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A B S T R A C T

Two-dimensional three-point bending and four-point bending of two-layer finite element models
for a ceramic layer on a metallic substrate are developed to study the damage and fracture
characteristics of two-layer systems by introducing an interface cohesive zone model. The da-
mage evolution and fracture modes of ceramic layers of different thicknesses, with loading on the
metallic substrates, are compared under different loading conditions based on simulation results.
Multiple surface cracks, vertical to the interface between the ceramic and metallic layers, appear
in all ceramic layers under four-point bending loading and only in the thinner ceramic layers
under three-point bending. For the thicker ceramic layer systems under three-point bending
loading, the interface fracture between the ceramic and metallic layers is the main failure mode,
agreeing with previous experimental observations. Damage and damage rate, defined by the
simulated crack evolution, are found to obey a power law relation with loading and to be con-
sistent with the theoretical predictions based on a mathematical damage model. The damage
coefficient, a parameter reflecting the damage rate, is found to be size-dependent based on the
simulation and experimental results, and its energy mechanism is discussed. The damage is
slower for the thinner ceramic layers with a smaller damage coefficient than that for the thick
ceramic layers under three-point and four-point bending loading, and the damage of the ceramic
layer systems is faster under three-point bending than under four-point bending, resulted from
different crack distributions, damage localization degrees, and energy dissipation. Moreover, the
damage is slower for the nanostructured ceramic layers with the stronger interface strength or
toughness between two layers.

1. Introduction

Multi-layer structures with heterogeneous materials are widely used in many fields, such as electronic integrated circuits, bat-
teries, thermal barrier coatings, and thermal electric fields. These structures are usually related to the metal–semiconductor or
metal–ceramic interface, and the interface fracture between two layers and the surface fracture of thin films or coatings on substrates
play an important role in affecting the properties of the entire structure. Therefore, damage and fracturing of two-layer interface
systems are attracting great attention [1–3]. Theoretical studies of crack distribution in thin films or coatings have been carried out
for approximately 30 years [4]. An analytic solution for crack spacing in brittle films, under a uniform tensile stress, on elastic
substrates was developed based on the fracture mechanics [4]. The fracture behavior of brittle film/ductile substrate systems with
uniaxial tensile strain was studied by developing an elastic–plastic shear–lag model, and the crack density was calculated as a
function of strain [5]. An energy model of segmentation cracking of thin films based on a delamination model was also developed,

https://doi.org/10.1016/j.engfracmech.2018.06.040
Received 15 May 2018; Received in revised form 25 June 2018; Accepted 26 June 2018

⁎ Corresponding author at: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
E-mail address: lianglh@lnm.imech.ac.cn (L.H. Liang).

Engineering Fracture Mechanics 199 (2018) 635–646

Available online 30 June 2018
0013-7944/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00137944
https://www.elsevier.com/locate/engfracmech
https://doi.org/10.1016/j.engfracmech.2018.06.040
https://doi.org/10.1016/j.engfracmech.2018.06.040
mailto:lianglh@lnm.imech.ac.cn
https://doi.org/10.1016/j.engfracmech.2018.06.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2018.06.040&domain=pdf


and the crack number in brittle thin films on a ductile substrate was predicted [6]. With the development of experimental studies, the
crack evolution in coatings was also captured by in situ scanning electron microscopy [7], a digital image correlation technology,
acoustic emission monitoring [8,9], etc. The interface toughness of multilayered systems, related to interface cracking, was measured
by developing bending tests and combined with an energy approach [10]. Numerical studies were carried out to understand the
cracking behavior and failure mechanism of coatings under thermal loading [11,12]. Damage of coatings under thermal loading was
characterized by an advanced experimental method [13] or numerical method [14].

