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Abstract The heterogeneous pore space of porous media strongly affects the storage and
migration of oil and gas in the reservoir. In this paper, the cross-correlation-based simula-
tion (CCSIM) is combined with the three-step sample method to reconstruct stochastically
3D models of the heterogeneous porous media. Moreover, the two-point and multiple-point
connectivity probability functions are used as vertical constraint conditions to select the
boundary points of pore and matrix, respectively. The heterogeneities of pore spaces of four
rock samples are investigated, and then our methods are tested on the four samples. Quanti-
tative comparison is made by computing various statistical and petrophysical properties for
the original samples, as well as the reconstructed model. It was found that the results from
CCSIM-TSS are obviously better than that from CCSIM. Finally, the analysis of the distance
(ANODI) was used to measure of the variability between the realizations of the four rock
samples. The results demonstrated that the results from CCSIM-TSSmp are better than that
from CCSIM-TSStp as the complexity of connectivity and heterogeneities of pore spaces
increase.

Keywords Reconstruction · CCSIM-TSS · Multiple connectivity · Heterogeneous porous
media

1 Introduction

Pore space is the petroleummigration pathways and reservoir space, and its morphology (the
geometry and the connectivity) can strongly affect the storage and migration of oil and gas
in the reservoir (Weger et al. 2009; Payne et al. 2010). On the other hand, as microscopic
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structure is gradually becoming the center of interest in recent years, the heterogeneity of
the porous media stands out. Hence, it is of great significance to accurately describe the pore
structure of heterogeneous porous media.

Methods based on stochastic or geostatistical simulation have been developed to recon-
struct digital cores, which can describe the pore structure. In general, reconstruction methods
that are commonly used at present are process-based methods, simulated annealing method,
Gaussian random fields, single normal equation simulation method (SNESIM), etc. Process-
basedmethods (Bryant andBlunt 1992; Biswal et al. 1999, 2007; Coelho et al. 1997;Øren and
Bakke 2002, 2003) try to develop 3D models by mimicking the physical processes that form
the porous medium. Though realistic, such methods are, however, computationally expen-
sive and require considerable calibrations. Moreover, they are not general enough, because
each of them is developed for a specific type of rock, as each type is the outcome of some
specific physical processes. Simulated annealing method uses statistical information drawn
from the porosity and the two-point autocorrelation function of 2D images to regenerate 3D
images (Hazlett 1997). However, this method fails to reproduce the long-range connectivity
of the pore space, especially for low porosity materials and particulate media with special
shapes, because only the low-order information is used (Mo et al. 2016). The method based
on a truncated Gaussian random field is often used with the geometrical properties of the
original pore space to reconstruct 3D images (Quiblier 1984; Ioannidis et al. 1999; Thovert
et al. 2001; Thovert and Adler 2011). These geometrical properties include porosity, two-
point correlation function, local porosity distribution, local percolation probability, etc. Like
simulated annealing method, this method is also difficult to reproduce the long-range con-
nectivity of the pore space. The single normal equation simulation (SNESIM) proposed by
Strebelle (2002) and Strebelle and Cavelius (2014) uses a search tree structure, an efficient
method of accessing high-dimensional data that can overcome the problems associated with
the original MPS method. The method is computationally demanding and unable to control
the continuity and variability among adjacent layers (Hajizadeh et al. 2011; Hajizadeh and
Farhadpour 2012). Recently, based on SNESIM, Gao et al. (2015) proposed a three-step sam-
pling algorithm in which the edge area is extracted based on a two-point correlation function
during reconstructing each layer of the 3D models. This method can preserve the long-range
(global) connectivity of the pore space in the vertical direction (perpendicular to the lay-
ers reconstructed or the direction in which the layers are stacked). Although the previously
described methodologies are available for homogeneous porous media (such as sandstones),
none of them is capable of reconstructing accurately heterogeneous and anisotropic porous
media (such as carbonate rock and shales).

