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A shock tunnel is a representative type of ground-based equipment in the hypersonic field, which has 
the advantage of free stream of excellent quality. Accurate measurements of aerodynamic forces in the 
shock tunnel are great challenges. The impulse loads during the start-up process induce the vibration of 
the model and its support. Aerodynamic signals are disturbed by vibrational signals. The identification of 
the starting time of the steady periodic vibration and excited natural frequencies of the whole structure 
would contribute to improve the accuracy of measurement. These two factors are closely related to the 
properties of the impulse forces. However, there is currently no published research on the impulse forces. 
In this paper, the type of impulse forces (drag history) acting on the sharp cone during the start-up 
process was investigated by numerical simulation. The distribution of the static pressure of the typical 
wave structures was found to have a significant influence on the types of the drag history. A formula, 
based on the physical analysis of start-up process, was put forward to estimate the starting time of the 
steady stage. Additionally, the subsequent analysis and design optimization such as vibration of structure 
and disturbing frequencies needed an analytical and simple formation of drag history. Thus, the drag 
history was approximated by numbers of sine functions. Different phases exhibited notable difference 
in composition. Also, a metric denoted as the energy coefficient was derived to identify the critical 
frequencies and simplify the analytical expression of the impulse force.

© 2017 Elsevier Masson SAS. All rights reserved.
1. Introduction

A shock tunnel is a representative type of ground-based equip-
ment in the hypersonic field, which has the advantages of high 
total pressure, high total temperature and low cost. As a typical 
piece of impulse equipment, the operational time of a shock tun-
nel is extremely short, with a test time that is usually in the range 
of 2–30 ms [1,2]. Such a short running time constitutes a great 
challenge regarding the accurate measurement of the aerodynamic 
force. For a conventional tunnel, the running time is generally 
several minutes, i.e., a much longer time than the vibration pe-
riod of the force measurement structure, which includes a sting 
support, measurement components and the aircraft model. The ef-
fects of damping are obvious, and the whole structure can reach 
a force equilibrium condition. The measurement is quasi-static, 
and the high accuracy of the measurement can be ensured, but, 
there are essential differences for the force measurements in the 
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shock tunnel. Nevertheless, the effects of vibration damping can 
be neglected because the order of magnitude of the test time is 
the same as that of the period of the force measurement struc-
ture. Therefore, the measurement of the balance of aerodynamic 
forces is a dynamic process. In addition, only several periods of 
signals can be obtained from the outputs of the balance. Also, 
due to the essentially different mechanical state of the force mea-
surement systems during testing, the difficulty and accuracy of 
the force measurement in the shock tunnel are evidently differ-
ent from those in a conventional tunnel.

The vibration of the force measurement structure in the shock 
tunnel is initiated by the impulse aerodynamic force during the 
nozzle start-up process, and the whole structure reaches a steady 
periodic vibration around the equilibrium position during the test 
period. The signals sensed by the balance are a combination of 
the aerodynamic force signals and vibrational signals. The removal 
of the vibrational signals is essential for force signal processing 
in the shock tunnel. Several methods have been developed for 
the peeling of the signals, including one technique that is com-
monly used, namely the acceleration compensation force balance 
technique [3–7]. The accelerometers are mounted near the mea-
surement component and the acceleration signals are measured 
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Fig. 1. Schematic drawing of the computational domain.
along with the force signals. The plat force signals are obtained 
by adding the processed acceleration signals to the force signals. 
The acceleration signals supplied by accelerators can only display 
the frequencies of free vibration properties at a certain position 
with very limited information on the vibration. Another method 
involves using the average to counteract the fluctuation of the 
selected signals. For both of these methods, the detailed under-
standing of the starting time of the steady periodic duration and 
disturbing frequencies are very important to ensure the accuracy 
of the force measurements. The start-up stage and the following 
steady vibration comprise the whole process of the tunnel test. The 
starting time point is just the end of the start-up stage. Accord-
ingly, the time of duration of the impulse force should be identi-
fied. Also, the vibrational theory indicates that the initial condition 
of the steady vibration depends on the start-up stage. Thus, the 
form and frequency composition of the impulse force need to be 
investigated. However, no research on the characteristics of the im-
pulse forces during start-up of shock tunnel has been reported to 
date.

