
•Article• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . December 2018 Vol. 61 No. 12: 128711
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .https://doi.org/10.1007/s11433-018-9264-x

Entropic pressure between fluctuating membranes
in multilayer systems

Long Li1,2, Xiaohuan Wang1, Yingfeng Shao1,2, Wei Li3, and Fan Song1,2*

1 State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology,
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;

2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Mechanical and Electrical Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

Received May 2, 2018; accepted June 13, 2018; published online August 10, 2018

Gaining insights into the fluctuation-induced entropic pressure between membranes that mediates cell adhesion and signal
transduction is of great significance for understanding numerous physiological processes driven by intercellular communication.
Although much effort has been directed toward investigating this entropic pressure, there still exists tremendous controversy
regarding its quantitative nature, which is of primary interest in biophysics, since Freund challenged the Helfrich’s well-accepted
results on the distance dependence. In this paper, we have investigated the entropic pressure between fluctuating membranes in
multilayer systems under pressure and tension through theoretical analysis and Monte Carlo simulations. We find that the scaling
relations associated with entropic pressure depend strongly on the magnitude of the external pressures in both bending rigidity-
and surface tension-dominated regimes. In particular, both theoretical and computational results consistently demonstrate that, in
agreement with Helfrich, the entropic pressure p decays with inter-membrane separations c as p~c–3 for the tensionless multilayer
systems confined by small external pressures. However, our results suggest that the entropic pressure law follows to be p~c–1 and
p~c–3, respectively, in the limit of large and small thermal wavelengths for bending fluctuations of the membranes in a tension-
independent manner for the case of large external pressures.
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1 Introduction

Membranes play tremendously important roles in cells as
selective barriers for maintaining concentrations and as
functional platforms for crucial biological processes. They
undergo thermal shape fluctuations in physiological condi-
tions, resulting from the Brownian motion of the water
molecules (see Figure 1). A single membrane fluctuates
freely, and the mean value of membrane free energy remains

constant. As two or more membranes approach each other,
interactions between neighboring membranes sterically
suppress the amplitude of their out-of-plane fluctuations.
This confinement decreases the entropy of the membrane
systems, and the ensuing increase in free energy gives rise to
a distance-dependent repulsive pressure of entropic character
that tends to push the membranes apart. As has been shown
in many studies, this entropic pressure governs numerous
cellular processes, e.g., cell adhesion, immune responses, as
well as cell fusion [1-11].
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Stacks of lipid bilayers are optimal model systems for
providing ideal environments to study the quantitative nature
of the entropic pressure, which is of primary interest in
biophysics, since the range of interbilayer distances can be
systematically varied by applying osmotic pressure. Dedu-
cing from the dimensional considerations, Helfrich [12]
proposed that the entropic pressure has a c–3 dependence for
tensionless stacks in his pioneering work, where c is the
mean separation between neighboring membranes in multi-
layer systems. Although some assumptions and simplifica-
tions were introduced in Helfrich’s studies, his results were
still supported by succeeding theories [13], simulations [14],
as well as experiments [15]. However, based on the theories
of elasticity and statistical mechanics, Freund found instead
the entropic pressure to vary as c–1, rather than the Helfrich’s
well-accepted result c–3 [16]. This result immediately trig-
gered a series of disputes [17-20]. Subsequently, there have
been two published simulation studies to address this dis-
crepancy. Auth and Gompper [21] and Hanlumyuang et al.
[22] showed that the distance dependence of the entropic
pressure depends on the inter-membrane separation for the
case of zero surface tension. They proposed that the results
derived by Freund and Helfrich hold valid for small (c<0.4a
(kBT/κ)1/2) and intermediate (0.4a(kBT/κ)1/2<c<0.4L(kBT/κ)1/2)
separations, respectively. However, their computational re-
sults are not in conformity with each other for large se-
parations (c>0.4L(kBT/κ)1/2) even though both the studies
have adopted the same method (Monte Carlo simulation) for
the same system (a single representative membrane of size L
× L fluctuating between rigid planes). More specifically,
Auth and Gompper [21] obtained a c–1 pressure law, but
Hanlumyuang et al. [22] showed a c–η dependence with un-
determined power η for large separations. Here, a denotes the
discretization length, κ is the bending rigidity of the flexible
membrane, kB and T are the Boltzmann constant and the
absolute temperature, respectively. However, using dis-
sipative particle dynamics simulations, Vaiwala and Thaokar
[23] recently theorized a pressure law, which follows
Freund’s prediction that the entropic pressure scales as c–1. It
remains an intriguing open problem to determine the quan-
titative nature of the entropic pressure. More importantly, the
effect of the surface tension, which biological and biomi-
metic membranes often experience, on the entropic pressure
also needs to be further investigated.
In this paper, we have studied the entropic pressure be-

