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h i g h l i g h t s

• Dynamic heterogeneity is increased with temperature.
• Decoupling between τα and τmax.
• Anomalous and non-Gaussian diffusion is associated with weakly correlated mean-field behavior.
• At extremely high temperatures, τmax ∼ 1/ρ.
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a b s t r a c t

By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the
fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator
of the dynamic heterogeneity, is increased with the increasing of temperature. When the
temperature is high enough, the dynamic heterogeneity becomes very significant, and it
seems counterintuitive that the maximum of non-Gaussian parameter and the position
of its peak decrease monotonically with the increasing of density. By fitting the curves
of self intermediate scattering function, we find that the character relaxation time τα is
surprisingly not coupledwith the time τmax where the non-Gaussian parameter reaches to a
maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures
can be associated with the weakly correlated mean-field behavior of Hertzian spheres.
Especially the time τmax is nearly inversely proportional to the density at extremely high
temperatures.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The diffusion is fundamental in many fields such as biology, physics, chemistry and material science. As an important
process of fluids, the diffusion can be generally described using the macroscopic law known as Fick’s law [1]. The
displacements of particles follow random walks to find a Gaussian function for the self van Hove distribution. And the
mean square displacement (MSD) is proportional to the time t which can be written as the well-known Einstein relation
⟨∆r2(t)⟩ = 2dDf t , where d is the dimension and Df is the self diffusion coefficient. However, a real diffusion process is not
that ideal and previous observations on many systems including monodisperse and polydisperse fluids have shown that
the self van Hove distribution often deviates from Gaussian shape [2–20]. Different from normal Brownian diffusion, there
is a kind of so-called anomalous diffusion whose MSD exhibits a non-linear dependence on the time t[21]. Even when the
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diffusion in a few fluids is seeming Fickian where MSD is a linear function of the time t , yet the self van Hove distribution is
ever observed to be not Gaussian unexpectedly [15–20].

Recently the ultrasoft particles, which include emulsions, soft colloids, microgels, many macromolecules and their self-
assembled entities, have attracted a lot of interests. The repulsive interactions of ultrasoft particles are often very soft or
core-softened. Among thosemodels of ultrasoft particles, there are an extreme class of repulsive potentials that are bounded,
i.e., they remain finite for the whole range of interparticle separations, even with full overlap between the particles. Many
works have suggested that ultrasoft particles with bounded potential exhibit intriguing behaviors [22–36]. Specifically it
has been proposed over last decades that the diffusion of fluids with bounded interactions have rather different characters.
For instance, the self-diffusivity is shown to be anomalous and there is relevant scaling relation between dynamic and
thermodynamic behaviors [25–29]. Despite a detailed knowledge of the dynamic and thermodynamic anomalies, there is
lack of the studies on the non-Gaussian diffusion of fluids with bounded potential. Therefore the issues that whether a
non-Gaussian diffusion exists in such ultrasoft particles and what its character looks like are still open up to now.

2. Model and simulation methodology

In this work we consider the ultrasoft particles interacted with Hertz potential which is written by

U(rij) =

{ ϵ

α
(1 − rij/σ )α, rij < σ

0, rij ≥ σ
, (1)

where rij is the inter-particle separation between ith and jth particle, and the parameter ϵ and σ set the strength and
maximum distance of the interaction. Here we will study the non-Gaussian diffusion of Hertzian spheres, so we take
the parameter α = 2.5. The model of Hertzian spheres, which is initially describes the change in the elastic energy of
two deformable objects when subjected to an axial compression, has also been proposed to represent the interaction of
deformable soft colloids in a number of experimental studies [37–40].

Themethod used in this work ismolecular dynamics (MD) simulation. In reduced units, the parameters ϵ, σ and themass
of particlem are set as 1. The period boundary conditions are applied and the equation of motion is integrated using velocity
Verlet algorithm [41,42] with the time step δt = 0.01. The ensemble for MD simulations is canonical ensemble where the
number of particles N = 1000 and the constant temperature is controlled via Berendsen thermostat [43]. The behavior of
diffusion is observed above the maximum freezing temperature Tm = 3.536 × 10−3 of Hertzian spheres [25]. Notice here
that we have performed 1000 independent MD simulations starting from different initial conditions for each state point to
get good statistics when calculating desired parameters.