Meanwhile, the wave structures of the nozzle start-up process 
have been investigated in numerous studies involving a shock tun-
nel [8–14]. Typical wave structures consisting of primary shock 
(PS), secondary shock (SS) and contact discontinuity (CD) have 
been observed during the start-up process of the nozzle of the 
shock tunnel. The typical wave structures indicate that the pres-
sure distribution around the center zone of the nozzle has a certain 
commonality for different nozzles in a shock tunnel. Thus, com-
mon characteristics exist for the impulse drag-time curve acting 
on an aircraft model.

This paper described the study of the various characteristics of 
an axial impulse force history acting on a sharp cone during the 
start-up process of the JF12 shock tunnel. The JF12 hypersonic 
shock tunnel was successfully developed by Jiang et al. [15] at 
the Institute of Mechanics Chinese Academy of Sciences (CAS). The 
wave structures and mechanisms of the impulse force were also 
investigated. A formula based on the physical analysis of the start-
up process, was put forward to estimate the starting time of the 
steady stage. Furthermore, the subsequent analysis and design op-
timization such as vibration of structure and disturbing frequencies 
needed an analytical and simple formation of drag history. Addi-
tionally, analytical modeling with numbers of sine functions for 
the impulse force was conducted, this approach made the theoret-
ical study of the subsequent analysis of the vibrational properties 
possible. Further studies aimed at simplifying the analytical form 
of impulse force were also conducted. The simplification should 
be based on a metric to identify the critical frequencies. A metric 
denoted as the energy coefficient was derived based on the vibra-
tional theory. The number of the sine functions was replaced by 
only three significant sine functions and an acceptable substitution 
effect was obtained.
Table 1
Dimension of the computational domain.

Definition Dimension (mm)

DNi 310.0
DNo 2457.8
LN 14250.0
DCb 529.0
LC 1500.0
DT 3500.0

2. Numerical method

2.1. Computational domain and grid generation

The computational domain contains a nozzle of 14.2 m in 
length and 2.5 m in diameter, a test section and a sharp cone 
with a semi angle of 10◦ , as shown in Fig. 1. The calibrated re-
sults of the flow showed that the deviation of the Mach number 
around the effective region of the nozzle outlet was less than 2%. 
The flow was simplified to be axisymmetric and the computational 
domain was simplified to a two-dimensional region. Only the prop-
erties of the axis forces were of interest in the current study and 
the effects of the flow asymmetry were beyond the scope of this 
research. The detailed dimensions of each section are listed in Ta-
ble 1. LN, LC and Lcw denote the length of the nozzle, sharp-cone, 
and wake region, respectively; DNi, DNo, DCb and DT represent the 
diameters of the nozzle throat, nozzle outlet, cone base and test 
section, respectively.

The whole domain was divided into six blocks for grid genera-
tion and computational purposes, as shown in Fig. 2. Because the 
finite difference method and structural meshes were used, mesh 
orthogonality was important to achieve an accurate calculation. An 
orthogonal mesh approach proposed by Volkan Akcelik [16] was 
used for grid generation; this method ensured the mesh orthogo-
nality in the inner flow field. In addition, the mesh orthogonality 
near the wall was also ensured by creating vertical lines to the 
boundary lines passing through the inner gird points. A total of five 
separate grids were used for grid independence verification. Each 
grid described in Table 2 was obtained from the previous grid by 
doubling the number of grids in the i and j directions.

2.2. Governing equation and algorithm

The two-dimensional axisymmetric and compressible Navier–
Stokes equations with transformation to the computational space 
[17] presented in eq. (1) were used for the calculation. The con-
vective term was solved using the NND scheme [18], and the 
viscous term was discretized using the second-order central dif-
ference method. The first-order Runge–Kutta method was applied 
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Fig. 2. Schematic of the block division for grid generation and computation.
Table 2
Five different resolutions for each grid system.

Case I Case II Case III Case IV Case V

Grid points 97,213 354,626 1,412,386 5,640,021 21,883,041

Table 3
Initial parameters of the flow field.