tween membranes in a periodic stack under external pressure
and surface tension by theoretical analysis and Monte Carlo
simulations. We have considered two cases where the ther-
mal shape fluctuations of the flexible membranes are
dominated by bending rigidity and surface tension, respec-
tively. It is found that the scaling relations between entropic
pressure and characteristic parameters used to describe the
membrane fluctuations depend strongly on the magnitude of

the external pressures in both rigidity- and tension-domi-
nated regimes. In particular, the distance dependence of en-
tropic pressure p for the tension-free multilayer system is c–3

for small pressures, verified consistently by both theory and
simulations. Further increase in external pressure changes
the p–c dependence. It indicates that the distance dependence
of the entropic pressure does not depend on the surface
tension and follows to be p~c–1 and p~c–3, respectively, in the
limit of large and small thermal wavelengths for bending
fluctuations of the membranes in the large-pressure regime.

2 Theoretical model

Consider a single membrane confined by neighboring
membranes within a multilayer system subjected to external
pressure and surface tension. The thermally driven out-of-
plane fluctuations of the membrane can be characterized by
correlation lengths ξ|| and ξ⊥, as shown in Figure 1. The
parallel correlation length ξ|| is interpreted as the average size
of the largest membrane humps, and perpendicular correla-
tion length (or roughness) ξ⊥ gives their amplitude [21,24].
Each such hump has a volume V 2. The two length
scales can be derived from the height-height correlation
function C r r h r h r( , ) = ( ) ( ) with parallel correlation

length ξ|| defined by ( )C r r R( , ) exp / and roughness

C R= ( = 0).2 Here, h(r) measures the membrane dis-
placement related to the reference plane at position r = (x, y),
R r r= .
In order to determine ξ|| and ξ⊥, we adopt the interaction

potential V(h(r)) to describe the confinement which the
membranes experience due to the presence of external
pressure. As confirmed previously [21,25], the confining
potential can be well approximated by a parabolic potential
V(h(r))=νh2/2 with potential strength ν. The effective Ha-
miltonian of the confined membrane is then written as:

{ }H r vh h h= d 1
2 + 1

2 ( ) + 1
2 ( ) , (1)2 2 2 2

Figure 1 (Color online) Two interacting membranes in a stack undergo
thermal shape fluctuations characterized by the parallel correlation length ξ||

and perpendicular correlation length ξ⊥.
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where τ denotes the lateral tension.
We proceed by expanding h(r) in Fourier modes on a

square piece of membrane of area A= L×L with periodic
boundary conditions

h hr q r( ) = exp(i ), (2)
q

q

where i is the imaginary unit, q=(2π/L)(m, n) with Zm n, .
Since h(r) is a real function, the amplitude of the wave sa-
tisfies h h= ,q q

* in which the star denotes complex con-
jugation. We use the Fourier representation of eq. (2) to write
the h(r) terms as:

h h h

h h h

h h h q q

q q r

q q q q r

q q r

= exp[i( + ) ],

( ) = ( )exp[i( + ) ],

( ) = ( )exp[i( + ) ].

