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The gradient design of a fine grain structure on the surface and coarse grain structure in the substrate
gives nano metallic materials both high strength and plasticity. Inspired by the concept of gradient
design of grain sizes in  materials  science,  this  paper shows the design of  the  gradient  Voronoi
polygonal  honeycomb structure.  The quasi-static  uniaxial  tensile  deformation  processes of  both,
gradient and uniform, Voronoi structures were studied and it was found that the gradient design of
the  honeycomb cell  size  greatly  improves the  tensile  property and  strain  energy  storage of  the
Voronoi structure.

Keywords: Voronoi structures; gradient design; tensile properties; strain energy storage

1. Introduction

Natural honeycomb cellular structures such as cork, cancellous bone and the anterior
wing of beetles have excellent  properties such as low weight, high strength and high
energy absorption [Ajdari et al., 2011]. Practical engineering structures such as aerospace
vehicles, automobiles and helmets have adopted this cellular porous design to ensure that
the  high  structural  strength  and  energy  absorption  properties  meet  the  engineering
requirements  while  remaining  lightweight  [Tang  et  al.,  2016].  In  the  context  of  this
engineering  application,  researchers  optimized  and  improved  the  traditional  regular
hexagonal honeycomb structures and revealed its deformation mechanism based on the
bionic microstructure design to improve the mechanical properties of the porous cellular
structure.

On the one hand, under the premise of maintaining the consistency of the material
and its relative density, the individual cell morphology of periodic lattice cells can be
optimized to improve the structural mechanical properties. In order to reduce the stress
concentration at the rigid node of the bar member, Papka and Kyriakides [1994, 1999]
designed  a  circular  hole  structure  at  that  point  in  the  regular  hexagonal  honeycomb,

1

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in IJAM

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
L

IV
E

R
PO

O
L

 o
n 

08
/1

3/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Y Gu et al

resulting  in  an  increased  dynamic  equivalent  modulus  in  the  optimized  structure
compared to the static equivalent modulus, thus providing better mechanical properties
under  dynamic  impact  loading.  Simone  and  Gibson [1998]  introduced  a  gradient-
thickened design at the rigid node, which increased the equivalent elastic modulus of the
structure. Shen et al. [2013] designed the cell wall thickness gradient to run parallel to the
loading  direction  to  increase  the  energy  absorption  efficiency  of  the  structure  under
impact  loading.  Zhou  et  al.  [2017]  designed  a  2D porous structure  with a  negative
Poisson’s ratio by changing the interior angle of the individual cell. The structure is more
stable  at  the  plateaued  stress  zone  of  the  yielding  stage  under  quasi-static  uniaxial
compression.
On the other hand, non-periodic lattice cells are generated by the Voronoi algorithm and
the mechanical properties of Voronoi structures are improved by changing the cellular
irregularities between the individual cells. Li  et al. [2005] believed that the equivalent
elastic  modulus  of  Voronoi  structures  was  directly  proportional  to  the  degree  of  cell
irregularity and their performance was better than the periodic lattice cellular structure.
Sotomayor and Tippur [2014] thought that the reduction in cellular irregularities would
flatten the plateau stress of Voronoi structures in the yielding stage; Fazekas et al. [2002]
revealed that the increase in cellular irregularities would reduce the value of yield stress
of Voronoi structures.  Thus, in order to achieve optimal mechanical  properties,  when
using the Voronoi algorithm to design porous materials,  it  is  necessary to control  the
irregularities  of  individual  cells.  Furthermore,  the  gradient  design  can  significantly
improve  the  mechanical  properties  of  materials/structures,  which  has  generated
widespread interest in the academic community. Lu  et al. [2004] and Liu  et al. [2013]
achieved a gradient structure with fine grains on the surface and coarse grains in the
substrate by heat-treating the surface of the polycrystalline material. They found that the
ductility of the material is improved dramatically by marginally reducing its yield limit,
thereby increasing the toughness of the metallic material. Ma and Ye [2007] designed a
bilayer structure by combining circular cell elements and hexagonal cell elements, which
creates a gradient in the mechanical properties. The energy absorption rate of the bilayer
structure under a blast loading was significantly higher than that of the uniform structure.
Zhang et al. [2016] designed a Voronoi structure with a gradient distribution of member
bar material density. The numerical results under impact loading show that the stress at
the support end of the density gradient distribution structure increases with increasing
impact velocity. Liang et al. [2017] introduced a gradient design for the cell size under
uniform material density, the positive gradient structure with large cells at the impact end
and small  cells  at  the support  end yielded excellent  energy absorption efficiency and
pulse transmission ability under blast loading.

