15. Enlarged plot of Fig.14

It is solved with N = 200 at t = 1.3. The density distribution is displayed in Figs.12 and 13. The

new scheme obtains sharper shock profiles than the others.

4.3.4. Case 9 The last one is the blast-waves interaction problem[7], with initial condition

(ρ, u, p) =

⎧⎪⎪⎨
⎪⎪⎩
(1, 0, 1000) 0 ≤ x < 0.1

(1, 0, 0.001) 0.1 ≤ x < 0.9

(1, 0, 100) 0.9 ≤ x ≤ 1

(42)

The numerical results at t = 0.038 with N = 800 are presented in Figs.14 and 15. As previously

discussed, the new scheme can obtain more accurate solutions near extrema.

4.4. Two-dimensional Euler problems

In this subsection, we further study the shock capturing ability and numerical dissipation of the new

scheme in the 2-D problems. The 2-D Euler equations are solved,

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (43)

where the conserved variables U and the inviscid flux vectors F and G are

U =

⎡
⎢⎢⎢⎣
ρ

ρu

ρv

E

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

ρu

ρu2 + p

ρuv

Eu+ pu

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎣

ρv

ρuv

ρv2 + p

Ev + pv

⎤
⎥⎥⎥⎦ (44)

The energy is given by

E =
p

γ − 1
+

ρ

2
(u2 + v2) (45)
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The Roe[16] flux-splitting method is used for the inviscid convective fluxes, and the time step is

taken as follows

Δt = σ
ΔtxΔty

Δtx +Δty⎧⎪⎨
⎪⎩
Δtx =

Δx

maxi,j (|ui,j |+ ci,j)

Δty =
Δy

maxi,j (|vi,j |+ ci,j)

(46)

where, σ is CFL number, and 0.5 is used for all the tests below.

Figure 16. Density contours of Case 10, 30 contours from 0.63 to 0.99

4.4.1. Case 10 This is a 2-D periodic vortex propagation problem[17, 18] used to assess the

numerical dissipation of different schemes. The vortex is described as a perturbation to the velocity

This article is protected by copyright. All rights reserved.
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(u, v), temperature (T = p/ρ) and entropy (S = p/ρ) of the mean flow (ρ, u, v, p) = (1, 1, 1, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

û = −εe(1−r2)/2

2π
ȳ

v̂ =
εe(1−r2)/2

2π
x̄

T̂ = − (γ − 1)ε2e(1−r2)

8γπ2

Ŝ = 0

(47)

where, (x̄, ȳ) = (x− 5, y − 5), r2 = x̄2 + ȳ2, and the vortex strength ε = 5.0. The computational

domain is [0, 10]× [0, 10], and periodic boundary condition is used in both directions. It can be

readily verified that the Euler equations with the above initial conditions admit an exact solution

that moves with the speed (1,1) in the diagonal direction. The errors based on the density of the

WENO-M, WENO-N3 and the present schemes are presented in Table III. The present scheme

reduces errors by about 70% compared with WENO-JS and by about 45% compared with the other

two schemes.

The results are also carried out until t = 100 with a grid of 80× 80, to further demonstrate the low

dissipation of the new scheme. Fig.16 shows the density contours of the WENO schemes. Figs.17

and 18 show the pressure distribution along x-axis at y = 5 and the evolution of kinetic energy

Ek, respectively. The kinetic energy is calculated by Ek =
∑N,M

i,j=(1,1) ρi,j(u
2
i,j + v2i,j)/(2N ×M),

where N and M are the total cells in x and y direction of the grid, respectively. From these figures,

it can be seen that, the WENO-JS scheme is too dissipative, while the present scheme has lowest

dissipation.

Table III. Errors for periodic vortex propagation problem at t = 10

Grid
WENO-JS WENO-M

L∞(order) L1(order) L∞(order) L1(order)

20× 20 4.153E-1( — ) 2.083E-2( — ) 3.887E-1( — ) 1.881E-2( — )
40× 40 1.834E-1(1.18) 9.525E-3(1.29) 1.500E-1(1.37) 6.511E-3(1.53)
80× 80 6.652E-2(1.46) 2.937E-3(1.70) 6.850E-2(1.13) 1.825E-3(1.83)

160× 160 4.165E-2(0.66) 1.084E-3(1.44) 3.393E-2(1.01) 4.998E-4(1.87)
320× 320 1.964E-2(1.08) 2.965E-4(1.87) 1.004E-2(1.76) 1.062E-4(2.23)