(3)
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q q
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2
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With the kronecker-δ function A q r r= exp( i )dq,0
1

expressed in terms of the Fourier representation, the effective
Hamiltonian is given by

H A
v q q

h h

A
v q q

h

=
+ +

2

=
+ +

2
(4)

q q q

q
q

2 4
*

2 4 2

upon inserting eq. (3) into eq. (1). Invoking the equipartition
theorem, we immediately find for the height fluctuation
spectrum

( )h k T
A v q q

=
+ +

, (5)q
2 B

2 4

where the angular brackets denote the ensemble average.
Applying the Fourier transform to hq, one obtains the cor-
relation function

C h h

A h h
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where use has been made of the kronecker-δ function and

Bessel function J qR q( ) = 1
2 e d .qR

0 0

2 i cos

By definition, one obtains the exact relation

h h
k T

v q q
k T

v

v v
v
v

v

r r
q

= ( ) ( ) =
d
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= 2
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It then follows that the roughness scales as:

k T
v v

k T
v v

8 , for 4 ,

2 ln , for 4 ,
(8)2

B 2

B 2

for rigidity-dominated and tension-dominated regimes. Si-
milar calculations can be carried out for the parallel corre-
lation length ξ||, yielding

v v
v v

(4 / ) , for 4 ,
/ , for 4 .

(9)
1/ 4 2

2

When this relation is combined with eq. (8), one obtains
the length scales ξ⊥ and ξ|| satisfying

k T v

k T v
=

16 , for 4 ,

2 ln , for 4 ,
(10)2

B 2 2

B 2

within the rigidity-dominated and tension-dominated re-
gimes.
Using the ideal gas law pV = kBT for each hump of lon-

gitudinal and transverse dimensions ξ|| and ξ⊥ together with
eq. (10), we can obtain the scaling relations

( )
( )

h c p v

c c

pL k T v

= 1 / , for 4 ,

+ ln( ) ln /

ln / , for 4 ,

(11)

1/ 3 2

1/4 2 2

2
B

2

where we have used c / = 5 [26] and k T4 /2
B

c c+ ln( ) / 4 with c c k T= / /B [27] for the two limiting
situations of vanishing surface tension and bending rigidity.
Eq. (11) clearly indicates that the entropic pressure varies

as c–3 for tensionless stacks of membranes, which is con-
sistent with Helfrich’s result. Meanwhile, as we can see, the
surface tension has a significant impact on the pressure law,
since it reduces the thermal shape fluctuations of the mem-
brane and thus suppresses the fluctuation-induced repulsion.

3 Monte Carlo simulations

3.1 Model and method

Four types of entropic forces between biomembranes have
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been identified: protrusion, headgroup overlap, peristaltic
and undulation forces [28]. The first two arise from mole-
cular-scale fluctuations. They can be influenced by the hy-
dration forces and the molecular structure of the lipid-water
interface should be taken into account on this length scale
[29,30]. By contrast, the last two arise from collective mo-
tions of biomembranes on length scales which are large
compared to the membrane thickness. They can be described
in terms of their continuum elastic modulus, respectively.
Therefore, we should carefully choose the appropriate si-
mulation models at different scales to investigate the four
types of entropic forces. Here, we focus on the last force and
view the membrane as a thin elastic sheet (Figure 2(a)),
neglecting the detailed molecular structures. In this section,
Monte Carlo simulations are employed to study the un-
dulation-induced entropic pressure in a multilayer system
consisting of a stack of N interacting membranes bound by
an external pressure p. The n-th membrane surface governed
by bending rigidity κn and lateral tension τn can be para-
meterized by the height profile hn(r). Since the neighboring
membranes cannot overlap each other, so that h1 < h2 < ⋅⋅⋅ <
hN. In the Monte Carlo simulations, the interacting mem-
branes are represented by two dimensional square lattices of
spacing a (see Figure 2(a)). The effective Hamiltonian then
takes the form

( ) ( )

[ ]

H
a

h r h r

a p h r h r

=
2

( ) +
2

( )

+ ( ( ) ( )) , (12)
n

N

r

n
n

n
n

r
N

=1
2 d

2 2
d

2

2
1

where h r( )d n
2 is the discrete Laplacian of the local mem-

brane separation hn(r), ( )h r( )d n
2 describes the increase of

membrane area per unit projected area. In our simulations,
local moves with a random step size δc are attempted at all
lattices to generate new membrane configurations using
standard Metropolis algorithm shown in eq. (13)

R
( )H k T H(old new) = exp / , if > 0,
1, otherwise,

(13)B

where ℜ(old → new) is the Metropolis acceptance ratio, and
the energy difference ΔH between the old and new mem-
brane configurations is given by

{ }( )
( )H a c h c h h h

c h r h c a p c

= 10 2 + 8 + 2 +

+ 4 ( ) + 2 + (14)

2 [ ] { }

2

with

n
n N=

1, = 1,
1, = ,
0, otherwise.