In recent experiments, different fracture modes of ceramic coatings with different thicknesses on the same alloy substrates under
three-point bending loading were found [7], and different crack densities in the ceramic coatings with different thicknesses under
four-point bending loading were also reported [15]. Moreover, the damage based on crack evolution was described well by a power
law damage model [16,17]. In the damage model, the damage coefficient, as a parameter reflecting damage rate, was proposed by
mathematical derivation and determined by the experimental results of initial and complete damage variables and the controlling
variables [17]. The results show the damage coefficient seems to be different for ceramic coatings with different thicknesses or under
different loading, and its mechanism is unclear. To understand the experimental phenomenon better and the physical meaning of the
damage coefficient, a systematic finite element simulation to study damage and fracture behavior of two-layer systems with different
ceramic layer thicknesses under different loading conditions is carried out. The size effect and related energy mechanism of the
damage coefficient are analyzed and discussed.

2. Finite element models

2.1. Bending models of two-layer systems

Two two-dimensional numerical models for three-point and four-point bending were built with the commercially available finite
element code ABAQUS. Both models include two layers, a ceramic layer of several hundreds of microns and a metallic layer of
1.2mm, as shown in Figs. 1 and 2, respectively. The lengths used in the three-point and four-point bending models were 16 and
24mm, respectively, and a series of thicknesses of 100, 200, 300, 400, and 500 μm for the ceramic layers were used for both models.
Two ends of the downside of the ceramic layers were simply supported, and the displacement load was applied on the upside of the
metal layers.

Both layer sheets were meshed using the four-node plane strain elements, and the four-node interface cohesive elements were
adopted between the neighbor segments of the ceramic layer and between the ceramic and the metallic layers, as shown in Figs. 1 and
2. The elastic modulus EC and the Poisson’s ratio νC were, respectively, 18 GPa and 0.2 for the ceramic layers [15,18]. The linear
elastic constitutive relation was considered for the ceramic layers, and the elastoplastic constitutive model with linear hardening was
considered for the metallic layers, as shown in Eq. (1),
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where ES= 200 GPa, νS= 0.3 for the metallic substrate layers [15,19], the yield stress σY= 800MPa, and the hardening power
exponent n=0.2 by fitting the experimental results [15]. Especially, the interface cohesive model is introduced in the interface
elements between two layers and between the neighboring segments of the ceramic layers to study the interface fracture and crack
evolution in brittle ceramic layers.

2.2. Cohesive zone model in interface elements

An interface cohesive zone model based on the traction–separation relations is suitable to describe the interface decohesion
[20,21]. The bilinear traction–separation relation was adopted here for the interface elements between the neighboring segments of
ceramic layers and between the ceramic layers and the metallic layers, as shown in Fig. 3. Fig. 3(a)–(c) show the cohesive relation in
the mixed mode, the tension, and the shear directions, respectively.

For the pure tension mode (mode I), the cohesive relation is expressed as
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Fig. 1. Schematic of three-point bending model.
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when the normal separating displacement δn > 0, where σ represents normal separating stress, and T represents the maximum
separating stress (i.e., interface strength), the subscript n represents the pure tensile direction, and the superscripts 0 and f represent
the critical displacement corresponding to the strength T and the fracture displacement corresponding to the complete interface
failure, respectively. For pure shear mode, a similar cohesive relation is assumed, and τ represents tangent separating stress, and the
subscript s represents the pure shear direction. When δn < 0, only the tangent stress is effective. The critical fracture energy Gnc in
the normal direction is
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and the critical fracture energy Gsc in the tangent direction has similar form.
As the load increases beyond a critical value, the interface is in a damaged state. The damage initiates when a certain criterion is

satisfied. For the mixed mode, the maximum stress criterion is adopted to characterize the interfacial damage [7], which is described
as
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where 〈〉 represents the Macaulay bracket defined by 〈 〉 = +x x x(| | )/2 with the usual interpretation that a pure compressive de-
formation or stress state does not initiate damage. It is assumed that interfacial damage occurs when Eq. (4) is satisfied, and a single
damage variable Di based on the total displacement δm of the mixed mode is introduced ( = +δ δ δm n

2
s
2 ) [7,22] as
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The interface fracture energy can be regarded as the mixed-mode fracture energy, and the power exponential criterion [7,23] is
employed to describe the mixed-mode fracture,
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where Gn and Gs represent the work done by the traction in the tension and the shear directions, respectively. The total critical
fracture energy can be determined by Gc=Gn+Gs when Eq. (6) is satisfied.