In recent years, several methods have been developed to reconstruct heterogeneous porous
media. Yao et al. (2013) used simulated annealing method and Markov Chain Monte Carlo
method to reconstruct the macropore digital rock and micropore digital rock, respectively,
and then the two types of digital cores are superposed together according to a superposition
algorithm. Recently, the cross-correlation–based simulation (CCSIM) method, proposed by
Tahmasebi et al. (2012, 2015, 2016), was used to reconstruct stochastically equiprobable 3D
models of shale rocks. This method produces an ensemble of 3D realizations that provide
acceptable approximation of the same properties in the 2D image(s). However, the recon-
structed vertical morphological features are unsatisfactory (Gao et al. 2015; Tahmasebi and
Sahimi 2016), and also themethod is unable to reproduce accurately the experimental data for
the permeability and electrical conductivity. Thus, in this paper, to reproduce accurately the
strong heterogeneity of the pore space of porous media, we combine the cross-correlation-
based simulation (CCSIM) with the three-step sampling algorithm to improve the accuracy
of the CCSIM algorithm. The improved methodology in this paper is named as CCSIM-TSS.
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The rest of this paper is organized as follows. In the next section, the improved method-
ology (CCSIM-TSS) is described in detail. In the CCSIM-TSS algorithm, the two-point and
multiple-point connectivity probability functions are used as constraint conditions to select
the boundary points during reconstructing each layer, respectively. To make a distinction, the
former is indicated by CCSIM-TSStp, and the later by CCSIM-TSSmp. Then, the accuracy
of the new algorithms is tested using several heterogeneous rock samples. Finally, the paper
concludes with a summary and discussion of the results

2 Methodology

2.1 Heterogeneous Rock Samples

2.1.1 The Heterogeneous Porous Media Usually have a Wide Size Range of Pores and
Complex Connectivity

In order to investigate the reconstruction of heterogeneous porous media, we select four typi-
cal rock samples (C1, C2, C3, and C4) for reconstruction. C1, C2 and C3 are carbonate rocks,
and C4 is sandstone. The petrophysical properties of the four samples are listed in Table 1. It
is necessary to point out that the permeabilities in Table 1 are absolute permeabilities (kx , ky
and kz) computed by LBM (Lattice BoltzmannMethod). In the following, we will investigate
the connectivity and the structures of the pore spaces of the four samples.

At first the Micro-CT image, the relation between the sample size and porosity, the
multiple-point and two-point connectivity probability functions of the four rock samples
are shown in Fig. 1. As Fig. 1 indicates, the porosity of each rock sample exhibits strong
fluctuations when the sample size is very small, reaching a plateau when the sample size is
bigger than 100 pixels. Thus, it can be obtained that the sizes of the four rock samples (C1,
C2, C3 and C4) in our paper are sufficient to contain a representative elementary volume
(REV). Furthermore, the multiple-point connectivity probability functions of different sam-
ple sizes for each rock sample are normalized and plotted together. It can be found that as the
sample size increases, the corresponding multiple-point connectivity probability function is
gradually close together. In particular, when the sample sizes for each rock sample are bigger
than 100 pixels, the multiple-point connectivity probability functions have a tiny discrepancy
with each other. We can obtain that the connectivity of the rock sample reach a plateau when
the sample size are sufficient to contain a REV.

Table 1 The petrophysical properties of the four rock samples

C1 C2 C3 C4

Size 200 × 200 × 200 200 × 200 × 200 200 × 200 × 200 300 × 300 × 300

Resolution (µm) 10.69 5.7 1.016 9.1

Porosity (%) 16.8 23.3 12.8 16.9

kx (mD) 160 785 48 815

ky(mD) 380 1469 20 1363

kz(mD) 205 1053 7 875
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Fig. 1 The Micro-CT image, the multiple-point connectivity probability and the two-point connectivity
probability of the four samples

Now we discuss the connectivity of the pore spaces of the four rock samples based on
the multiple-point and two-point connectivity probability function (see “Appendix”). To
compare the connectivity in different directions, Fig. 1 shows the two-point andmultiple-point
connectivity probability functions (ACF(r) and P(r)) of the samples in three directions. It can
be seen fromFig. 1 that themultiple-point connectivity probability functions ofC1,C2 andC3
in different directions have a significant difference. It indicates that the first three samples are
typically anisotropic,while the last one is isotropic. To compare the anisotropy of the four rock
samples quantitatively, the reference line, defined as the straight line between the beginning
and the end point of the multiple-point connectivity probability curve, is introduced. The
difference between the multiple-point connectivity probability curve in each direction and
the reference line of the rock sample are computed, and denoted as dx , dy and dz. danisotropic
is the ratio of the max and min of dx , dy and dz, and as danisotropic increases, the anisotropy
of the rock sample become stronger. danisotropic of the four rock samples are listed in Fig. 1,
and it can be deduced that the sample C3 has the strongest anisotropy, followed by C1
and C2. Then, we investigate the two-point connectivity probability functions of the four
rock samples. Figure 1 demonstrates that there is only a small difference in the two-point
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Fig. 2 The pore network of the four samples, the mean (E), variance (σ and the ration between variance and
mean (V) of the pore-size distribution, the percentage of high pore-throat ratio (> 10)

