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Abstract
An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term
and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented,
which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory
(WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method
can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy
can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost
greatly compared with the traditional splitting method.

Keywords Supersonic reactive flows · Adaptive splitting scheme · Unstructured grids · WENO reconstruction

1 Introduction

During the last several decades, numerical simulation has
been applied to supersonic reactive flows [1–14] and plays
an increasingly important role. However, there are still some
challenges in the simulation of supersonic reactive flow [15].
A well-known difficulty [16–21] is unphysical wave speeds,
which are caused by the stiffness of the source term. This
numerical phenomenon was first observed by Colella et al.
[22]. Later, LeVeque and Yee [23] found that the propaga-
tion error is due to the numerical viscosity in the solution
of the convective terms, which smears the discontinuity
front. Various strategies have been proposed to overcome
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this difficulty [24–32], for example, the random projection
method [11–13], modified fractional step method [14], Min-
Max method [15], arbitrary high order derivatives (ADER)
method [16], sub-cell resolution method [17], and equilib-
rium state method [18]. Even though these methods can
prevent the incorrect propagation speed of discontinuities
efficiently, most of these simulations are restrained within
the structured grids and cannot be extended to the unstruc-
tured grid straightforward [33–37]. In Ref. [38], Togashi
applied the monotonic upwind scheme for conservation laws
(MUSCL) to unstructured grids and found that the simula-
tions using unstructured grids require many more cells than
structured grids to obtain the same result. To get amore accu-
rate result in unstructured grids, we can employ a high-order
accurate numerical method instead of the traditional second-
order numerical method. In fact, there are many high-order
numericalmethods [39,40] developed in the past decades: the
essentially non-oscillatory method (ENO) [41], the weighted
ENO (WENO) method [42–48], the discontinuous Galerkin
method [39,49,50], and the spectral volume method [51].
However, the unstructured high-order accurate methods for
supersonic reactive flow [52–67] are still rarely conducted
because of the complicated topology of unstructured grid,
stiffness of governing equation and complexity of the reac-
tion model.

The purpose of this article is to propose an efficient,
unstructured high-order accuratemethod for supersonic reac-
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tive flows. In the proposed method, we use an operator
splitting scheme to solve the convection term and reaction
source term separately. In the reaction step, an adaptive time-
step method is developed, which can improve the efficiency
greatly compared to the traditional splitting method. In the
convection step, an unstructured third-order accurateWENO
finite volume method (FVM) is adopted to obtain high order
special discretization.

The outline of this paper is described as follows. The gov-
erning equations for supersonic reactive flows and chemical
models are given in Sect. 2. The adaptive time-step method
in reaction step and unstructured WENO reconstruction for
convection step is introduced in Sect. 3. Numerical experi-
ments are presented in Sect. 4. And Sect. 5 is devoted to the
conclusion.

2 Governing equation and chemical models

The hyperbolic conservation laws with source term are used
to model the supersonic reaction flow. Neglecting the viscos-
ity and heat transfer, the governing equation can be written
as

∂u
∂t

+ ∂F
∂x

+ ∂G
∂ y

= S, (1)

where u,F,G and S are the state vector of conservative
variables, the flux vector in x-direction, the flux vector in
y-direction and the source term. The expression of the source
term will vary with the chemical reaction models. Two com-
mon chemical reaction modes in numerical simulation have
been included in this work: the one-step reaction model [11–
18] and detailed reaction model [24–32].

2.1 One-step reactionmodel

The one-step reaction model is the simplest reaction model,
in which there are only two states for mixture: burnt gas and
un-burnt gas. In the one-step reaction model, the conserved
variables u, flux vector F,G and source term S in Eq. (1) can
be expressed as follows
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, (2)

where ρ is the mixture density, u and v are the velocities in
x- and y-direction, E is the mixture total energy, and z is the
mass fraction. K (T ) is the chemical reaction rate, which can
be expressed in the Arrhenius form or Heaviside form. The
pressure p is given by

p = (γ − 1)

[
E − 1

2
ρ

(
u2 + v2

)
− q0ρz

]
, (3)

where q0 is the chemical heat released in the reaction. For
the calorically perfect gas, the temperature T is defined as

T = p

ρ
. (4)

2.2 Detailed reactionmodel

The detailed reaction model takes the process of chemical
reaction kinetics into consideration and usually can be rep-
resented in the general form as follows.