In this paper, a structure similar to gradient nanometals is designed i.e., a Voronoi
structure in which the cell size gradient is perpendicular to the loading direction. The
deformation characteristics of a uniform and gradient structure under quasi-static uniaxial
tension are numerically simulated. The mechanism that leads to a significant increase in
the tensile strength and energy absorption of the Voronoi structure with a gradient design
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 Novel gradient design and simulation of voronoi structures

is revealed.

2. Gradient Voronoi model

2.1. Gradient grid random distribution method

A group of cell  cores  distributed in a  2D region expands outwards in a circular
manner at a constant speed within the plane. When adjacent cell walls are in contact, the
state  of  the  cell  wall  is  controlled  to  maintain  contact  without  penetration  until  the
expanded polygons fill this space entirely before the Voronoi polygon structure can be
generated [Zhu et al., 2001].

The total number of cell cores and their spatial distribution are key to controlling the
geometry of Voronoi polygons. As shown in Fig.1,  N cell cores are distributed in a 2D
region of length L1 and width L2. If the cell cores are distributed in a uniform manner, a

periodically distributed regular hexagonal honeycomb structure can be generated. The

distance between two adjacent cell cores is 
 /l L L N0 1 22 3

 [Liang et al.,2002]. If
the cell cores are randomly distributed, the resulting Voronoi structures may have large
differences. In order to reduce the individual differences of Voronoi polygons, Martinez
and Martinez [2002] proposed the concept of inhibition distance, which assumes that the

minimum  distance  between  cell  cores  is λl0， where λ 0 1 .  As  the  value  of  λ

increases, the cell core distribution becomes more ordered. When λ = 0, the inhibition
distance method does not work, and the cell cores are completely randomly distributed;
when λ = 1, the cell cores are arranged in a periodic lattice. With a given value of λ, the
cell cores can be randomly distributed in the 2D region. When the distance between the

newly distributed cell core and the existing cell core is less than λl0 , the newly distributed
cell core does not meet the requirements and has to be redistributed until N cell cores are
obtained. The inhibition distance method can achieve a statistically uniform distribution
of cell size in the whole region.

In  order  to  achieve  the  non-uniform design  of  cell  size  distribution  in  Voronoi
model, a gradient grid random distribution method is proposed in this paper. First, the 2D
area is divided into I layers and each layer is divided into a specific number of grids, the

number of grids in the i-th layer is given by   , ,iJ i I 1 2
, so the grid length is, 

i
i

L
l

J
 1

1

                                                                (1.1)
The width of the model is equal to the sum of grid widths of all I layers, i.e., L2=∑

i=1

I

l2 i.
Suppose all the grids have the same length-width ratioψ=l1 i / l2i, and then,

 /
I

ii
L J

ψ
L


1 1

2

1

ψ=
L1∑

i=1

I

(1/J i)

L2
                                                     (1.2)
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Following this, one cell core is randomly distributed in each grid so that the number of
cell cores in the i-th later is the same as the number of grids, J i. The total number of cell
cores  is  given  by  N=∑

i=1

I

J i.  The  resulting  Voronoi  polygons  has  no  limitation  of
minimum distance between cell cores. Moreover, assuming, J i satisfies,