For the cohesive elements between the ceramic layer segments, Tn= 80MPa and Ts= 200MPa are taken referring to the
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Fig. 2. Schematic of four-point bending model with a span length of 8mm.

Fig. 3. Schematic of interface cohesive model in (a) mixed, (b) tension, and (c) shear modes, respectively.
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experimental results [15], and Gnc= 20 J/m2 and Gsc = 40 J/m2 are adopted. For the cohesive elements between the ceramic layers
and the metallic layers, Tn= 200MPa and Ts= 40MPa are taken, and Gnc= 400 J/m2 and Gsc = 200 J/m2 are adopted referring to
the related literature about the thermal barrier coatings [24]. The stiffness K in the interface cohesive model is the slope of the initial
segment of the traction–separation curve and is taken to satisfy the relation of δf/δ0= 4 [7].

3. Simulations result of fracture modes of two-layer systems

Fig. 4 shows the fracture modes of the two-layer systems under three-point bending loading. The multiple transverse cracks,
vertical to the interface between the ceramic layers and the metallic layers, are the main fracture mode for the thinner ceramic layer
samples with layer thickness of about 100–400 μm (corresponding to the maps from 3 to 100 to 3–400 μm in Fig. 4), and tensile
failure dominates the thinner ceramic layers, which had been analyzed in the previous stress study on similar experimental phe-
nomena [7]. The interface fracture is the main fracture mode for the thicker ceramic layer samples with layer thickness of about
500 μm (map 3–500 in Fig. 4), and the interface shear failure dominates the thicker ceramic layer systems. The simulation results are
similar to the previous experimental results of ceramic coatings bonded on the alloy substrates [7].

Fig. 5 shows the fracture modes of the two-layer systems under four-point bending loading. The multiple transverse cracks and the
tensile strength failure dominate for both the thinner and the thicker ceramic layers under four-point bending. The crack density in
the thinner ceramic layers (map 4–100 in Fig. 5) is larger than that in the thicker ceramic layers (map 4–500 in Fig. 5). The simulation
results are also consistent with the previous experimental results [15].

4. Damage characterization of crack evolution

4.1. Damage definition

The load-displacement curves based on the four-point bending and three-point bending simulations are shown in Figs. 6(a) and
7(a), respectively. The figures show that the curves include two steps: a linear step and a nonlinear step. The initial nonlinear step is
considered as a damage step of the ceramic layers. At the beginning of the nonlinear step of the load–displacement curve of a system
with a ceramic layer of 400 µm under four-point bending loading, as shown in Fig. 6(a) (point 1), two transverse cracks in the ceramic
layers initiate abruptly from the surface of the layers due to enough large tensile stress, as shown in Fig. 6(b) (map 4–400-1 cor-
responding to point 1 in (a)), which is defined as the initial damage. Then, more cracks emerge and go through the ceramic layer

Fig. 4. Simulation results of three-point bending model with a series of ceramic layer thicknesses (100–500 μm) at a displacement of 1mm, where
map 3–100 denotes a 100 μm ceramic layer under three-point bending and similar notes for other maps.
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rapidly with loading as shown in Fig. 6(b) (map 4–400-3 corresponding to point 3 in (a)). When the main transverse cracks in the
pure bending section saturate (map 4–400-7 in Fig. 6(b)), the saturation point is defined as the complete damage corresponding to
point 7 in Fig. 6(a). The step from the imitation of transverse cracking to the saturation is the damage step, as shown in Fig. 6(a),
which is used to describe the damage by capturing the total crack length evolution in the pure bending section. For the systems with
thinner ceramic layers under three-point bending loading, similar crack evolution behavior is found, and the same damage is defined,
because the same tensile failure dominates in these ceramic layers.