(15)

Here, 〈χ〉, [χ], and {χ} denote the first, second, and third
nearest neighbors of a randomly selected lattice χ, respec-

tively (see Figure 2(b)). We simulate the membranes each
composed of 60×60 patches in a cubic box under periodic
boundary conditions. In each Monte Carlo step, an attempted
local move for all membrane patches is accomplished. In our
study, we perform 107 Monte Carlo steps to leave the system
in equilibrium, and average the physical quantities of interest
during the subsequent 5×107 Monte Carlo steps.

3.2 Simulation results and discussion

3.2.1 Tensionless stacks of interacting membranes
We consider first the case in which a stack of fluctuating
membranes with identical bending rigidity n is con-
fined by external pressure p in the absence of surface tension.
For a stack of two membranes as shown in Figure 3(a), we
estimate roughness ξ⊥ from 〈(h2–h1–〈h〉)2〉1/2, parallel corre-
lation length ξ|| from aexp[(2π(κ / kBT) 〈(∇h)2〉] [24]. By
performing Monte Carlo simulations, we find two power-law
regimes. From Figure 4(a), a good agreement between si-
mulation and theory for the scaling relations between mean
separation 〈h〉 = c, roughness ξ⊥, parallel correlation length ξ||

and entropic pressure p is clearly observed for small pres-
sures. However, these scaling laws derived theoretically in
eq. (11) for the bending rigidity-dominated regime gradually
no longer hold true as the external pressure rises, and are
replaced by

h c a c k T a p= ,  ,  = / (16)B
2

for large pressures, where the distance dependence of the
entropic pressure (the third term in eq. (16)) is obtained using
the ideal gas law pV = kBT. We further perform simulations
for a stack of three tensionless membranes (see Figure 3(b)).
Figure 4(b) shows the ratio of mean separations for stacks of
three and two membranes, which gradually reaches unity
with increasing external pressure. This implies that the en-
tropic pressure law obtained in eq. (16) is completely in-
dependent of the number of membranes in a stack for large

Figure 2 (Color online) (a) Discretized model of a fluctuating membrane.
The membrane is divided up into quadratic lattices with projected area a×a.
The configurations of the n-th fluctuating membrane are described by the
transverse deflection hn(r) related to the reference plane. (b) Neighbors of a
selected lattice marked by a golden dot. The nearest neighbors are marked
by the red dots, the second nearest neighbors by the blue dots, and the third
nearest neighbors by the green dots.
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pressures. The crossover external pressure can be obtained
by equating the pressure law in eq. (16) and Helfrich’s
pressure law of p = ω (kBT)2/(κc–3) with coefficient ω = 0.22
determined from the Monte Carlo data in Figure 4(a), which
is given by

p k T a2.1( ) (17)be B
1/2 3

for the case where the membrane fluctuations are dominated
by the bending rigidity.
At first sight, one might conclude from eq. (16) that the

entropic pressure has a c–1 dependence. However, the role of
the discretization length a should be seriously taken into
account. As shown in Figure 4(c), the scaling relations be-

tween three characteristic parameters and entropic pressure
are a-independent for small pressures (p < pbe), but show an
a-dependent manner for large pressures (p > pbe). It can be
clearly seen that the mean separation between membranes
varies with the discretization length a even for the same
external pressure p when p > pbe. By comparing directly the
entropic pressure law derived in eq. (16) for the case of large
pressures (p > pbe) with that of Freund [16], we find that the
discretization length a corresponds to the thermal wave-
length λ in Freund’s model. We now focus on two extreme
cases of the entropic pressure in eq. (16). First, let us con-
sider the case where the membranes only generate a single
wave under the entropic pressure. At this time, the wave-

Figure 3 A stack of (a) two and (b) three tensionless membranes under external pressure.