connectivity probability functions of different directions for the four samples. Thus, we can
conclude that themultiple-point connectivity probability function can characterize the spatial
continuity of the structure of heterogeneous porousmedia more accurately than the two-point
connectivity probability function. This is because that the two-point connectivity probability
function does not take into account the curvilinearity of the structures (Krishnan and Journel
2003). Considering that the heterogeneous porous media usually have complex connectivity,
we introduce the multiple-point connectivity probability function as the constraint condition
in the CCSIM-TSS algorithm.

Then, the structures of the pore spaces of four rock samples are examined. The pore
network of the four samples are extracted by a newly developed pore network extraction
algorithm, the AB (axis & ball) algorithm (Yi et al. 2017), as shown in Fig. 2. Then, the
pore-size distribution of the samples are calculated to investigate the heterogeneity of pore
spaces of the four rock samples quantitatively. Figure 2 compares the mean (signed by E),
variance (signed by σ )and the ration between variance and mean (signed by V) of the pore-
size distribution of the four rock samples. A striking feature of Fig. 2 is that the sample C3 has
the biggest value of V, indicating that C3 has the widest size range of pores and its pore space
is the most heterogeneous one in the four samples. We can also deduce that the pore space of
C4 is the most homogeneous one and the pore space of C1 is more homogeneous than C2.
Furthermore, the pore-throat ratio, the ratio of pore radius to the linked throat radius, is also
calculated to investigate the heterogeneity of pore space. The percentage of high pore-throat
ratio which is bigger than 10, signed by Rpt, are shown in Fig. 2. It can be found that Rpt of C4
is smaller than the other three samples, indicating that the difference between pore sizes and
throat sizes of C4 is smaller than the other three samples and C4 is more homogeneous. In
summary we can conclude that the pore space of C3 is the most heterogeneous one, followed
by C2, C1 and C4.

From the above discussion, we can see that the pore spaces of the four rock samples
are typically inhomogeneous. Thus, we will use the four samples for reconstruction in the
following section.

2.2 CCSIM-TSS Method

The improved method, CCSIM-TSS, combines the cross-correlation-based simulation
(CCSIM) with the three-step sampling method together to reconstruct stochastically 3D
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Fig. 3 The description of the CCDIM-TSS algorithm

models of the heterogeneous porous media. The specific steps of CCSIM-TSS are arranged
as follows (as show in Fig. 3).

1. At first, typical digital images (DIs) in three directions (DIxy, DIyz and DIxz), which
include most of the expected variations and heterogeneity of a porous medium, are
selected.

2. Let G represent the simulation grid that is used to reconstruct a model. Then, G is
partitioned into small blocks or templates T, while the data event at position u(x, y) in
T—the data that are sampled and inserted in T—is denoted by DT(u). The data inserted
in a template may change during the reconstruction, until the realization is completely
developed. As described, the conceptual information is presented as a DI. Figure 3 shows
an example of a DI. The simulation starts from a corner of the grid G and proceeds along
a 1D raster path as shown by the yellow arrows in Fig. 3. At each step, to preserve the
continuity between the patterns, an overlap region OL, populated with information from
the DI, is extracted from G, and its similarity with the DI is evaluated by calculating the
CCF (Tahmasebi et al. 2012, 2015, 2016):

C(i, j; x, y) =
lx−1∑

x=0

ly−1∑

y=0

DI (x + i, y + j) DT (x, y) (1)

where 0 ≤ i < Lx + lx −1 and 0 ≤ j < Ly + ly −1. DI (x, y) represents the location at
point (x, y)of DI of size Lx × Ly , with x ∈ {0, . . . , Lx − 1} and y ∈ {

0, . . . , Ly − 1
}
.

The OL region of size lx × ly and data event DT is used to match the pattern in the DI .
Finally, one of the acceptable candidate patterns is selected and inserted in the current
DT in G. The acceptance criterion is based the CCF and a threshold defined for it that
the CCF must exceed.
The original DIxy is set as the first layer at the bottom of 3D model Then, the other four
frames (i.e., front, left, back, and right) are generated using the method described above,
as shown in Fig. 3. Next we start to reconstruct each layer in the vertical direction (z
direction).