For the thicker ceramic layer system (e.g., 500 µm ceramic layer) under three-point bending loading, the interface crack evolution
between the ceramic layer and the metallic layer, as shown in Fig. 7(b), is used to describe the damage, because the interface shear is
the main failure mode. The initial damage is defined based on the initial interface crack length (map 3–500-1 in Fig. 7(b)), and the
complete damage is considered at point 4 in Fig. 7(a) (corresponding to map 3–500-4 in Fig. 7(b)) by comparing the experimental
results of the failure point of the ceramic coatings, at which the slope of the curve increases due to the contribution from the alloy
substrate [25].

Fig. 5. Simulation results of four-point bending model with a series of ceramic layer thicknesses at a displacement of 1mm, where map 4–100
denotes a 100 μm ceramic layer under four-point bending and similar notes for other maps.
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Fig. 6. (a) Load–displacement curve of the system with a 400 µm ceramic layer under four-point bending; (b) Crack evolution corresponding to
points 1, 3, and 7 in the load–displacement curve in (a).
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4.2. Review of the mathematical damage model

Considering a controlling variable λ of one system is continuous and derivative for damage evolution of the system before its
catastrophic rupture, it can be expressed as the Taylor expansion of the damage D,

= + ′ × − +
″

× − + −λ λ λ D D D λ D D D o D D( ) ( )
2

( ) ( ) ( )f f f f f f
2 2

(7)

where the damage variable D is calculated based on the transverse crack or interface crack length [17], which is the damage of the
whole ceramic layer system, different from that of each interface element defined in Eq. (5), and the controlling variable is the
corresponding tensile or shear stress for transverse cracking or interface cracking, which can be calculated by the load based on the
composite beam model [7]. Df represents the complete damage corresponding to the failure stress λf , the damage and the controlling
variables are both normalized here, and Df and λf are both equal to 1. λ′(Df) and λ″(Df) represent the first-order and the second-order
derivation at the failure point.

The fracture of brittle materials possesses catastrophic failure characteristics, and the damage rate tends to be infinite at the
failure point [16,17,25,26], i.e., = = ∞→limλ λ
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where C=[−λ″(Df)/2]−0.5 is the damage coefficient. For example, for the ceramic layers dominated by tensile failure, when the
tensile stress σ in the ceramic layers reaches a certain value σ= σ0, the damage initiates D=D0 [17]. Note that the initial damage

=D L L/ f0 0 of one system is defined by a ratio of the initial crack length L0 (the corresponding stress is σ0) to failure crack length Lf

Fig. 6. (continued)
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Fig. 7. (a) Load–displacement curve of the system with a 500 µm ceramic layer under three-point bending; (b) Crack evolution corresponding to
points 1–4 in the load–displacement curve in (a).
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(the corresponding stress is σf), and the corresponding normalized stress is =λ σ σ/ f0 0 (or τ0/τf for interface shear failure). Taking
them into Eq. (8), the damage coefficient

= − −C D λ(1 )/(1 )0 0
0.5 (9)

can be obtained. Eq. (8) shows that the evolution of damage with the controlling variable obeys the power-law relation with the
exponent of 1/2. The damage D equals 1 when the controlling variable λ reaches 1.

Furthermore, the damage rate of the coatings can be written as

= = − −R D C λd
d 2

(1 ) 1/2
(10)

Eq. (10) shows the power-law singularity of the damage rate at the failure point, which agrees with the power-law relation of rock
catastrophic rupture [16]. Taking the natural logarithm for the two sides of Eq. (10), the following expression can be obtained,
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2
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Note that the damage model has been validated by experimental results [17].