Figure 4 (Color online) Monte Carlo simulation results for tensionless membranes. (a) Three rescaled characteristic parameters as a function of the rescaled
pressure in a log-log format for a stack of two membranes; (b) ratio γ of mean separations for stacks of three and two identical membranes as a function of the
rescaled pressure; (c) three characteristic parameters as a function of the rescaled pressure for a stack of two membranes with different discretization lengths
indicated by different colors: red for a = 0.5a1, blue for a = a1, and olive for a = 2.0a1. The meaning of all symbols is the same as in (a); (d) the lower and
upper bounds of the mean separation for large pressures.
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length of the wave will reach its maximum value λ = λmax = L,
and accordingly the parallel correlation length ξ|| = a = L.
This leads to

c k T
L p= , (18)min

B
2

showing that the entropic pressure varies as c–1 for large
pressures. Obviously, eq. (18) forms the lower bound of the
p–c dependence derived in eq. (16) (see Figure 4(d)), which
manifests that the mutual steric hindrance of undulating
membranes in multilayer systems reaches the minimum.
Next, let us consider another extreme case where the fluc-
tuating membranes generate waves with smallest wave-
lengths λ = λmin response to the entropic pressure. To proceed,
we let the dimensions of a membrane approach to λmin. In this
case, the membrane is similar to a single molecule that un-
dergoes random vibrations in the transverse direction. At this
time, we obtain the bending energy of one small square
tensionless membrane with lateral size λmin to be H =B

h8 /q
4 2

min
2 with q = (2 / , 2 / ).min min Equating the

average energy 〈HB〉 to kBT, together with the thermal ex-

pectation h c= / 12q
2 2 [31], gives c= 2 /min

2 4 2 k T3 .B

Substituting this expression for λmin into the third term in eq.
(16) yields the entropic pressure law for the case of ξ|| = a =
λmin,

c k T
p= 3( )

2 , (19)max
3 B

2

4

showing that the entropic pressure varies as c–3 for large
pressures. Obviously, eq. (19) forms the upper bound of the
p–c dependence derived in eq. (16) (see Figure 4(d)), which
indicates that the mutual steric hindrance of undulating
membranes in multilayer systems reaches the maximum.
Previous studies mainly focus on the p–c dependence in

the small-pressure regime and neglect the role of the thermal
wavelengths for bending fluctuations of the membranes in
the distance dependence of the undulation-induced pressure.
The simulation results above indicate that the distance de-
pendence of the entropic pressure depends strongly on the
magnitude of the external pressures. The entropic pressure
indeed follows a c–3 behavior for small pressures (p < pbe).
However, the p–c dependence is closely related to the dis-
cretization length a, which corresponds to the wavelength λ
in the work by Freund, for large pressures (p > pbe). It
illustrates that the entropic pressure depends on the inverse
distance and cubed inverse distance for large and small
discretization lengths, respectively, in this regime.

3.2.2 Stacks of interacting membranes under surface ten-
sion
Attention is now turned to the case where the membranes in a
stack confined by external pressures experience surface

tensions τ. To proceed, we carry out simulations for a pair of
identical membranes (Figure 5) with ten-fold serial tensions
ranging from 0.002 to 200, where a= /2 is the rescaled

membrane surface tension. As expected, from the results
presented in Figure 6(a) and (b), we can see that the scaling
relations 〈h〉=c∼ξ⊥∼1/p1/3 derived theoretically in eq. (11) still
hold true for small surface tensions in the small-pressure
regime, where the thermal fluctuations of the membranes are
governed by the bending rigidity. Owing to the inhibitory
effect of surface tension on the thermal shape fluctuations of
membranes in a stack and on the fluctuation-induced steric
repulsion, the scaling relations change with increasing sur-
face tension. As shown in Figure 6(c), the theoretical result
pa k T p c c/ = exp( )2

B
1/ 4 derived in eq. (11) for the

tension-dominated regime is validated by finding good
agreement with our Monte Carlo simulations, and the coef-
ficient ψ is estimated as ψ ≈ 2.6. In addition, it is revealed
that the linear relation 〈h〉/ξ⊥=5