ns∑
i=1

v′
i, j Bi ⇔

ns∑
i=1

v′′
i, j Bi , j = 1, 2, . . . , nr , (5)

where ns is the number of species and nr is the number of
reactions. In the detailed reaction model, the conserved vari-
ables u, flux vector F,G and source term S in Eq. (1) can be
expressed as follows.
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, (6)

where ωi is the production rate for the i th species. For
the calorically perfect gas, specific heat is constant and the
temperature can be obtained according to Eq. (4). For the
thermally perfect gas, specific heats are usually given by
fitting polynomial [42] and Newton iteration is applied to
compute the temperature from the conserved variables.
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3 Numerical method

In this section, an adaptive time step method in the reaction
step and the unstructured WENO reconstruction in the con-
vection step are stated in detail. We solve these governing
equations using the Strang splitting scheme

Un+1 = C

(
�t

2

)
R (�t)C

(
�t

2

)
Un, (7)

where C and R represent the convection operator and the
reaction operator, respectively. In the reaction step, the third-
order total variation diminishing (TVD) Runge–Kutta time
discretization with adaptive time step is employed. In the
convection step, the unstructured WENO reconstruction is
used.

3.1 Adaptive time stepmethod in reaction step

An essential characteristic for supersonic reactive flow is rad-
ical chemical reactions whose relaxation times are orders
of magnitude smaller than the typical time scale of trans-
port phenomena, which is usually called stiffness [2,14]. In
the supersonic reactive flows, the stiff source term leads to
severe time-step limitations for a numerical scheme, which
is far beyond the Courant–Friedrichs–Lewy (CFL) stabil-
ity restriction to solve. Even though the implicit scheme
can reduce the stiffness effectively, the inverse of Jacobian
matrix for the source term is needed, which takes great com-
putational time in the detailed reaction model. In addition,
the accuracy of an implicit scheme is low, which may spoil
the high-order accuracy to some extent. Another method to
discretize the stiff source term is to divide the time step in
convection step into a series of smaller time steps.

To obtain high order accuracy time,we employ the explicit
3rd TVD Runge–Kutta scheme to discretize the stiff source
term. However, great computational cost will generate if we
use the same time steps in the whole computational domain
in the reaction step. It is known that the stiffness only exists in
the region near the detonation front and the severe time-step
limitation disappears in the region far from the detonation.
This reminds us that different time steps can be used in dif-
ferent areas to improve the efficiency.

In the splitting scheme, the reaction step can be expressed
as

dρi
dt

= ωi , (8)

where i represent the i th species. In Eq. (8), the magnitude
of production rate ωi can be used to indicate the stiffness of
source term. The biggerωi is, the stiffer the Eq. (8) is and the
smaller time-step should be used to maintain the stability of
numerical methods. Here, we introduce an adaptive factor,

Fig. 1 Relationship between adaptive factor and production rate

which can be used to control the time-step for reaction adap-
tively. The adaptive time step for reaction has the following
expression

dtR = dtc
α

, (9)

where dtc andα represents the convection time step and adap-
tive factor, respectively. The adaptive factor can be obtained
in the following way

α (ωi ) = (Nr − 1)
(
1 − e−A|ωi |

)
+ 1. (10)

In the Eq. (10), Nr is the number of iterations in the tradi-
tional splitting scheme. A is a user-defined parameter, and
we choose A = 100 in our computation. Our numerical tests
will show that computation results are not sensitive to values
of A. The relationship between α and ωi is shown in Fig. 1.
When the magnitude of ωi is small, the source term is not
stiff and the reaction time step is equal to the convection time
step.When themagnitude ofωi increases, the number of iter-
ations become larger correspondingly, which maintains the
stability of the numerical method.

3.2 Spatial discretization

To achieve high-order accuracy in smooth regions and non-
oscillation transition for solution with discontinuities, an
improved unstructured 3rdWENOmethod,whichwas devel-
oped for the multi-fluid flows in our previous work [41], is
adopted to discretize the convection term.

Stencil for WENO reconstruction is shown in Fig. 2. The
linear polynomial is reconstructed firstly on the sub-stencils.
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Fig. 2 Stencil for weighted essentially non-oscillatory reconstruction

After that, a quadratic polynomial is reconstructed from
the combination of the linear polynomials. If discontinu-
ities emerge, nonlinear weights are used to prevent numerical
oscillation near discontinuities.

4 Numerical tests

In order to verify the proposedmethod for supersonic reactive
flows on unstructured grids, four different numerical cases
are tested.