Parameters Nozzle state Vacuum state

P (Pa) 1.16 × 106 50.0
T (K) 1833.3 300.0
u (m/s) 858.3 0.0
v (m/s) 0.0 0.0

for time integration. The message passing interface (MPI) parallel 
programs were applied in the program. In addition, the axis of the 
nozzle was defined as the x-axis and was set as an axisymmet-
ric boundary based on a previously reported method given [17]. 
The parameters of the nozzle inlet for the initial state are denoted 
as nozzle state, as shown in Table 3, and the parameters of the 
other regions are denoted as vacuum state. The total pressure was 
p0 = 2.2 MPa, and the total temperature was T0 = 2200 K.
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The equation of the state is given in eq. (2).

P = ρRT (2)

2.3. The validation of the code

The code was validated by numerous cases and three classical 
cases were computed by the computational fluid dynamics (CFD) 
code used in this study. The computed results were compared 
with experimental results. Good agreements were observed be-
tween computed and experimental results, as shown in Fig. 3(a–d). 
Additionally, the measured drag coefficients of the spheres are also 
shown in Fig. 3(e). Specifically, for M∞ > 4, the measured drag co-
efficients lay between 0.87 and 0.90 and the numerical results lay 
between 0.8713 and 0.8910, which validated the reliability of the 
aerodynamic computation of the code used.

2.4. Grid independence verification

The simulation results were sensitive to the number of resolu-
tions. A plot of the Mach number distribution of the nozzle outlet 
at the steady-state condition is shown in Fig. 4 for five different 
meshes. Data for all the Mach numbers were extracted from the 
same position. The results of cases I and II did not capture both 
the height and the shape of the Mach number distribution. Thus, 
it was impossible to distinguish the detailed flow structure with 
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Fig. 3. Validation of the code used. An unsteady flow of shock wave diffraction over a rectangular block: (a) Numerical results, (b) Experimental results. Hypersonic flow over 
a spiked-nose blunt body configuration: (c) Numerical results, (d) Experimental results, (e) Plots of the drag coefficients of experimental and numerical results at different 
Mach number.
these coarse grids. The values of case III were close to the results 
of cases IV and V, except for the positions of the boundary layer. In 
addition, the values and shapes of cases IV and V were very close, 
and the numerical results were in good agreement with the ex-
perimental results. The experimental data were derived from the 
experimental calibration of the flow field in the JF12 shock tun-
nel. In other words, more refinement of the resolution would not 
significantly change the flow results. Accordingly, the resolution of 
case IV was chosen for the ensuring simulations to generate the 
results.
3. Characteristics of the drag-time curve

3.1. Evolution of the wave structures during the start-up process

The evolution of the wave structure of the whole process is dis-
played in Fig. 5(a–k). At the beginning of the start-up process, the 
propagation of the PS was clearly observed. A CD following the 
PS was identified by comparing the density and pressure fields. In 
addition, the contact discontinuity became unstable and twisted. 
A lambda-shaped shock appeared because of the interaction of the 
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Fig. 4. Mach number distribution of the nozzle outlet for different cases.

boundary layer and PS near the wall area. In addition, this configu-
ration shock propagated downstream with the PS. The SS appeared 
and propagated at a very high Mach number (approximately 13 in 
this case) to match the low pressure downstream of the throat 
and the high pressure behind the CD. Near the outlet of the noz-
zle, the wave structures that contain PS, CD and SS remain in a 
similar configuration because the section area of the nozzle is es-
sentially constant. The wave structures flowed into the test section 
and acted on the sharp cone. When the steady air following the 
wave structures acted on the sharp cone, a steady flow field was 
generated.

3.2. Dynamic course and characteristics of force

The total drag (F DT), is a combination of the forebody pressure 
drag (F Dp), base drag (F Db) and forebody friction drag (F D f ). In 
this study, the F Dp was prominent in the composition of the F DT
during the whole process, as shown in Fig. 6. The drag-time curve 
of the F DT could be divided into the unsteady (AF) stage and the 
steady stage, which has a constant value. The AF stage comprised 
stage AE (defined as the impulse stage) and stage EF (defined as 
the transition stage). During stage AE, the time-force curve varied 
significantly in an extremely short time, on the order of millisec-
onds, and presented typical features of the impulse force during 
the start-up process of the nozzle. In addition, the vibration of the 
force measurement structure was triggered by rapid and consid-
erable variation. Thus, stage AE was defined as the impulse stage. 
During stage EF, the curve displayed an entirely different shape. 
There was a relatively slow rise until the total force and flow field 
achieved stability. Stage EF played a role in the transition between 
the impulse stage AE and the steady stage.