[ ( ( ) / ) ]iJ INT a a i I    2
0 1 2                                           (1.3)

where INT  is the integral function,  a0 is the undetermined constant,  a is the gradient
coefficient which representing the gradient of cell size along the  y-axis. Finally, all the
edges of the generated Voronoi polygon are translated in-plane to obtain member bars of
the same thickness and a Voronoi solid model can be obtained. The numerical model is
then generated by assigning the same cross-sectional properties to all cell boundaries.
The relative density of the Voronoi model can be obtained by dividing the sum of the
areas of all bars by the area of the 2D region. When calculating the total area of the bars,
if the thickness of the bar is much smaller than its length, then the high-order small areas
of the rigid connections of the bars can be ignored, and the member bars at the edge of
the model can be excluded. With a given relative density, model length L1and width L2,
total  number  of  cell  cores  N ,  grid  layer  I and  gradient  coefficient  a,  then  cell  core
number of each layer J i, grid sizes l1 i and l2 i, and cell wall thickness b can be uniquely
determined.

Fig. 1. Gradient grid random distribution method for generating Voronoi polygons. The coordinate origin O is
located at the center of the model, and x and y represent the length and width of the model, respectively; the
thin solid lines are the grid edges, the dots and thick solid lines are the cell cores and edges, respectively; L1
and L2 are the length and width of the model, respectively; I is the layer number of grids, J i, l1 i and l2 i are
the grid number, length and width of the i-th grid layer, respectively.

Figure 2(a) shows the distribution curve of the number of cell cores J i along the grid
layer. The corresponding Voronoi model is shown in Fig. 3. The relative density was 0.3
%, the length of the model  L1= 200, the width L2= 60 mm, the thickness of out-plane
was 20 mm, the total number of cell cores N=2000±10, the grid layerI=35. The 18th

layer is the central layer and  J i is symmetrical about it. When the gradient coefficient,
a=0, J i is constant and the number of cell cores in each layer is the same; when a<0,
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 Novel gradient design and simulation of voronoi structures

the number of cell cores on the upper and lower edges is greater than that of cell cores
near the center; when  a>0, the number of cell cores on the upper and lower edges is
smaller than the number closer to the center. The distribution of J i along the y-direction
is uniquely determined by  a; the larger the absolute value of  a, the larger the gradient
change  in  the  number  of  cell  cores.  In  order  to  avoid  the  cells  with  serious  shape
distortion, the value of a is set between -0.4 and 0.2.
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Fig.2. Distribution curves of (a) the number of cell cores J i and (b) the average cell size in a layer d i along the
grid layer. The total cell number N = 2000  10, the grid layer number I = 35, and the gradient coefficient a is
between -0.4 and 0.2.

Fig.3. Voronoi models with the gradient coefficient a = (a) 0；(b) 0.05；(c) 0.10；(d) 0.15；(e) 0.20；(f)  0.1；(g) 
0.2；(h)  0.3；(i)  0.4. The relative density is about 0.3 %.
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2.2. Evaluation parameters for the gradient Voronoi model

The differences in the shapes and sizes of the uniform model cells are statistically
uniform throughout  the  area.  The  difference  in  cell  shapes  of  the  gradient  model  is
statistically uniform in the entire region; however, the difference in cell sizes is made up
of two components – the difference in average cell size between layers and the difference
in cell sizes within the same layer. The former is determined by the gradient coefficient
and  the  latter  is  equivalent  to  the  uniform  model.  Therefore,  on  the  one  hand,  the
difference in cell shapes of the gradient model can be characterized by the method used
for cell shape difference in the uniform model as specified in the existing literature [Tang
et al., 2014], and the cell shape distortion can be characterized by the sum of the relative
angular differences between the Voronoi K polygon and the regular K polygon,

          

K
k

ij
k

θ θ
θ

θ




0

1 0                                                 (2.1)
where  θk is  the value of  the interior  angle in row  i and column  j of  the Voronoi  K
polygon, and  θ0 is the value of the interior angle of the regular  K polygon. The mean,
R shape, and variance, Dshape, of the shape distortion of the gradient model can be written
separately as,

                         
 

shape

iI J

iji j

I

ii

θ
R

J

 

 








 



1 1

2 2

1

2
2

                                           (2.2)

 

 

shape

shape

iI J

iji j

I

ii

θ R
D

J

 

 










 