3. During generating each layer in the vertical direction, we use the three-step sampling
method to extract the conditional data. Firstly, the two-point connectivity probability
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Table 2 The edge sampling procedure based on the two- and multiple-point connectivity probability function

function (ACF (r)) and the multiple-point connectivity probability function (P(r)) are
calculated based on the typical digital images (DIs), as shown in Fig. 3. Let i + 1 be
the number of layers to be reconstructed currently. Now we select the hard data based
on the three-step sampling method. In the first step, the ith layer is scanned using a 5 ×
5 sampling template; the central node of the template, which is entirely pore (grain), is
marked as a sampling point, the number of sampling points is recorded, and this sampled
area is labeled. Then, the remaining portion of the image is scanned using a 3 × 3
sampling template, and the process stated before is performed again. In the second step,
the unavailable sampling area is labeled, and the number of pixels is recorded. In the
third step, the edge area is marked. The sampling points in the edge area are selected
according to the algorithm described in Table 2. It should be noted that the edge sampling
method based on the two-point connectivity probability function is different from that
based on the multiple-point connectivity probability function. In the former method, the
ACF of the 3D reconstructed part is calculated and then is compared with the ACF of DIs
to sample the edge points. However, in the later method, the multiple-point connectivity
probability functions of the XZ plane and YZ plane passing through the edge point,
denoted by Px(r) and Py(r), are calculated, respectively, and then are compared with
the P(r) of DIs to determine whether the edge point is selected. Finally, all of the selected
sampling points are shown in Fig. 4c, where the edge points are sampled based on the
multiple-point connectivity probability function.
The procedure continues until all the (2D) layers have been reconstructed. Eventually,
all the generated layers are stacked together to create the reconstructed 3D model.

4. Finally, we use an iterative scheme to increase the similarity between the existing features
in the reconstructed 3D model and the DIs. For each voxel in the reconstructed model,
three different patterns (qx, qy, qz) in three orthogonal planes passing through the voxel
are selected. The CCF between the patterns and the corresponding entire 2D DIs image
are computed, and thus the closest patterns (px , py , pz) corresponding to (qx, qy, qz) are
selected, as shown in Fig. 5. Then, each selected pattern px , py ,and pz is inserted into
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Fig. 4 The ith imaging (a); the procedure of three-step sampling (b); the final selected sampling points (c)

Fig. 5 Iterative 3D modeling: extraction of three data events in output 3D model (qx , qy , qz ), with the best
three candidates (px , py , pz ) being found in the DIs

the 3D model, the histogram of the 3D model is constructed. Then, the Jensen–Shannon
distance dJS (p, q) between the resulting histograms of the three patterns (pi ) within the
reconstructed 3D model with the DIs is calculated, as shown in Eq.2. The one that has
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the minimum dJS (p, q) is selected as the final value of the voxel in the 3D model. The
above steps are repeated until all of the voxels in the 3D mode are visited.

dJS(p, q) = 1

2

∑

i

pi log

(
pi
qi

)
+ 1

2

∑

i

qi log

(
qi
pi

)
(2)

For the sake of discussion, the algorithm that uses two-point connectivity probability
functions as constraint conditions is named as CCSIM-TSStp, while the algorithm that
uses multiple-point connectivity probability functions as constraint conditions is named as
CCSIM-TSSmp.

3 Results and Discussion

In this section, we use the improved method (CCSIM-TSS) to reconstruct the four typical
heterogeneous porous media in the above section.

3.1 Verification

The first sample, referred to as C1, is selected for reconstruction. In this first numerical exper-
iment, we focus our attention on comparing the CCSIM-TSS algorithm with the algorithm
CCSIM. The 2D images of C1 used as DIs are shown in Fig. 6. Because of the heterogene-
ity of the sample C1, patterns in each direction are different. Also, based on the three DIs,
the two-point connectivity probability function (ACF (r)) and the multiple-point connectivity
probability function (P(r)) are extracted, as shown in Fig. 7. And theywill be used as vertical
constraint conditions in CCSIM-TSStp and CCSIM-TSSmp, respectively.

The realizations generated by CCSIM, CCSIM-TSStp and CCSIM-TSSmp are shown
in Fig. 8. As they manifest, the reconstructed results have reproduced the structure and
connectivity of the original sample. At the visual level, the three methods are capable of
preserving the connectivity of the sample in the direction of stacking the 2D images that it
reconstructs, as well as the variability in the spatial distribution of the pores.