Further analysis showed that the trend of the drag-time curve 
was closely related to the wave structure and static pressure distri-
bution of the wave structure when the PS arrived at the outlet of 
the nozzle, as shown in Fig. 5(e). The pressure distribution along 
the axis of the nozzle displayed two high-pressure regions (de-
noted as I and III in Fig. 5(f)) that were followed by low-pressure 
regions (denoted as II and IV, in Fig. 5(f)). Additionally, the average 
pressure value and the space span of region III were larger than 
those of region I.

Both the drag-time curve and the pressure distribution (illus-
trated in Fig. 5(f)) exhibited a double-peak shape, and detailed 
examinations regarding the correspondence between them both 
were conducted. The drag-time curve started to rise at point A, 
as indicated in Fig. 6, at which time the PS reached the tip of the 
cone corresponding to Fig. 5(f). The air from the high-pressure re-
gion I flowed over the forebody of the cone in Fig. 5(g); this period 
corresponded to stage AB with uptrend. The low-pressure region 
II behind region I flowed over the cone resulting in the reduc-
ing trend of curve BC. The drag-time curve reached the first peak 
at point B, whose flow field is shown in Fig. 5(h), and the first 
valley at point C is shown in Fig. 5(i). The trend of curve AC de-
pended on the combined effects of the high-pressure region I and 
low-pressure region II. The high and low distributions of the pres-
sure caused the increases and decreases of the drag. The similar 
trends of stage CD and stage DE were determined by region III and 
region IV. The values of the second peak and valley appeared at 
point D and point E, whose wave structures are shown in Fig. 5(j) 
and Fig. 5(k), respectively. The larger length scale and pressure am-
plitude value of region III and region IV, shown in Fig. 5(e), caused 
larger fluctuation of curve CE. The curve reached the highest peak 
at point D and the lowest valley at point E.

3.3. Comparison of the numerical results with the experimental results

The drag coefficients CD and forebody drag coefficient C DF of 
the numerical result were compared with the experimental results 
when the flow field became steady, as shown in Table 4. Excellent 
agreements were observed between the numerical and experimen-
tal results. The differences mainly arose from the differences in the 
Reynolds number and the disturbances of the flow field induced by 
sting support in the experiments.

Additionally, the values of the pb/p∞ (ratio of base pressure 
and pressure of the freestream) were compared with the experi-
mental results, as shown in Table 5. The experimental data orig-
inated from the JF12 shock tunnel and the NAVSHIPRANDCEN 
hypersonic tunnel. The numerical result showed good agreement 
with the experimental results.

3.4. Characteristics of the time span for the drag-time curve

The whole drag-time curve describes the process of wave struc-
tures flowing over the cone. Accordingly, the time span of the 
impulse force was determined by the average velocity of the wave 
structure, the length scale of the wave structure and the aircraft 
model. The length scale of the aircraft model was known. Mean-
while, the average velocity of the wave structure could be esti-
mated as the velocity of air at the outlet of the nozzle in steady 
flow. Also, the scale of the wave structure could be estimated by 
comparing the steady flow field with the wave structures at the 
time of the arrival of the PS at the nozzle outlet. In this case, the 
length scale was approximately 10 m for the nozzle, as shown in 
Fig. 7. In addition, the time span of the unsteady stage during the 
start-up process could be estimated as ti ≈ 5.8 ms, using eq. (3). 
The numerical results in Fig. 6 show that t iCFD ≈ 6.0 ms. The for-
mation of the flow field around the cone base may make it longer 
than the estimated value.

ti ≈ LC + Lw

uout
(3)

3.5. Induced frequency distribution of the unsteady stage

The vibration of the force measurement structure resulted from 
a combination of each vibration mode with harmonic form. In ad-
dition, the modes were induced to different degrees, depending on 
the energy distribution of the induced force. The drag-time curve 
was divided into two stages, depending on different features. The 
data of the two stages were modeled by a nonlinear approxima-
tion to decompose the signals with a number of sine functions, 
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Fig. 5. Evolution of the process at different time visualized by the density gradient (upper) and the pressure (lower).
Table 4
Experimental and numerical results CD and C DF of the cone in hypersonic flow.