3. Results and discussion

In order to investigate the influence of temperature on the non-Gaussian diffusion, we fix the number density ρ and
increase the temperature from slightly above Tm to a very high value. The deviation of particle’s motion from Gaussian
behavior can be qualified by a time dependent non-Gaussian parameter which is calculated by

α2(t) =
3⟨∆r4(t)⟩
5⟨∆r2(t)⟩2

− 1 , (2)

where ∆r(t) = |r(t) − r(0)| is the distance between the position of a particle at time t and its original position. Actually the
non-Gaussian parameter has been suggested to be an indicator of the dynamic heterogeneity of fluids [44]. The top panel of
Fig. 1 displays the curves of non-Gaussian parameterα2(t) against time t at a set of temperatures forρ = 1.0. Upon increasing
the temperature, the maximum of α2(t) becomes increasing to indicate a more and more significant non-Gaussian behavior
(see the bottom panel of Fig. 1). So we should increase the temperature to a high enough value if we want to see an apparent
dynamic heterogeneity of Hertzian spheres.

It is also fundamental to calculate the self intermediate scattering function for a good understanding of liquid dynamics.
The self intermediate scattering function is given by

Fs(q, t) = ⟨
1
N

∑
i

exp(−iq · (ri(t) − ri(0)))⟩ , (3)

where q is the wave vector. For convenience, we take the modulus of the wave vector q = 1.0. Notice here that q value
is just chosen arbitrarily. In principle q can also be other values that will lead to some deviations, but the conclusions do
not change substantially. The lines in Fig. 2 show the decay of Fs(q, t) which can be fitted using a stretched exponential
function Fs(q, t) = exp(−(t/τα)β ). The fitting parameter τα corresponds to the character relaxation time of fluid. In a normal
fluid, the peak of α2(t) is correlated strongly to τα , i.e., the time τmax where α2(t) reaches a maximum is coupled to the
character relaxation time τα . But for Hertzian spheres the case is rather different because τmax increases while τα decreases
with the increasing of temperature (see Fig. 3). Such anunexpected behavior of the decoupling between τmax and τα is another
interesting character of the fluid dynamics in ultrasoft particles, which is observed for the first time and needs a further study
for the reason why it happens.
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Fig. 1. Top: Curves of non-Gaussian parameter α2(t) versus time t for the fixed density ρ = 1.0 and different temperatures. Bottom: Maximum of α2(t) as
a function of the temperature T at ρ = 1.0.

Fig. 2. Curves of self intermediate scattering function Fs(q, t) for the fixed density ρ = 1.0 and different temperatures. The modulus of the wave vector is
taken as q = 1.0.

Now let us see the temporal evolution of MSD during the motion of particles, which is defined by

⟨∆r2(t)⟩ =
1
N

∑
i

(ri(t) − ri(0))2 . (4)

It can be assumed that ⟨∆r2(t)⟩ ∼ tν , so the effective exponent ν is calculated by

ν =
d(log⟨∆r2(t)⟩)

d(log t)
. (5)

As is known, ν = 1 corresponds to a normal diffusive motion. For the anomalous diffusion of ν ̸= 1, the exponent ν
determines whether the process is belong to subdiffusion (0 < ν < 1) or superdiffusion (1 < ν ≤ 2) [21]. Specifically ν = 2
corresponds to a ballistic motion. Seen from Fig. 4, there is no subdiffusive process like some glassformers (e.g., Ref. [33,44])
but apparently the crossover between ballistic limit and normal diffusive motion happens, which is hardly surprising
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Fig. 3. Comparison between the curves of τmax (the time when α2(t) reaches a maximum) and τα (character relaxation time obtained from the fitting of
self intermediate scattering function) versus the temperature T . The density is fixed ρ = 1.0. Squares and circles represent τmax and τα respectively. Lines
are guide to the eye.

because it has been commonly observed in many other kinds of fluids [4,6,15,17,24,33,44]. Therefore we can say that the
dynamic heterogeneity appearing in Hertzian spheres is not due to the subdiffusion but other possible reasons related to
the superdiffusion (see Fig. 4, 1 < ν ≤ 2). In the fluid, particles diffuse via ballistic motions with few collisions to make
MSD overlap well with one another and scale as t2 at short time scales, and enter the diffusive regime with MSD ∼ t at
long time scales. In the bottom panel of Fig. 4, we present the time dependence of ν at different temperatures. It appears to
indicate that increasing temperature makes the crossover time from ballistic to diffusive motion shift to longer times. This
is actually a natural result for the ultrasoft particles such as Hertzian spheres. As the temperature is increased, the thermal
energy becomes more and more significant and can eventually dominate over the repulsive potential so that those particles
can penetrate or even overlap each other. Thus for a single particle at high enough temperature, it seems to be able to almost
freely slide in the fluid. When the temperature is low the thermal energy is not dominant over the repulsive potential any
more, so the particle in fluid is influenced remarkably by the surrounding repulsions and especially at low enough densities
Hertzian spheres bear some similarities of the fluids with harder repulsion.