To further examine the three algorithms, we generate 30 realizations using each algorithm
and then use the MDS-ANODI (the multidimensional-scale and the analysis of the distance)
to analyze the results (Tan et al. 2014). The Jensen–Shannon divergence is used to calculate
the distances mi j between each pair of realizations and the distances between realizations
and the Micro-CT image. Thus, a 91 × 91 distance matrix (M) can be constructed, and

Fig. 6 The extracted 2D representative DIs in the x, y and z directions
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Fig. 7 The two-point connectivity probability function (a) and the multiple-point connectivity probability
function (b)

Fig. 8 Three reconstructed models by CCSIM (a), CCSIM-TSStp (b) and CCSIM-TSSmp (c)

Fig. 9 The MDS-ANODI plot illustrating the spatial variability. Realizations (shown here by green for the
CCSIM-TSSmp and by blue for the CCSIM-TSStp) with better pattern reproduction are distributed around
the Micro-CT image (the black dot)

then, it is visualized using the MDS (Multidimensional scaling), as shown in Fig. 9. MDS
relies on eigenvalue decomposition; the x-axis in Fig. 9 refers to the largest eigenvalue of
the distance matrix (M), the y-axis to the second largest eigenvalue. The units on these axes
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Table 3 The ANODI scores for the variability of within and between realizations and total ratio for the newly
proposed CCSIM-TSStp, CCSIM-TSSmp and CCSIM

Space of uncertainty (between) CCSIM-TSSmp:CCSIM-TSStp:CCSIM 1:0.7606:0.9348

Pattern reproduction (within) CCSIM-TSSmp:CCSIM-TSStp:CCSIM 1:0.8175:1.3025

Ratio (between/within) CCSIM-TSSmp:CCSIM-TSStp:CCSIM 1:0.9305:0.7177

Fig. 10 Comparison of the two-point connectivity probability for the CT image (black) and reconstructed
models (gray). a CCSIM; b CCSIM-TSStp; c CCSIM-TSSmp

are not important; what matters are relative distances between these points (Tan et al. 2014).
The better pattern reproduction of the CCSIM-TSS (CCSIM-TSStp and CCSIM-TSSmp)
algorithm is well illustrated in this plot, as most of the green and blue dots, correspond-
ing to the CCSIM-TSS realizations, are distributed closer to the Micro-CT image (black
dot). To further quantify the accuracy of the CCSIM-TSS method, the results of the ANODI
analysis (the analysis of the distance) are summarized in Table 3, where space of uncertainty
(between-realization variability) refers to the result for the distances between the realizations,
whereas pattern reproduction (within-realization variability) represents the result for the dis-
tances between the realizations and the Micro-CT image. Tan has pointed out that the best
algorithm should minimize the within-realization variability and at the same time maximize
the variability between the produced realizations. As a result, the best algorithm is expected
to have the largest ratio (between/within) (Tan et al. 2014). The ratio of space of uncertainty
and pattern reproduction is denoted asγ . Thus, Table 3 demonstrates that the uncertainty
space of the CCSIM-TSS generated realizations is shrunk trivially, whereas the pattern
reproduction is improved tremendously. Furthermore, γCCSIM−TSSmp:γCCSIM−TSStp:γCCSIM
is 1:0.9305:0.7177 meaning that the CCSIM-TSS algorithm performs better than CCSIM.

Next we compare the connectivity of the micro-CT image of C1 and the reconstructed
results from the CCSIM-TSS (CCSIM-TSStp and CCSIM-TSSmp) and CCSIM algorithm.
The two-point connectivity probability function are computed. The comparisons for the
micro-CT medium of C1 and reconstructed results are presented in Fig. 10. It is clear that the
two-point connectivity probability function of the reconstructed results from theCCSIM-TSS
algorithm match the actual data better than that from the CCSIM algorithm.

Now consider the pore-size distribution of the reconstructed results. Figure 11 displays the
pore-size distributions of the realizations generated by the three algorithms and the micro-
CT image of C1. It is also clear that there is a very good agreement between the realizations
generated by CCSIM-TSS algorithm and the micro-CT image. The CCSIM-TSS algorithm
can reproduce the pore-size distributions better than the CCSIM algorithm, while CCSIM-
TSSmp has a slightly better results than CCSIM-TSStp.
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Fig. 11 The pore-size distribution of the reconstructed results (gray) and the Micro-CT image (black). a
CCSIM; b CCSIM-TSStp; c CCSIM-TSSmp

Table 4 Comparison of the absolute permeabilities for the reconstructed results generated by the CCSIM,
CCSIM-TSStp and CCSIM-TSSmp method