Ma Re CD CDF

JF12 shock tunnel [19] 6.15 1.38 × 106/m 0.106 0.118
CFD 6.13 1.86 × 106/m 0.097 0.111
FD-07 tunnel [20] 5.95 3.6 × 107/m 0.120 –
JF-4B [21] 7.8 1.3.5 × 107/m 0.123 –

as shown in eq. (4). A global optimization algorithm, the Low Di-
mension Simplex Evolution (LDSE) [23], was applied to find the 
coefficients in the deposition model. The parameters of LDSE were 
set according to a previous report [24]. The approximation coeffi-
Table 5
Values of the pb/p∞ of a sharp cone with a semi angle of 10◦ in hypersonic flow.

Ma Re pb/p∞
JF12 shock tunnel [19] 6.15 1.38 × 106/m 0.47
CFD 6.13 1.86 × 106/m 0.43
NAVSHIPRANDCEN hypersonic tunnel [22] 6.34 1.97 × 106/m 0.4
NAVSHIPRANDCEN hypersonic tunnel [22] 6.34 0.98 × 106/m 0.5

cients are listed in Table 6 and Table 7 in descending order of the 
absolute value of ak . For stage AE, one of the prominent frequen-
cies was 175.7 Hz, which was close to the prominent frequency 
of 178.1 Hz in stage EF. In addition, another two prominent fre-
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Fig. 6. Drag-time curve for the aerodynamic force from the start-up to the steady 
condition.

Fig. 7. Velocity distribution along the axis of the nozzle at the time of 5.71 ms and 
under steady condition.

Table 6
Approximation coefficients of stage AE, Nk = 10.

fk (Hz) ak Ωk φk

k = 1 80.2 812.5 504.1 33.7
k = 2 175.7 2390.7 1104.1 −13.3
k = 3 229.4 1249.9 1441.6 14.7
k = 4 729.3 −205 4582.3 −75.3
k = 5 1072.5 32.4 6738.8 114.3
k = 6 1670.8 −1369.8 10498.1 −20.2
k = 7 1677 1330.5 10536.8 −20.3
k = 8 2356.2 −69.4 14804.4 13.7
k = 9 2485.2 −59.4 15615.1 −22.8
k = 10 38599.7 −0.2 242529 −1526.6

quencies in stage AE were close to 1670 Hz, which is a much 
higher frequency. The characteristics of the two stages were signif-
icantly different. During the impulse stage AE, the drag-time curve 
showed a high frequency oscillation combined with a frequency of 
175.7 Hz oscillation. For stage EF, there was only one prominent 
frequency, specifically at 178.1 Hz.

y =
Nk∑

ak sin(Ωkt + φk) (4)

k=1
Table 7
Approximation coefficients of stage EF, Nk = 8.

fk (Hz) ak Ωk φk

k = 1 178.1 895.6 1119 2.3
k = 2 311.8 368.2 1959 1.5
k = 3 714.8 27.5 4491 5.1
k = 4 1358.4 7.3 8535 0.9
k = 5 1664.7 6.5 10460 1.2
k = 6 2040.4 2.854 12820 5
k = 7 2651.5 0.5993 16660 −4.1
k = 8 3119.4 0.5003 19600 −2.6

Table 8
Approximation coefficients of stage AF, Nk = 12.

fk (Hz) ak Ωk φk

k = 1 77.6 −1024.3 487.6 −2.9
k = 2 166.6 197.7 1046.7 13.8
k = 3 315.6 −325.3 1983.2 0.1
k = 4 651.9 334.1 4096 3.1
k = 5 705.3 −237.8 4431.6 1.7
k = 6 1022.1 21.1 6421.9 0.8
k = 7 1518.2 −57.8 9539.4 −0.4
k = 8 1626.2 −115 10217.8 6.3
k = 9 1676.1 −69.1 10531 2
k = 10 2344.1 −119.6 14728.5 −0.01
k = 11 2405.7 −392 15115.3 1.7
k = 12 2427.9 −289.8 15255.1 10.6

Fig. 8. Drag-time data and approximation data for the unsteady stage during the 
start-up process.