Grid
WENO-N3 Present

L∞(order) L1(order) L∞(order) L1(order)

20× 20 3.944E-1( — ) 1.927E-2( — ) 3.670E-1( — ) 1.696E-2( — )
40× 40 1.527E-1(1.37) 6.746E-3(1.51) 1.400E-1(1.39) 5.291E-3(1.68)
80× 80 7.060E-2(1.11) 1.972E-3(1.77) 5.756E-2(1.28) 1.454E-3(1.86)

160× 160 3.453E-2(1.03) 5.732E-4(1.78) 2.422E-2(1.25) 3.321E-4(2.13)
320× 320 1.020E-2(1.76) 1.130E-4(2.34) 5.336E-3(2.18) 6.359E-5(2.38)

4.4.2. Case 11 The 2-D shock/vortex interaction problem describes an interaction between a

stationary shock and a vortex[1]. The computational domain is taken to be [0, 2]× [0, 1]. A

stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis. Its left state is

This article is protected by copyright. All rights reserved.
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Figure 17. Pressure distributed along y = 5 of Case 10
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Figure 18. Evolution of Ek of Case 10

(ρ, u, v, p) = (1, 1.1
√
γ, 0, 1). A small vortex is superimposed to the flow on the left of the shock

and centered at (xc, yc) = (0.25, 0.5). The vortex is described as a perturbation to the velocity

(u, v), temperature (T = p/ρ) and entropy S = ln(p/ργ) of the mean flow

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

û = ετea(1−τ2) sin θ

v̂ = −ετea(1−τ2) cos θ

T̂ = − (γ − 1)ε2e2a(1−τ2)

4aγ

Ŝ = 0

(48)

where, τ = r/rc, r =
√

(x− xc)2 + (y − yc)2, ε = 0.3, rc = 0.05 and a = 0.204 are the same as

in Refs.[1, 19]. The upper and lower boundaries are set to be reflective. The results at t = 0.6 with a

grid of 100× 50 are solved. Fig. 19 is the pressure distribution along the center line of y = 0.5. The

result obtained by WENO-JS with a refined mesh of 2000× 1000 is given as the reference solution.

It can be seen that the present scheme obtained most accurate solution near the center of the vortex.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
18 SHENGPING LIU, YIQING SHEN, ET AL.

x

p

0 0.5 1 1.5 2
1

1.05

1.1

1.15

1.2

1.25

Ref.
WENO-JS
WENO-M
WENO-N3
Present

Figure 19. Pressure distributed along y = 0.5 of Case 11

4.4.3. Case 12 This is a 2-D Riemann problem[20] used to test the shock capturing capability of

the present scheme for calculating shock/shock interaction problems. It is solved on a unit square

with initial condition

(ρ, u, v, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1.0, −0.75, −0.5, 1.0), 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1

(2.0, −0.75, 0.5, 1.0), 0 ≤ x < 0.5, 0.5 ≤ y ≤ 1

(1.0, 0.75, 0.5, 1.0), 0 ≤ x < 0.5, 0 ≤ y < 0.5

(3.0, 0.75, −0.5, 1.0), 0.5 ≤ x ≤ 1, 0 ≤ y < 0.5

(49)
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Figure 20. Results of Case 12, 20 contours from 1.1 to 3.8

The solution at t = 0.23 is solved with a grid of 400× 400. The reference is calculated by WENO-

JS with a grid of 800× 800. Fig.20 shows the density contours of the reference solution and the

results of different WENO schemes. As the figure shows, the present scheme obtained rich structures

similar as those obtained by WENO-JS with refined meshes.
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5. CONCLUSION REMARKS

In this paper, a new method is proposed to calculate the local smoothness indicators for the third-

order WENO scheme by using all the three points on the global stencil. Since the two new indicators

are exactly the same in monotonic smooth regions, the weights of the new WENO scheme are

equal to the optimal weights, and this property makes the new scheme recover the fully third-

order upstream scheme. The numerical results demonstrate that the WENO scheme with the new

indicators has less dissipation and better resolution than the ones of Jiang and Shu for both smooth

and discontinuous solutions.

Although this paper only focuses on the advantages brought by the new indicators, those methods,

such as the mapping function used in the WENO-M scheme and the global smoothness indicator

used in the WENO-Z scheme, can also directly be used to further improve the performance of the

new third-order WENO scheme.
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