4.3. Comparison between simulation results and the damage model

Figs. 8 and 9, respectively, show the damage and damage rate of two-layer systems under three-point bending loading, the
symbols are the simulation results and the lines are the theoretical predictions based on Eqs. (8) and (10), respectively. Fig. 10 shows
the natural logarithm of the damage rate, where the lines are the average values of the simulation results based on Eq. (11). The
figures show that the simulation results are consistent with the model’s predictions. The damage increases with increasing load and is
complete when the controlling load reaches the failure point, as shown in Fig. 8. Fig. 9 shows that the damage rate increases rapidly
when the controlling load is close to the failure point, and it shows the power-law singularity at the failure point. The damage
coefficient calculated based on Eq. (9) with D0 and λ0 resulting from the simulated results, varies from about 1.2 to 2.8, as shown in
Table 1. The damage coefficient of the thicker ceramic layer system (500 μm) is obviously larger than that of the thinner ceramic
layers, which agrees with previous experimental results of the ceramic coating samples [17]. The difference of the damage coefficient
between the thicker and thinner ceramic layer systems can also be found in Fig. 10. It is caused by different failure modes.

Figs. 11 and 12, respectively, show the damage and damage rate of two-layer systems under four-point bending loading. Fig. 13
shows the natural logarithm of the damage rate. The figures show that the simulation results are consistent with the model’s pre-
dictions. The damage coefficient based on the simulated results varies from 1.2 to 1.45, as shown in Table 2, which is also consistent
with previous experimental results [15]. The damage coefficient of the thicker ceramic layers is larger than that of the thinner
ceramic layers, although the difference is small due to the same failure mode. Comparing Table 2 with Table 1, the average damage
coefficient of 1.34 under four-point loading is smaller than the average value of 1.58 under three-point bending loading, because the

Fig. 7. (continued)
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damage for transverse cracking of the ceramic layers in pure bending sections is slower, and the damage for interface cracking
between the thick ceramic layer and the metallic layer under three-point bending is faster.

5. Discussion of energy related to damage coefficient

According to Eq. (10), the damage coefficient C is related to the speed of the damage, the larger C corresponds to the larger
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Fig. 8. Damage of the systems versus controlling stress under three-point bending loading.
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Fig. 9. Damage rate of the systems versus controlling stress under three-point bending loading.
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Fig. 10. Logarithm of damage rate of the systems under three-point bending loading.
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damage rate R, and C is determined by the failure strength σf of the systems and the initial damage D0 and stress σ0 as follows

= −
−

C D
σ σ

1
1 / f

0

0 (12)

This is based on Eq. (9) combined with =λ σ σ/ f0 0 and is the same for interface shear failure with λ0= τ0/τf. From the simulation,
when one crack occurs and the damage initiates in the brittle layer, σ0 should be larger than the interface strength Tm of cohesive
elements, and the strain work should be larger than the critical fracture energy Gc. D0, related to initial crack length, should be related
to the number of fractured cohesive elements. For ideal homogeneous brittle media, σ0 should be equal to σf, i.e., the tensile stress
reaches the strength of the materials, multiple transverse cracks occur simultaneously, and the ceramic layers fail, which corresponds
to the singularity of C and R. For real experimental samples as heterogeneous media, D0 initiates at some microscale defects or
microcracks. The initial damage stress σ0 is always smaller than the failure stress σf of the entire layer. When σ0 is closer to σf, which
represents the faster rate from σ0 to σf, C is larger, and the damage rate is larger. The smaller difference between σ0 and σf can be
reflected by the smaller dσ/dN, where N is the number of transverse cracks in the ceramic layer. When σ= σf, N saturates. The failure
stress σf is related to the total energy release of the cracks at the failure point with the saturated crack density.

Considering the energy principle in the damage step of a ceramic layer, the total potential energy change Ut of the ceramic layer
includes increased surface energy due to ceramic cracking and released elastic strain energy,

Table 1
Damage coefficient C of two-layer systems under three-point bending loading.