As is mentioned above, the dynamic heterogeneity of Hertzian spheres becomes significant at high enough temperature.
Next we set a temperature T = 0.5 where the non-Gaussian behavior is apparent (see Fig. 1) and present a further study on
the effect of density. Fig. 5 displays the curves of non-Gaussian parameterα2(t) against time t at several densities for T = 0.5.
At such a temperatures, α2(t) shows some subtle features. Firstly the value of non-Gaussian parameter α2(t) is nearly zero in
short time (typically t < 1), which is also investigated in Fig. 1 and other kinds of fluids [4,6,15,17,33]. Indeed it is natural for
the system very close to ballistic regime (see also Fig. 4), because the velocity nearly has a Maxwell–Boltzmann distribution
so as to make the self-part of the van Hove function be also of a Gaussian shape. Secondly, different from many other kinds
of fluids (including both the monodisperse and polydisperse fluids), there is not a density independent step in α2(t) before
it approaches to the maximum [3,4,6,17,33]. Thirdly, the maximum value of α2(t) decreases monotonically with increasing
the density which is oppositely different from the non-Gaussian behavior of most of other kinds fluids where the maximum
value of α2(t) is an increasing function of the density [4,6,15]. Furthermore the position of the peak, i.e. the time τmax where
α2(t) reaches its maximum, also shows a similarly monotonic dependence on the density. As is known, such a position of
the peak is considered as the time scale where a single particle escapes from the cage and enters the diffusive regime. So it
means that the particles on average need less and less time to enter the diffusive regime with the increasing of density. This
seems counterintuitive because it is generally thought to be more difficult for a single particle in dens fluids to escape from
its surrounding cage.

Similar to the things done under different temperatures (see Fig. 2), we also observe the curves of self intermediate
scattering function for different densities with T = 0.5 to find all of the curves of Fs(q, t) almost overlap each other which
leads to the result that the character relaxation time τα for T = 0.5 is hardly dependent on the density (see Fig. 6). Although
the decoupling between τmax and τα is expected as the observations of Fig. 3, the independence of character relaxation
time obtained on the density seems to be incredible at first glance. Nonetheless the behavior of τα , as a matter of fact,
has given a hint of the characteristic structure of Hertzian spheres. Indeed the strange non-Gaussian behavior observed at
high temperatures can be attributed to the fact that Hertzian spheres behave as a weakly correlated mean-field fluid. Such
a weakly correlated mean-field behavior has been found in the fluids of ultrasoft particles, e.g. the Gaussian core model
(GCM) [22,45] and harmonic spheres [29]. Here the decoupling between τmax and τα can be explained as follows. The system
of Hertzian spheres exhibits a character of normal fluid at low temperatures, but it approaches to a weakly correlatedmean-
field fluidwith the increasing of temperaturewhere τmax behaves strangely (see Fig. 6). For τα , the case is different because the
particles canmovemore andmore freely in the fluid making τα decreased as the temperature is increased (see Fig. 3). When
the fluid of ultrasoft particles exhibits a weakly correlated mean-field behavior, most particles are distributed uniformly
acting as the ideal gas and a few small clusters are separated from each other resulting in an approximate independence of
τα on the density.
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Fig. 4. Curves of MSD (top) and effective exponent ν (bottom) versus time t for the fixed ρ = 1.0 and different temperatures. Assume that the MSD
⟨∆r2(t)⟩ ∼ tν .

Fig. 5. Top: Non-Gaussian parameter α2(t) versus time t . Bottom: Maximum of α2(t) as a function of ρ. The temperature is taken as T = 0.5.
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Fig. 6. Dependence of τmax (the time when α2(t) reaches a maximum) on the density ρ for T = 0.5. The inset shows the curve of τα (character relaxation
time obtained from the fitting of self intermediate scattering function).