4.1 1D C-J detonation wave with one-step chemical
reactionmodel

In the first example, the simplified C-J detonation wave [14,
15] with one-step chemical reaction is tested. Initially, the
computation domain is filled with burnt gas on the left-hand
side and un-burnt gas on the right-hand side. The density,
velocity, and pressure are given by

(ρ, u, p, z) =
{

(ρb, ub, pb, zb), x ≤ 10,
(1, 0, 1, 1), x > 10.

(11)

The property of material and coefficients for chemical reac-
tion are given as follows

(
γ, q0, A, B, Tign

) = (1.4, 25, 16418, 0.1, 15) , (12)

States for the burnt gas canbe obtainedby theC-J relationship
and the initial state for the un-burnt gas

Fig. 3 Computational domain and grids for C-J detonation in one
dimension (h = 0.1)

Fig. 4 Computed results for Example 4.1 at t = 1.0. a Density. b
Pressure

pb = − b + (b2 − c)1/2,
ρb = ρu

[
pb (γ + 1) − pu

]
/(γ pb),

ub = Scj − (γ pb/ρb)1/2 ,

b = − pu − ρuq0 (γ − 1) ,

c = p2u + 2 (γ − 1) puρuq0/(γ + 1),

Scj = [
ρuuu + (γ pbρb)1/2

]
/ρu,

(13)

where Scj is the speed of the C-J detonation wave. In this
example, Scj = 7.1247.

In this example, the computational domain is [0, 30] ×
[0, 3], as shown in Fig. 3. The size of the computational cell
is h = 0.1. Initially, the discontinuity is located at x = 10. At
the final time t = 1.0, the density and pressure profile along
the center line of y = 1.5 using the present method and
standard method is shown in Fig. 4. The reference solution
is computed by the standard WENO scheme of fifth order
with 15,000 grids in the x-direction. From the computational
results, we can find that the detonationwave computed by the
standard method has moved to x = 21.5, which is obviously
larger than the reference solution x = 17.12. However, the
results using the presentmethod agreewellwith the reference
solution.

4.2 2D detonation waves with one-step chemical
reactionmodel

Consider a 2D channel, the upper and lower boundaries are
solid walls. The computational domain is [0, 0.015] × [0,
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Fig. 5 Computational domain and initial condition in 2D detonation
wave

0.005], as shown in Fig. 5. The domain is discretized by
unstructured grids with h = 2.5 × 10−5. The initial condi-
tions are

(ρ, u, p, z)

=
⎧⎨
⎩

(
ρb, 8.162 × 104, 0, pb, 0

)
, x < ξ (y) ,

(
1.201 × 10−3, 0, 0, 8.321 × 105, 1

)
, x ≥ ξ (y) ,

(14)

where

ξ (y) =
{
0.004, |y − 0.0025| ≥ 0.001,
0.005 − |y − 0.0025|, |y − 0.0025| < 0.001.

(15)

In this example [17,18], a moving detonation wave travels
from left to right in the channel. One important feature of this
problem is the appearance of triple points, which has been
discussed in detail in Ref. [43]. The parameters for burnt
gas can be obtained by Eq. (13) in Sect. 4.1. The chemical
reaction ismodeled by theHeaviside formwith the following
coefficients

(
γ, q0, Da, Tign

)

=
(
1.4, 5.196 × 109, 5.825 × 109, 8.085 × 108

)
. (16)

Figure 6 show temperature contours computed by the present
method at different times from t = 0 to t = 6 × 10−8. The
evolution process of detonation wave with triple points can
be observed clearly. In this example, the reference solution is
from Ref. [18], which is calculated by the MUSCL scheme
using structured grids. At the final time t = 6 × 10−8, we
compared solutions using the presentmethod and the solution
using standard method in one-dimensional cross section at
y = 0.0025.As shown inFig. 7, thismethod is able to capture
the correct propagation speed of the detonation wave exactly
even in coarse grids, while the standard method produces
spurious numerical results, in which detonation wave travels
faster than the reference solution.

Fig. 6 Temperature contours at different times for 2D detonation wave
using the third order accurate WENO scheme. From top to bottom:
a t = 2 × 10−8. b t = 3 × 10−8. c t = 5 × 10−8. d t = 6 × 10−8

Fig. 7 Comparison of different schemes along the cross section of
y = 0.0025

4.3 Interaction of detonation wave and shock wave

This example is taken from Refs. [18,30]. In this numerical
test, a detonation and shock wave sweep a contact surface of
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I

II

III

Fig. 8 Computational domain and initial condition for detonation and
shock interaction

un-burnt gas. The computation domain can be divided into
three parts, as shown in Fig. 8. The size for unstructured grids
is h = 0.02. Initial conditions for each part are as follows

(ρ, u, v, p) =
{

(2, 10, 0, 40), x ≤ 0.5,
(1, 0, 0, 1), x > 0.5,

(17)

(
zH2 , zO2 , zOH, zH2O, zN2

)

=
⎧⎨
⎩

(0, 0, 0.17, 0.63, 0.2), x ≤ 0.5,
(0, 0, 0.17, 0.63, 0.2), x > 0.5, y ≥ 1.2,
(0.08, 0.72, 0, 0, 0.2), x > 0.5, y < 1.2.