21 1

2 2

1

2
2

                                (2.3)
On the other hand, the difference in the cell sizes of the gradient model is determined
after  removing  the  inter-layer  cell  difference  caused  by  the  gradient  coefficient.  The
relative difference between the cell sizes of the Voronoi polygon and average cell sizes in
the same layer is used to characterize the difference in cell sizes,

-ij i

ij
i

d d
e

d


                                              (2.4)
where  d ij is the cell size of the polygon in the  i-th row and the  j-th column, i.e. the

diameter of a circle with an area equivalent to the area of the polygon; d i=
1

ni−2
∑
j=2

ni−1

d ij

is the average of all polygon cell sizes in the i-th layer. The mean, R¿ ¿¿, and the standard
deviation, D¿¿ ¿, of the cell size difference in the gradient model can be written as,

   
size

iI J

iji j

i

e
R

I J

 

 


  

 
1 1

2 2

2 2
                                        (2.5)
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 Novel gradient design and simulation of voronoi structures

 

 

size

size

iI J

iji j

I

ii

e R
D

J

 

 










 



21 1

2 2

1

2
2

                                 (2.6)
Considering that the generated Voronoi structure is in a finite 2D rectangular area, the
cells that intersect  the boundary are cropped out, hence not included in the statistical
analysis. Therefore, only cells from layer 2 to layer I−1 and from column 2 to column

(J¿¿ i−1)(i=1,2 ,…I )¿ are counted in Eqs. (5), (6), (8), and (9). Figure 2(b) shows

the change in the average cell size in a layer d i with the number of grid layers. d i is also
approximately  symmetrically  distributed  about  the  center  layer.  For  simplicity,  the

following description of the gradient  
d i
y

 of the cell size along the y-direction is for the

upper  half  of  the  model;  that  is  for  layers  18  to  35  (y   0） .  When  the  gradient

coefficient,  a=0, the average cell size in a layer  d i does not change in the y-direction

and the cell size gradient, 
d i
y
0; when a<0, the cell sizes have a negative gradient, which

decreases  from the center  to the edge,  and  
d i
y
<0;  when  a>0,  the cell  sizes  have a

positive gradient, which increases from the center to the edge, and 
d i
y
>0. It can be seen

that  the  change  in  gradient  of  the  cell  sizes  along  the  y-direction,   
d i
y

,  is  uniquely

determined by the gradient coefficient,  a,  and the larger  the absolute value of  a,  the

greater  the absolute value of   
d i
y

,  which means that  the trend of  change in  cell  size

becomes more dramatic.
Based  on  the  gradient  grid  random distribution  method,  the  cell  cores  are  randomly
distributed  within  the  grid.  Thus,  although  the  number  of  cell  cores  J i is  uniquely
determined,  the  generated  Voronoi  polygons  corresponding  to  the  same  gradient
coefficient, a, are different due to the different positions of the cell cores in the grid, i.e.,
any value of a corresponds to multiple gradient models. Figure 4 shows the statistical
distribution of the mean and variance of the Voronoi model’s cell size difference and
shape distortion. The number of samples for any value of a is  10,000. The statistical
distributions of  R¿ , D¿¿¿ ¿

,  R shape and Dshape at different values of a satisfy the Gaussian
function. The fitting parameters are shown in Table 1. When |a| increases (i.e., the cell

size gradient  ¿
d i
y
∨¿ increases), the mean value   and the standard deviation   of the

cell  size  differences  and  shape  distortions  show  an  increasing  trend.  To  make  the
investigated  model  more  representative,  four  quality  assessment  parameters  will  be
selected in the model in the range of   2 when calibrated.
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Fig.4. Statistical distributions of: (a) Rsize; (b) Dsize; (c) Rshape; (d) Dshape.