Ceramic layer thickness (μm) 100 200 300 400 500

C resulting from the present simulations 1.42 1.23 1.3 1.15 2.8
C resulting from the previous experiments [17] 1.21 1.78
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Fig. 11. Damage of the ceramic layers versus tensile stress under four-point bending loading.
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Fig. 12. Damage rate of the ceramic layers versus tensile stress under four-point bending loading.
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= +U U Ut s e (13)

where Us=2NγbhC is the total surface energy due to the cracking with the crack number N in the ceramic layer, γ is the specific
surface energy density of the ceramic, b is the layer width (equal to 1 in the simulation), hC is the layer thickness considering that the
cracks are through the layer. = −U bh d Ne a
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modulus EC of the ceramic layer. According to the energy variation principle, when the cracking is in a stable state,
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can be obtained by considering Nda= l with the length of the pure bending section l. For the thicker ceramic layers, da is larger, as
shown in Fig. 5. According to Eq. (15), dσ/dN is smaller when σ is the same, since the other material parameters are constants, and
thus C and R are larger, as discussed above, which agrees with the simulation and experimental results, as shown in Tables 1 and 2
(the larger C for thicker ceramic layers).

According to the energy balance principle, when σ =σf, Ut=0,

=σ γE d2 /f aC (16)

can be obtained based on Eq. (13). Eq. (16) indicates that the failure stress of the ceramic layers is proportional to the surface energy
density and elastic modulus of the ceramics, and inversely proportional to the average cracking distance. According to Eq. (16), the
different cracking distances for the thinner and thicker ceramic layers, as shown in Fig. 5, correspond to different failure stresses,
since the specific surface energy and the elastic modulus are constants as material parameters.

Furthermore, according to Eq. (12), the larger σf corresponds to the smaller C. Combined with Eqs. (12) and (16), C is ap-
proximately proportional to the crack distance d0.25, i.e., d is smaller and C is smaller, which is consistent with the simulation and
experimental results [15]. The transverse crack distance is smaller for the thinner ceramic layers, as shown in Fig. 5, and the damage
coefficient is also smaller, as shown in Table 2. For example, for the experimental results shown in Table 2, C2/C1= 1.4/1.14= 1.23,
the subscripts 1 and 2 represent the results of 100 and 400 μm ceramic layers, respectively, and the corresponding crack distances are
0.23 and 0.86mm, respectively [15], i.e., (d2/d1)0.25= (0.86/0.23)0.25= 1.39. The value is close to the ratio of the damage coef-
ficient, which validates C∝ d0.25.

For the same ceramic layer systems under three-point bending and four-point bending loading, respectively, the damage coef-
ficients are also different, and the average damage coefficient under four-point bending is smaller than that under three-point
bending, as discussed. For example, for the experimental results of ceramic layers of 100 μm, as shown in Tables 1 and 2, C3/
C4= 1.21/1.14=1.06, where the subscripts 3 and 4 represent the results under three-point bending and four-point bending,
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Fig. 13. Logarithm of damage rate of the ceramic layers under four-point bending loading.

Table 2
Damage coefficient C of ceramic layers under four-point bending loading.

Ceramic layer thickness (μm) 100 200 300 400 500

C resulting from the present simulations 1.2 1.3 1.4 1.35 1.45
C resulting from the previous experiments [15] 1.14 1.4
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respectively, the corresponding crack distances are 0.28 [7] and 0.23mm [15], respectively, i.e., (d3/d4)0.25= (0.28/
0.23)0.25= 1.05, and the value is almost equal to the ratio of their damage coefficients. More cracks release greater strain energy,
thus, the damage is slower for the thinner ceramic layers under four-point bending loading, whereas fewer cracks correspond to the
more localized damage zone and the more obvious catastrophic failure. For the thicker ceramic layer system under three-point
bending loading, one main interface crack between two layers, as shown in Fig. 4, is more localized than the multiple transverse
cracks in the thinner ceramic layers, and thus the damage coefficient is obviously large, as shown in Table 1.