1/2 [26] for tensionless mul-
tilayer systems shows a pressure-related manner due to the
presence of surface tension τ, and follows to be 〈h〉 /ξ⊥ ∼ –
φa3p(κkBT)

–1/2 with φ ≈ 0.65 for large τ in the small-pressure
regime (see Figure 6(d)). Nevertheless, as clearly illustrated
in Figure 6(a)-(c), these above-mentioned scaling laws gra-
dually fail to describe the behavior of interacting membranes
with further increase in external pressure. Surprisingly, we
find that the scaling relation between mean separation and
membrane roughness, and the distance dependence of en-
tropic pressure follow to be 〈h〉/ξ⊥≈1 and c=kBT/a2p, re-
spectively, even in the presence of large tensions, which are
the same as those given by eq. (16). This implies that the
lateral surface tension has little effect on the scaling relations
between three characteristic parameters and entropic pres-
sure in the large-pressure regime. The crossover external
pressure can be obtained by equating the pressure laws
pa k T c c/ 2.6exp( )2

B
1/4 and c = kBT / a2p, which is

given by

( )p k T a1.3 (20)te B
1/ 2 2

for the case where the membrane fluctuations are dominated
by the surface tension.
As shown above, the theoretical predictions of scaling

Figure 5 A stack of two interacting membranes under external pressure
and surface tension.
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relations are in good agreement with those obtained by
Monte Carlo simulations for both rigidity- and tension-
dominated regimes when the external pressures are small,
while discrepancy occurs in the large-pressure regime. This
discrepancy is essentially attributed to the form of the con-
fining potential adopted in the theoretical analysis. To
quantitatively analyze the fluctuation-induced interaction,
we employ a parabolic potential as given by V(h(r)) = νh2/2
to mimic the confinement of external pressures. Accordingly,
the distribution of density profile and height field of the
membrane is Gaussian, which agrees well with the simula-
tion results for a stack of membranes under small pressures
[21,25], thus justifying the harmonic approximation for the
confining potential. Nevertheless, the membrane density
profile has been shown to be pressure-dependent, and does
not follow a Gaussian distribution any more for large pres-
sures [21]. Therefore, the harmonic approximation for the
confining potential is no longer appropriate, which leads to a
consequence that the theoretical predictions as given in
eq. (11) fail to describe the fluctuation-induced interactions
of the membranes in a stack.

4 Conclusions

We have systematically investigated the fluctuation-induced

entropic pressure between fluid membranes in multilayer
systems by using statistical mechanics theory and Monte
Carlo simulations. We find that the scaling relations between
three characteristic parameters (mean separation c, rough-
ness ξ⊥, parallel correlation length ξ||) and entropic pressure
are closely related to the magnitude of the external pressures.
The crossover external pressures are determined to be pbe ≈
2.1(kBTκ)

1/2a–3 and pte ≈ 1.3(kBTπτ)
1/2a–2 for the cases where

the membrane fluctuations are dominated by the bending
rigidity and surface tension, respectively. In the small-pres-
sure regime, the theoretical predictions are validated by di-
rect comparison with Monte Carlo simulation results for the
cases where the membrane shape fluctuations are dominated
by either bending rigidity or surface tension. In the large-
pressure regime, we obtain new scaling laws to describe the
fluctuation-induced interactions within the multilayer sys-
tem. Particularly, the p–c dependence for tensionless mem-
brane systems is found to be consistent with Helfrich’s
results showing that p scales as p~c–3 for small pressures.
However, this well-accepted distance dependence of entropic
pressure changes with further increase in external pressure. It
suggests that the mean separation has the lower and upper
bounds which scale as p~c–1 and p~c–3, respectively, in a
tension-independent manner for large pressures. We propose
that the mean separation may exhibit oscillatory behaviors in
the large-pressure regime. Our results provide novel insights

Figure 6 (Color online) Monte Carlo simulation results for a stack of two membranes with different surface tensions showing (a) mean separation c, (b)
roughness ξ⊥, (c) rescaled mean separation c, as well as (d) mean separation/roughness ratio as a function of the rescaled pressure.
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into the fluctuation-induced entropic pressure and help to
reconcile the discrepancy between Helfrich’s and Freund’s
results.
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