Table 1 Evaluation parameters of the Voronoi models

Gradient
coefficient

a

Size irregularity Shape irregularity

Rsize Dsize Rshape Dshape

/101  /103 /102  /103   /102  /102

0.00 1.06 2.11 8.03 1.81 2.76 1.49 1.05 1.84

0.05 1.09 2.19 8.18 1.80 2.75 1.52 1.04 1.92

0.10 1.13 2.17 8.36 1.84 2.74 1.57 1.04 1.88

0.15 1.19 2.23 8.85 1.84 2.76 1.61 1.05 1.92

0.20 1.31 2.30 9.52 2.02 2.77 1.71 1.06 2.04

 0.10 1.12 2.26 8.41 1.77 2.75 1.50 1.04 1.87

 0.20 1.20 2.28 8.94 1.93 2.76 1.62 1.03 1.93

 0.30 1.35 2.49 9.87 2.15 2.78 1.75 1.04 2.00

 0.40 1.60 2.83 11.3 2.70 2.82 1.98 1.06 2.16

3. Finite element model

The  quasi-static  uniaxial  stretching  process  of  the  Voronoi  model  was  numerically
simulated using the finite  element software Abaqus. The internal  bar  of  the model  is
made of Al5052-H39 [Gibson and Michael, 1999], which has a density of 2750 kg/m2.
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 Novel gradient design and simulation of voronoi structures

The  bilinear  post-hardening  elastoplastic  constitutive  model  is  adopted,  and  the
corresponding constitutive curve is shown in Fig.5(a). The elastic modulus is 68.97 GPa,
and the Poisson's ratio is 0.32; the initial yield stress is 282 MPa, and the shear modulus
is 0.69 GPa; the plastic strain limit is 0.287. When the strain exceeds this value, the stress
will remain constant at 480 MPa. 
As the porous structure  is  under tensile  loading, the boundaries  members will  occurs
large deformation and support most external load if with the same material properties as
the internal  ones. However,  the  surface  of  real  materials  is  uneven,  usually  contains
microholes and other defects, and will not dominate the properties of the whole structure.
Therefore,  the  upper  and  lower  edge  members  are  supposed  to  be  made  of  rubber
materials to weaken the boundary effect, and the Mooney-Rivlin hyperelastic model is
used in the analysis [Mooney, 1940]. When the nominal strain reaches 300%, the nominal
stress  of  the  material  reaches  a  maximum  of  1.22  MPa,  and  the  corresponding
constitutive curve is shown in Fig.5(b).
The left edge member of the model is a rigid body with a fixed boundary condition; the
right edge member is  also a rigid body,  but  with a  displacement  boundary condition
applied.
The  quasi-static  loading  is  applied  along  the  x-direction.  Timoshenko  beam  element
B22H is used. B22H is a plane beam element using three nodes and hybrid elements,
which can simulate  the stretching and  bending of  the lower beam section with large
deformations.
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Fig.5. Stress-strain curve of (a) Al5052-H39, (b) Rubber for the simulation.

4. Results

Figure 6 shows the nominal stress - strain curves of the Voronoi model under uniaxial
tension with different gradient coefficients. As the nominal strain increases, the nominal
stress increases exponentially. Under the same nominal strain, the percentage increment
of  the nominal stress  of  the gradient  model  is  used to  quantitatively characterize the
increase  rate  of  its  tensile  property  compared  to  the  nominal  stress  of  the  uniform
structure.  Under nominal strains,   = 4%, 6%, and 8%, the growth rate of the tensile
property of the gradient model with corresponding changes in the gradient coefficient is
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shown in Fig. 7. The number of samples in each case is 10. When the relative density, the
total number of cells and the number of grid layers are the same, the gradient coefficient
a has a significant effect on the tensile strength of the structure. In comparison with a
uniform  structure  with  randomly  uniform  distributed  cell  sizes  (a0),  the  gradient
structure with a non-uniform cell size distribution (a0) exhibits significantly improved
tensile property. With an increase in the absolute value of  a,  the cell size gradient is
larger, and the growth rate of the tensile property of the gradient structure is higher. For
the negative gradient structure where a = - 0.4 and the positive gradient structure where a
=  0.2,  the  maximum  increase  percentage  of  tensile  property  are  70.5%  and  44.4%
respectively. 
Meanwhile,  under  the  same  nominal  strain,  the  strain  energy  stored  in  the  gradient
structure is also higher than that stored in the uniform structure. When  = 8%, the strain
energy stored in two gradient structures with a = - 0.4 and 0.2 is 70.5% and 34.8% higher
than that of the uniform structure respectively, as shown as in Fig.8. When   8 %, the
elastic strain energy of the three groups of distributed models exceeds the total energy
stored in the structure during its elastic deformation stage by 98.2%.
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Fig.6. Nominal stress-strain curves of Voronoi models under quasi-static uniaxial tension.
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Fig.7. Increase rate of the tensile property of the gradient model with different gradient coefficient.
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Fig.8. Strain energy stored in Voronoi structure under quasi-static uniaxial tension.