As the characteristic weakly correlated mean-field fluid consists of ideal-gas-like particles among which a particle can
freely slide and a few separated clusters that might form cages, a single particle’s dynamic is determined by the character of
the clusters. Let us firstlymake an inspection on the structure of each cluster. The particles in each cluster are close to or even
sit on top of each other. Although the separation distance between clusters is nearly independent on the density [29], the
correlation of particles inside the clustersmaybedifferent under different density. On the other hand,when the correlation of
Hertzian spheres is strong, the sliding of a particle in the fluid is expected to be less smooth so that its superdiffusion behavior
is weaker and will take more time to enter the diffusive regime. Seen from the radial distribution function shown in the top
panel of Fig. 7, the ‘‘soft’’ correlation hole is gradually reduced as the density ρ increases. In the high density limit, it can be
imagined that g(r) approaches to 1 even for overlapswhich corresponds to ideal-gas-like behavior. Using Hypernetted-chain
equation, a closure relation for solving the Ornstein–Zernike equation, we can estimate the direct correlation function

c(r) = −βU(r) + g(r) − 1 − ln(g(r)) , (6)

where β = 1/kBT . Similar to the structure of Gaussian core fluid which has been shown to exhibit weakly correlated mean-
field behavior over awide density and temperature range [22], the direct correlation function of Hertzian spheres specifically
for the particles in the clusters also decreases with the increasing of density (see the bottom panel of Fig. 7) so as to make a
single particle under higher densities escape slightly easier from the clusters.

For a further study, we have investigated the non-Gaussian diffusion andmeanwhile estimated the time τmax where α2(t)
reaches to a maximum under different high enough temperatures. As is shown in Fig. 8, the curves of τmax versus the density
ρ are plotted for a set of temperatures. The system, as has been mentioned already, is considered to be weakly correlated
mean-field fluid from T = 0.2 to T = 1.0. Seen from Fig. 8, the curves of τmax versus ρ can be approximately fitted by
a power-law function τmax ∼ ργ . For T < 1.0, the exponent γ is slightly larger than −1.0 as the correlation between
particles has a little bit influence on the non-Gaussian diffusion. For T ≥ 1.0, the exponent γ is nearly equal to−1.0. Such an
investigation of τmax ∼ 1/ρ is actually reasonable for a very weakly mean-field fluid at extremely high temperature where
the effect of correlation between particles on τmax can be neglected. As a single particle in the very weakly mean-field fluid
can freely slide, the time τmax is expected to be completely determined by the size of cages that is proportional to 1/ρ.

4. Conclusion

In conclusion, we study the non-Gaussian behavior of monodisperse Hertzian spheres above its freezing point via
molecular dynamics simulations. Hertzian spheres, as a kind of ultrasoft particles, have some similar characters of single
particle dynamics to the other kinds of fluids with hard repulsion. For instance, the single particle dynamics also exhibits
a crossover from ballistic (⟨∆r2(t)⟩ ∼ t2) to diffusive behavior (⟨∆r2(t)⟩ ∼ t) after some time that is dependent on both
the temperature and density. And the measure α2(t) of non-Gaussian behavior is shown to be nearly zero at short time
scale suggesting the self van Hove function is Gaussian shape. However, the most interesting finding of this work is that the
fluid of Hertzian spheres has some intriguingly different dynamics behaviors, especially the impressive feature of its non-
Gaussian diffusion. When the temperature is increased to high enough, the particle’s diffusive motion becomes to deviate
significantly from Gaussian behavior, and the peak in α2(t) abnormally shows a monotonic decrease with the increasing
of density. After observing the self intermediate scattering function, we should say that there is surprisingly no coupling
between the character relaxation time τα and the time τmax where α2(t) reaches to amaximum. The non-Gaussian behaviors
at high enough temperatures, which is rather different frommany kinds of fluids, can be attributed to the fact that Hertzian
spheres exhibit the character of weaklymean-field fluid. Specifically for extremely high temperatureswhere the influence of
the correlation between particles is considered to be negligible, the time τmax is nearly inversely proportional to the density.
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Fig. 7. Radial distribution function g(r) (top) and direct correlation function c(r) (bottom) for different densities at T = 0.5. The arrows indicate increasing
the density ρ.

Fig. 8. Dependence of τmax where the non-Gaussian parameter α2(t) has a maximum value on the density ρ at a set of high enough temperatures. From
the bottom to the top, T = 0.2 − 1.0. The solid lines represent the curves of fitting power-law function τmax ∼ ργ . The dashed line is the guide line with
scaling factor of −1.

We would like to mention finally that the characters proposed above may probably apply to other core-softened fluids
especially the system with generalized Hertz potential (set other exponential parameters α in Eq. (1)). For the GCM fluid
that also exhibits such a mean-field behavior over a surprising wide density and temperature range [22,45], it is possible
that a similar or even more significant non-Gaussian diffusion will be observed.
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