(18)

A reacting model, which consists of five species and two
reactions is adopted. The species ofN2 is added to themixture
as dilution gas. Chemical reaction equations can be written
in the following expression

H2 + O2 → 2OH, 2OH + H2 → 2H2O, (19)

The chemical reaction is modeled by the Heaviside form and
the chemical parameters used in the computation are given
by

(
γ, T 1

ign, Da1, T 2
ign, Da2

)
=

(
1.4, 1.5, 105, 10, 2 × 104

)
,

(
qH2 , qO2 , qOH, qH2O, qN2

) = (0, 0, − 50, − 100, 0) ,
(
WH2 ,WO2 ,WOH,WH2O,WN2

) = (2, 32, 17, 18, 28) .

(20)

Figure 9 shows the temperature contours computed using
the present method at different times from t = 0 to t = 3.0.
We can find that the detonation wave travels faster than the
shock wave. The profiles along y = 1 at t = 3.0 are also
plotted in Fig. 10. From the profile for pressure, temperature
and mass fraction, we can see that the present results agree
well with the reference ones.

4.4 1D detonation wave with detailed chemical
reaction for thermally perfect gas

In the last example, the mixture belongs to thermally perfect
gas and similar examples can be found in Refs. [27,44–48].

Fig. 9 Temperature contours for detonation and shock interaction at
different times: t = 0.075, 0.15, 0.225, 0.3
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Fig. 11 Computational domain and boundary condition for multi-
species detonation problem with detailed chemical reaction

Fig. 12 Pressure contours along the cross section of y = 0.02. aSecond
order scheme. b Third order WENO scheme

The mole concentration ratio of the H2/O2/Ar gas mixture
was 2:1:7, with initial pressure 6670 Pa and temperature
298 K. In this example, an 8-species and 19-step reaction
mechanism for hydrogen-oxygen combustion [49] is used.
Reacting species are H, O, H2, OH, H2O, O2, HO2, and
H2O2. The specific heat capacities and enthalpies for each
species can be found in the JANAF tables [50]. The com-
putational domain is shown in Fig. 11, whose boundary
conditions for the left side, upper and lower sides are solid
walls. The size of unstructured grids is h = 5 × 10−4 m.
Detonation wave is generated by igniting the mixture gas

Table 1 CPU time using different methods

Value of A CPU time/s

Adaptive method 102 7.5 × 103

103 8.2 × 103

104 8.2 × 103

105 8.3 × 103

106 8.3 × 103

Traditional splitting method 1.4 × 104

in the left (width of 0.1 m) with a high initial pressure and
temperature as 18 P0 and 18T0.

The pressure contours at different times along the cross
section of y = 0.02 are shown in Fig. 12. In this example,
the theoretical speed of detonation wave is 1722 m/s. The
speed of detonation using the second order finite element
method is 1770 m/s with relative error of 2.7%. However, in
our numerical simulation, the speed of detonation using the
present method is 1690 m/s with relative error of − 1.9%.
From the pressure profile in Fig. 12, it is easy to see that the
third-order WENO scheme can obtain sharper results than
the second order scheme.

We also compared the CPU time using different methods,
as shown in Table 1. It is easy to find that the CPU time is
not sensitive to the magnitude of A and all the cases that use
adaptive method cost about a half time than the traditional
one, which means that the proposed method can reduce the
computational cost effectively.

5 Conclusions

Aneffective unstructured 3rd order FVMfor supersonic reac-
tive flows is proposed in this article. In our proposed method,
the convection step and reaction step are solved separately. In
the reaction step, an adaptive time-step method is presented.
In the convection step, a third-order accurate unstructured
WENO reconstruction is adopted. Numerical results show
that presentmethod can capture the correct propagation speed
of the detonation wave exactly and obtain better detona-
tion profile than the second order method. In addition, the
proposed method can greatly reduce the computational cost
compared with the traditional splitting method.
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