In the previous three-point bending experiments [17], the average damage coefficient of nanostructured thick ceramic coatings
was found to be smaller than that of conventional microscale microstructured thick coatings in the interface cracking process between
the coatings and the substrates, Cm/Cn=1.78/1.52=1.17 [17], where the subscripts m and n represent the microscale micro-
structured and nanostructured ceramic layers, respectively. According to Eq. (12), C is approximately inversely proportional to σf0.5;
thus, the interface failure strength σfn of nanostructured layers should be larger than that of the conventional ones σfm, which has been
validated by experiments [27]. The interface strength σf between the nanostructured ceramic coatings and the alloy substrates is
larger than that between the conventional coatings and the same alloy substrates, σfn/σfm=1.86 [27], and (σfn/σfm)0.5= 1.36 close to
the ratio of their damage coefficients. The smaller damage rate of nanostructured layers may be related to the smaller microstructure
scale and more microinterfaces, which leads to the weaker localization degree of damage. The relation between micro damage and
macro failure has been studied, and the related energy dissipation was discussed [28]. According to Eqs. (3) and (16), the interface
strength is proportional to critical fracture energy (i.e., fracture toughness) Gc, and the fracture toughness is inversely proportional to
damage rate R (i.e., R∝ f(k)/Gc with a function of slope k of the load–displacement curves) based on the mechanical damage model
and energy analysis [25]; therefore, the damage coefficient is inversely proportional to the interface strength.

To check the effects of interface strength and fracture toughness, the corresponding numerical simulations were carried out
further by changing the interface cohesive strength Tn and fracture toughness Gnc, as shown in Figs. 14 and 15, respectively, for the
thicker ceramic layer systems with a given thickness ratio of a ceramic–metal two-layer system (hc/hs = 0.4) and the normalized
strength and toughness. The symbols are simulation results and the lines are theoretical predictions based on Eq. (8). Although there
are some differences between the simulation data and the theoretical predictions, as shown in Fig. 15, the change tendency of the
damage coefficient with changing interface toughness is the same. The damage evolution becomes slow with increasing interface
cohesive strength (Fig. 14) or fracture toughness (Fig. 15), i.e., the damage coefficient decreases, agreeing with the experimental
results and above analysis. The effects of interface properties on the damage rate also reflect the parameter effects of cohesive
elements at the same time. The relation between the local interface cohesive elements and the macro fracture of the whole system will
be studied in detail in future work.

6. Conclusions

In summary, two two-layer finite element models under three-point bending and four-point bending loading were established by
introducing an interface cohesive model, and the damage evolution and fracture characteristics of a brittle layer with different
thicknesses and with different interface strengths were studied and compared. The damage coefficient, reflecting the damage rate of
the cracking, was found to size dependent. The damage of the thinner ceramic layers was slower, and the damage of two–layer
systems under four-point bending loading was also slower than that under three-point bending loading, which is explained by the
different surface crack density distribution related to energy dissipation. The damage of the thicker ceramic layer systems under
three-point bending loading was the fastest due to the different failure mode and the high damage localization degree of interface
cracking. Moreover, the damage of nanostructured thick ceramic layers was slower than that of the conventional thick layers due to
the stronger interface strength between the nanostructured ceramic layers and the metallic layers. The large interface fracture
toughness also decreased the damage rate. The simulation results agree with the experimental results. The work is helpful to guide
the design of related two-layer parts with brittle layers and provides a basis for decreasing catastrophic failures.
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Fig. 14. Damage of two-layer systems with different interface strengths and same fracture toughness (Gnc/(σYhs) = 3×10−5) under three-point
bending loading.
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Fig. 15. Damage of two-layer systems with different interface fracture toughness and same interface strength (Tn/σY= 0.4) under three-point
bending loading.
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