4. Modeling of the drag-time curve

4.1. Approximation of the unsteady stage of the drag-time curve

Theoretical analysis of the forced vibration requires an explicit 
function expression of the drag-time curve. The approximation for 
the whole unsteady stage AF was conducted for subsequent the-
oretical analysis with the form given by eq. (4), and the coef-
ficients are listed in Table 8. The approximation results showed 
good agreement with the original drag-time curve data, except for 
minor differences around the peaks shown in Fig. 8. The approx-
imation solution contained the primary features of the drag-time 
curve. The prominent frequency was approximately 77.6 Hz, which 
is close to the frequency of the first mode shape. The value of 
the second and third frequencies was greater than 2000 Hz and 
displayed the extremely short and impulsive characteristics of the 
drag-time curve during the start-up process.
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4.2. Theoretical solutions of forced vibration

The drag-time curve during the start-up process was approx-
imated by 12 sine-wave functions with 36 coefficients. Numer-
ous undetermined coefficients were used to ensure the goodness 
of the approximation. Tail-supporting structures were applied for 
measurement of the force of the sharp cone model in the JF12 
hypersonic shock tunnel. The basic configuration of the tail sup-
port was a cantilever beam [25]. A homogeneous material and 
constant-section beam model was used for theoretical analysis. The 
measurement cell of the balance was simplified to a certain section 
of the beam. The displacement and internal axis force proportional 
to the axis strain were the physical quantities measured in most 
experiments. Thus, these quantities were selected as the evalua-
tion criterion for simplification of the approximated coefficients.

The oscillation equation [26] of the forced vibration for the 
constant-section beam model along the longitudinal direction is 
expressed by eq. (5):

ρ A
∂2u

∂t2
= E A

∂2u

∂x2
+ P (x, t) (5)

The outer induced drag-time curve encompasses the impulse 
force followed by a constant aerodynamic force P0. The location of 
the acting force is denoted by the symbol ξ .
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P0

√
2

ρ Al sin[ (2i−1)πξ
2l ], t > tF

(9)

The normal coordinate:

ηi(t) = 1

ωi

t∫
0

qi(τ ) sin
[
ωi(t − τ )

]
dτ

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑12
k=1

−ak
2ωi

√
2

ρ Al sin(
(2i−1)πξ

2l ){ [sin(Ωkt+φk)−sin(ωi t+φk)]
Ωk−ωi

− [sin(Ωkt+φk)+sin(ωi t−φk)]
Ωk+ωi

}, 0 ≤ t ≤ tF

ηi(tF ) cos[ωi(t − tF )] + η̇i(tF )
ωi

sin[ωi(t − tF )]
+ P0

ω2
i

√
2

ρ Al sin (2i−1)πξ
2l (1 − cos[ωi(t − tF )]), t > tF

(10)

The solution of the displacement:

u(x, t) =
Ni∑√

2

ρ Al
sin

(
(2i − 1)πx

2l

)
ηi(t) (11)
i=1
The solution of the internal force:

N F (x, t) = E A
Ni∑

i=1

(2i − 1)π Bi

2l
cos

(
(2i − 1)πx

2l

)
ηi(t) (12)

4.3. Simplified modeling of the drag-time curve

The unsteady stage of the drag-time curve was approximated by 
12 sine curves. The approximation results were found to be very 
consistent with the original drag-time curve. However, the 12 sine 
loads were complex and inappropriate for engineering applications 
and subsequent theoretical analysis. Accordingly, it was necessary 
to replace the whole drag curve, denoted as 

∑12
k=1 ak sin(Ωkt + φk)

in Table 8, with fewer sine functions. The simplified modeling load 
would be applied on the cantilever bar. One of the most important 
problems was how to identify prominent sine functions in Table 8, 
for example, a metric was necessary to order the importance of the 
different sine functions. The amplitude of the sine function ak was 
selected as the metric in the initial investigation. The subsequent 
study selected akΩk , which was the parameter in the amplitudes 
of N F (x, t), as the metric. However, poor results (shown later) were 
obtained using the first three sine functions ordered by metrics 
ak and akΩk . Additional analysis was necessary to determine the 
metric to be used to order the importance of different frequencies 
compositions.