The Voronoi model is a porous structure consisting of a series of bars of different
lengths,  as  shown as in Fig.9(a).  The member bar acts as a load-bearing component.
During the loading process, the strain energy concentration zone is located at the node or
midpoint of the member bar (Fig. 9(b)). The area of strain energy concentration of the
uniform Voronoi model is randomly and uniformly distributed throughout the structure,
and the area of the strain energy concentration of the gradient model is concentrated in
the dense parts of the bars, as shown in Fig.10. With an increase in nominal strain, the
strain energy concentration zone increases and the strain energy in the concentrated area
also increases. The area of strain energy concentration of the uniform model gradually
spreads over the entire area. In the gradient model, the area of strain energy concentration
tends to converge at the denser areas of the bars

Fig.9. Construction diagrams of the bar prior to and after loading with (a) Initial state; (b) deformed state. CD

and EF refer to bars CD and EF post deformation, and the solid circular radius and dashed circular radius
represent the respective straight-line distances between the two ends of the bar before and after deformation.
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Fig.10. Evolution of strain energy distribution of the Voronoi structure with the gradient coefficient (a1)-(d1) 0,
(a2)-(d2) 0.2, (a3)-(d3) -0.4 at the nomial strain (a1)-(a3) 2%, (b1)-(b3) 4%, (c1)-(c3) 6%, (d1)-(d3) 8%.

Figure 11 shows the distribution of the mass of the bar along each grid layer of the
different  Voronoi  structures.  The  mass  of  all  the  member  bars  in  each  layer  was
calculated, and the uniform structure with an average value of masses of all bars except
the  two  edge  layers  1  and  35  is  used  for  nondimensionalization  to  obtain  the
dimensionless  mass  of  the  layer.  For  a  uniform  structure,  the  bars  are  randomly
distributed, and the total mass of the bars in each layer is almost equal (symbol  in Fig.
11). At any stage of loading, the stored strain energy in each layer is also nearly equal and
will increase as the structure deforms, as shown in Fig.12(a). For the gradient structure,
the mass of the bar of each layer is different (symbols □ and ■ in Fig. 11). In the initial
stage of loading, the elastic strain energy absorbed by each layer is almost equal; as the
structural deformation increases, the difference in stored strain energy between the layers
increases,  and  the  strain  energy  stored  by  the  mass  concentration  layer  of  the  bar
increases sharply.  Furthermore, the larger  the value of nominal strain,  the greater  the
proportion of strain energy stored by the bar in areas of high concentration, as shown in
Figs. 12(b) and (c). The mass of the bars towards the central area of the positive gradient
is greater than that near the edges, and the stored strain energy is mainly concentrated in
the middle of the structure; conversely, the mass of the bars in the middle of the structure
with a negative gradient is smaller than that at the edges, and the strain energy is mainly
concentrated in the upper and lower edges of the structure. Therefore, under constant
relative  density,  the  gradient  design  of  the  cell  size  of  the  model  can  determine  the
redistribution of location and size of strain energy concentration and improve the energy
storage and tensile performance of the overall structure.
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Fig.11. Distribution of the dimensionless mass of the bars along each grid layer.
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Fig.12. Evolution of stored strain energy in each layer of the Voronoi with gradient coefficient (a) 0, (b) 0.2, (c)
-0.4.