The displacement and internal force represented detailed prop-
erties of the forced vibration. A method based on the perspective 
of energy was attempted for the selection of the metric. The ki-
netic energy [26] of each vibrational model under excitation of a 
certain sine load could be expressed as

Ti = 1

2

l∫
0

ρ A

(
∂ui

∂t

)2

dx

= 1

ρ Al
a2

kΩ2
k sin2

(
(2i − 1)πξ

2l

)
1

(Ω2
k − ω2

i )2

× (cosΩkt − cosωit)
2 (13)

The potential energy [26] of each vibrational model could be 
expressed as

Ui = 1

2

l∫
0

N F

(
∂ui

∂x

)
dx

= 1

ρ Al
a2

kΩ2
k sin2

(
(2i − 1)πξ

2l

)
1

(Ω2
k − ω2

i )2

×
(

ωi

Ωk
sinΩkt − sinωit

)2

(14)

Thus, the amplitudes of kinetic and potential energy had the 
same form, given as follows:

AE = 1

ρ Al
a2

kΩ2
k sin2

(
(2i − 1)πξ

2l

)
1

(Ω2
k − ω2

i )2
(15)

To represent the total energy along the whole cantilever bar, 
consider the end-loading condition, that is, ξ = l; the sum of infi-
nite series for all modes can be expressed as

AET =
∞∑ 1

ρ Al
a2

kΩ2
k

1

(Ω2 − ω2)2
(16)
i=1 k i
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Considering the integration,

∞∑
i=1

1

[(2i − 1)2 − c]2
=

√
cπ2 − π sin(

√
cπ)

16c
3
2 cos2(

√
cπ
2 )

(17)

Thus, the analytical solution of AET can be expressed as:

AET = ρl3

π4 E2
a2

kΩ2
k

√
cπ2 − π sin(

√
cπ)

c
3
2 cos2(

√
cπ
2 )

, c = 4ρl2

π2 E
Ω2

k (18)

Metric AET , noted as the energy coefficient, was the appropri-
ate metric to order the importance of each sine compositions and 
it was the product of three items. The first item, ρl3

π4 E2 , was de-
termined by the structural parameters of the cantilever bar. The 
second item, a2

kΩ2
k , depended on the parameters of each induced 

sine load. The third item depends on the combined action of the 
sine load and natural frequencies of the cantilever bar. The en-
ergy coefficient represents the excitation energy of each of the sine 
loads. Specific values were assigned to the parameters of the can-
tilever bar to present the results based on different metrics. The 
first natural frequency of the beam was set as 62 Hz, and the 
Table 9
Reordering sine loads based on the excitation energy for each sine composition.

fk (Hz) ak Ωk φk AET

k = 1 77.6 −1024.3 487.6 −2.9 4.239E−04
k = 2 1676.1 −69.1 10531.0 2.0 2.414E−05
k = 3 315.6 −325.3 1983.2 0.1 2.046E−05
k = 4 2427.9 −289.8 15255.1 10.6 1.353E−05
k = 5 2405.7 −392.0 15115.3 1.7 2.825E−06
k = 6 651.9 334.1 4096.0 3.1 6.654E−07
k = 7 705.3 −237.8 4431.6 1.7 6.448E−07
k = 8 166.6 197.7 1046.7 13.9 4.785E−07
k = 9 2344.1 −119.6 14728.5 −0.01 5.334E−08
k = 10 1626.2 −115.0 10217.8 6.3 4.451E−08
k = 11 1518.2 −57.8 9539.4 −0.4 1.750E−08
k = 12 1022.1 21.1 6421.9 0.8 2.376E−09

length was 3 m; these values were close to those of the physi-
cal force measurement structure. As a result, we could reorder the 
sine load in Table 8, as shown in Table 9.