Moreover,  the  force,  deformation  and  energy  storage  of  the  bars  under  the  uniaxial
tension are analyzed. Figure 13(a) shows the basic structural unit of the Voronoi model,
and the node P and the bars in three different directions intersecting at this node; Q, Q1

and Q2 are the midpoints of the bars and the length of bar PQ is la, its angle to the x-axis
is   and the width in the  y-direction of the structural unit is  lb. When the model is in
quasi-static uniaxial tension, its basic structural unit is in static equilibrium, which can be
simplified as both sides are subjected to tensile stress 1 in the x direction, as shown in
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Fig. 13(b).
Static analysis is performed on member bar PQ. The internal force in section Q is an

axial  tensile  force  σ 1lb L3 cosα ,  the  shear  force  is  σ 1lb L3 sinα and  the  bending

moment is σ 1la lbL3 sinα /2. Therefore, the deformation modes of the bars in a Voronoi
model under uniaxial tension include axial tension, bending and shear. In the initial stage
of loading,  the deformation of  the bar  is  small  and satisfies  the assumption of  small
deformation. The elastic strain energy stored in PQ has three components: axial tension,
bending and shear strain energy,

U=∫
0

la
(σ1 lbL3 cosα)

2

2 EA
dx+∫

0

la (x σ1 lbL3 sinα−
σ1la lbL3 sinα

2
)

2

2 EI
dx+∫

0

la 3 (σ1 lbL3 sinα )
2

5GA
dx

(4.1)

where the tensile stiffness  EA=b L3, the bending stiffness  EI=L3b
3
/12， the shear

modulus G = E/2(1+), and  is Poisson’s ratio. As the axial force and shear force remain
unchanged along the axis direction of the bar, Eq. (19) can be integrated into,

U=
L3 lalb

2σ1
2

2Eb
(cos2α+

la
2 sin2α

b2
+
12sin2α (1+v)

5
)                     (4.2)

Under  axial  tension,  the  axis  of  the  bar  will  remain  straight;  when  a  bending
moment/shear force is applied, the axis of the bar will bend. Under the continuous action
of the load, the deformation of the bar will gradually increase, and the assumption of
small deformation no longer applies. Figure 9 shows the construction diagrams of the bar
prior to and after loading. CD and EF refer to bars CD and EF post deformation, and
the solid circular radius and dashed circular radius represent the respective straight-line
distances between the two ends of the bar before and after deformation. Any two nodes in
the model are rigidly connected by bars.  When the member bar is loaded axially, the
member bar extends and the distance between the two nodes increases; when the member
bar is subject to a shear force or a bending moment, the distance between the two nodes
will decrease. Before loading, lines CD and EF are straight. After loading, line CD is
approximately straight and its straight-line distance is larger than that at the initial state,
which indicates that CD is dominated by tensile deformation; EF is a curve, and its
straight-line  distance  is  smaller  than  that  at  the  initial  state,  indicating  that  EF is
dominated by bending deformation. This shows that the change in the distance between
the two ends of the bar corresponds to the main deformation mode of the bar. The bar
with  the  two-end  distance  increased  is  defined  as  the  bar  dominated  by  tensile
deformation  and  is  simply  called  a  tensile  bar;  the  bar  with  the  two-end  distance
decreased is defined as the bar dominated by bending deformation and is simply called a
bending bar.
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 Novel gradient design and simulation of voronoi structures

Fig.13. Basic structural unit of the Voronoi model with (a) 3D side view and (b) 2D force analysis diagram,
which includes the node P and the bars in three different directions intersecting at this node; Q, Q1 and Q2 are
the midpoints of the bars and the length of bar  PQ  is  la, its angle to the  x-axis is   and the width in the  y-
direction of the structural unit is lb.

Regardless of uniform distribution or gradient distribution of cell sizes, in the case
where the relative densities are the same, i.e. the total mass of the bar is the same, as
shown in Fig.14, the ratio of the mass of the bending bar to the total mass of the gradient
structure is very close to that of the uniform structure, and the ratios of total strain energy
absorbed by the bending bar to the total strain energy of the structures are also close to.
At any stage of loading, the total mass of the bending bar is much greater than the total
mass of the tensile bar. At the initial stage of loading, the total mass of the bending bar
accounts  for  more  than  85%  of  the  total  mass  of  the  structure.  As  the  structural
deformation increases, this proportion slowly increases, and will exceed 95% when the
nominal strain is 8% (dashed lines in Fig. 14). Furthermore, the strain energy absorbed by
the  bending  bar  in  the  structure  is  much  higher  than  that  of  the  tensile  bar,  which
dominates the structural absorption strain energy. At the initial stage of loading, the strain
energy absorbed by the bending bar accounts for more than 89% of the strain energy
absorbed  by  the  structure.  As  the  structural  deformation  increases,  this  proportion
increases slowly and exceeds 98% at a nominal strain of 8% (solid lines in Fig. 14).
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Fig.14. Ratios of the mass of the bending bars to the total mass and the strain energy absorbed in the bending to
the total absorbed energy.

The spatial distribution of the mass of the gradient Voronoi structure exhibits non-
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uniformity and there is an apparent area of mass concentration in the member. At the
center  of  the  positive  gradient  structure,  the  mass  of  the  layer  member  bar  is
approximately 1.65 times that  of the uniform structure.  Similarly,  at  the edges of the
negative gradient structure, the mass of the layer member bar is approximately 2.81 times
that of the uniform structure, as shown in Fig.11. Under the same axial nominal strain, the
transverse  necking  of  the  negative  gradient  structure  is  obvious,  and  the  transverse
deformation  of  the  positive  gradient  structure  and  the  uniform structure  is  small,  as
shown in Fig.10. During tensile loading, necking is observed in the structure and lateral
deformation in the upper and lower edges is greater than that observed towards the center
of the structure. Therefore, the strain energy stored in the multi-row bar layer at the edges
is significantly larger than that stored in the densely arranged bar layer at  the center.
Moreover, as the density of the bar increases, the amount of extrusion at both ends of the
bar also increases and the bending deformation of the bar increases,  this leads to the
increase of the strain energy stored in the bar. The stored bending strain energies at the
center of the positive gradient structure and at the edges of the negative gradient structure
are 3.45 and 8.24 times that of the uniform structure respectively, as shown in Fig.15.
Because of this non-uniform arrangement, the total strain energy stored in the positive
and  negative  gradient  structures  are  1.4  and  1.82  times  that  stored  in  the  uniform
structure, as shown in Fig.16. Thus, the performance of the overall structure under tensile
loading is greatly improved.

0 5 10 15 20 25 30 35
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 a = 0
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Fig.15. Ratios of the stored strain energy in bending bars of gradient Voronoi structure to that of uniform
structure at nominal strain of 8 %.
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Fig.16. Ratios of the total stored strain energy in gradient structure to uniform structure.

5. Conclusions

(1)  A gradient  grid  random  distribution  method  for  generating  Voronoi  polygons  is
proposed  to  achieve  a  non-uniform design  of  the  cell  size  in  the  entire  model  area.
Voronoi structures in which the cell sizes are uniformly distributed along the width of the
model are generated when the gradient coefficient is 0. Similarly, structures in which the
cell sizes show a gradient distribution are obtained when the gradient coefficient is non-
zero. 
(2) By using the relative difference in the cell size and average cell size in the same layer,
the difference in cell size in the Voronoi gradient model is defined. The difference caused
by cell size gradient is eliminated, which makes the degree of difference in the cell sizes
of different Voronoi structures comparable.
(3) When the relative densities are equal, the uniaxial tensile properties of the gradient
Voronoi structure are better than those of the uniform structure, the gradient coefficient
increases,  its  enhancement  effect  is  more  apparent  and  the  tensile  property  of  the
structure with smaller  cell  sizes  on the upper and lower edges increases.  The tensile
property of the gradient structure can be 70.5% higher than that of the uniform structure.
(4)  The mass  of  the  bar  is  arranged non-uniformly  perpendicular  to  the  direction  of
tensile  loading,  which  causes  greater  deformation  and  bending  in  areas  of  greater
concentration of mass and increase in the stored strain energy. This is the main reason
why the gradient structure with a relatively consistent density can store 1.82 times the
strain energy stored in a uniform structure.
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