The displacement solution u(x, t) is the basic variable directly 
solved by eq. (5), and the internal force N F (x, t) is sensed by the 
balance. The results of u(x, t) and N F (x, t) as a function of time 
Fig. 9. Results of u(x, t) with the first three sine loads ordered by different metrics: (a) curve corresponding to metric akΩk , (b) curve corresponding to metric ak , and 
(c) curve corresponding to the energy coefficient.
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Fig. 10. Results of N F (x, t) with the first three sine loads ordered by different metrics: (a) curve corresponding to metric akΩk , (b) curve corresponding to metric ak , and (c) 
curve corresponding to the energy coefficient.
were of interest. Additionally, the curves of u(x, t) and N F (x, t)
with the excitation of the first three sine load ordered by differ-
ent metrics are presented for comparison with the results of the 
approximated drag-time curve in Fig. 9 and Fig. 10, respectively. 
The balance position x was selected as x/l = 0.50.

The results of the first three sine functions ordered by akΩk
for u(x, t) showed the worst effect, and the appearance of the 
phase and peak distortions are shown in Fig. 9(a). The results cor-
responding to metric ak are quite consistent with the results of the 
approximated drag-time curve, except for the higher value around 
the peaks. Moreover, the best result was obtained from the order 
based on the energy coefficient, which captured the appropriate 
phase and finer peak values. The result for N F (x, t) showed simi-
lar effects for the three metrics as illustrated in Fig. 10. The curve 
for metric akΩk was still the worst. The result of N F (x, t) for met-
ric ak missed both the general shape and the peak values. The high 
frequency of approximately 2000 Hz in Table 8, numbered as k = 2
oscillations, seriously altered the degree of agreement. The best re-
sult was still obtained from the energy coefficient. Thus, the whole 
drag-time curve containing 12 sine functions could be replaced by 
the first three sine compositions in Table 9. Furthermore, an effec-
tive energy coefficient expressed in eq. (18) was derived to order 
the significances of different sine loads. The reason for the excel-
lent effects for the energy coefficient was discussed. The solution 
N F (x, t) was closely related to the vibrational properties of the 
whole cantilever bar. In addition, the vibrational properties were 
found to be based on the combination of the actions of the drag-
time curve and the natural frequencies. Metrics akΩk and ak only 
showed the effects of the outer excitation force. The energy coeffi-
cient contained the comprehensive information, and the properties 
of the drag force and structural parameters of the cantilever bar 
were taken into account.

5. Conclusion

In this paper, the characteristics of the drag-time curve of the 
impulse force in the axial direction and the corresponding struc-
tural vibration induced by the shock tunnel start-up process were 
investigated using numerical simulation and theoretical derivation, 
separately.

Analysis of the numerical results revealed the mechanism of the 
trend of the drag-time curve. There was a tight link between the 
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shape of the drag-time curve and the static pressure distribution 
along the axis of the nozzle when the PS arrived at the outlet of 
the nozzle. The typical wave structure was comprised of the PS, CD 
and SS and determined the static pressure distribution.

The features of time span and frequency composition for the 
drag-time curve were also investigated. The start time point of 
steady vibration could be estimated based on the feature of the 
time span. The whole start-up process encompassed an impulse 
stage, a transition stage and a steady stage. The unsteady time 
duration that included the impulse and transition stages was de-
termined by the velocity of flow, the length scale of the wave 
structure and the aircraft model. A qualitative assessment was per-
formed for the excitation degrees among the vibrational modes. 
The frequency composition characteristics of the impulse and tran-
sition stages were determined to be different. For the transi-
tion stage, the order of magnitude of the prominent frequencies 
was 100 Hz. For the impulse stage, the order of magnitude of 
one prominent frequency was approximately 70 Hz, and another 
prominent frequency was approximately 1,000 Hz, which is a much 
higher frequency for the force measurement structure. In addition, 
the forebody pressure drag was the main source of the total drag.

Theoretical modeling and simplification of the drag-time curve 
were also conducted, thereby making the theoretical analysis of 
the forced vibration possible. Furthermore, a metric noted as en-
ergy coefficient to order the significance of sine loads was derived. 
The drag-time curve was approximated using 12 sine curves based 
on the global optimization algorithm LDSE. Theoretical derivation 
was conducted to obtain the solutions of the displacement and the 
internal force. With the purpose of simplifying the 12 sine curves, 
the energy coefficient derived from the perspective of energy was 
used to reorder the significances of the 12 sine curves. The results 
of the internal force and displacement of the first three curves 
showed good agreement with the results of the 12 sine curves.

The effects of the turbulence and flow around the throat (such 
as curvatures of the sonic line) will be investigated in future work.
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