CCSIM CCSIM-TSStp CCSIM-TSSmp

kx (mD) ky (mD) kz (mD) kx (mD) ky (mD) kz (mD) kx (mD) ky (mD) kz (mD)

Max 1451 1566 832 168 1202 482 605 2100 461

Upper quartile 1176 1487 686 97 783 295 493 1446 255

Lower quartile 977 1378 583 48 295 147 137 344 130

Min 856 1275 515 0 63 46 87 183 41

Median 1089 1440 651 64 475 211 253 456 204

Finally, the absolute permeabilities of the realizations in three directions from the CCSIM-
TSS (CCSIM-TSStp and CCSIM-TSSmp) and CCSIM algorithm are computed (Table 4).
The absolute permeabilities of the Micro-CT image of C1 are kx = 160mD, ky = 380mD
and kz = 205mD, which are listed in Table 1. Comparing the median permeabilities in
Table 4 with the results of the Micro-CT image, we find that the realizations generated by
CCSIM-TSS have a much better agreement with the micro-CT image than that generated
by CCSIM. Thus, it can be deduced that the CCSIM-TSS algorithm performs better than
CCSIM algorithm.

3.2 Comparison and Analysis

We have compared the CCSIM-TSS and CCSIM algorithm, and in this section, we will
further examine the difference of performance between the CCSIM-TSStp and CCSIM-
TSSmp algorithm using the four rock samples.

The 2D images of each sample used asDIs are shown inFig. 12.Additionally, the two-point
connectivity probability function (ACF (r)) and the multiple-point connectivity probability
function (P(r)) are calculated.

Thirty realizations are generated with CCSIM-TSStp and CCSIM-TSSmp algorithm,
respectively. To compare CCSIM-TSStp with CCSIM-TSSmp quantitatively, the MDS-
ANODI method are applied to the reconstructed results, see Fig. 13 and Table 5. Inspecting
Fig. 13, one can see that for each sample, the CCSIM-TSSmp method has a better uncer-
tainty space than the CCSIM-TSStp. Clearly, consistent with the plot in Fig. 13, for each
sample, the space of uncertainty (between) for CCSIM-TSStp in Table 5 is smaller than
CCSIM-TSSmp. At the same time, for each sample, the difference of the pattern reproduc-
tion between CCSIM-TSSmp and CCSIM-TSStp method is smaller than the difference of
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Fig. 12 The extracted 2D representative DIs in the XY (a), XZ (b) and YZ (c) plane of C1, C2, C3 and C4

space of uncertainty (Table 5). Note that an accurate method must have two features: it must
produce an ensemble of realizations with significant differences between each other, while
each of them is still a plausible representation of the Micro-CT image. It can be obtained
from the ratio of between and within in Table 5 that the difference of the performance
between CCSIM-TSStp and CCSIM-TSSmp for C3 is the biggest one in the four examples
(γCCSIM−TSSmp:γCCSIM−TSStp = 1:0.6315), while the difference of the performance between
CCSIM-TSStp and CCSIM-TSSmp for C2 is larger than that for C1. One can also notice
that the performance of the two algorithms in reproducing 3D models of C4 is similar.
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Fig. 13 The MDS-ANODI plot illustrating the spatial variability for C1 (a), C2 (b), C3 (c) and C4 (d).
Realizations (shown here by blue for CCSIM-TSSmp) with better pattern reproduction are distributed around
the TI (the black dot)

Table 5 The ANODI scores for the variability of within and between realizations and total ratio for the
CCSIM-TSSmp and CCSIM-TSStp for C1, C2, C3 and C4

CCSIM-TSSmp:CCSIM-TSStp

C1 C2 C3 C4

Space of uncertainty (between) 1:0.7606 1:0.8156 1:0.7181 1:0.9242

Pattern reproduction (within) 1:0.8175 1:1.0178 1:0.9494 1:0.9662

Ratio (between/within) 1:0.9305 1:0.8014 1:0.6315 1:0.9505

To find the trends of the difference of the performance in reproducing 3Dmodels between
CCSIM-TSStp and CCSIM-TSSmp, the ratio of γCCSIM−TSStp and γCCSIM−TSSmp in Table 5
are plotted versus the variance-mean ratios (signed byV) of pore-size distributions of the four
rock samples, as shown in Fig. 14. Moreover, the ratio of γCCSIM−TSStp and γCCSIM−TSSmp

is denoted as ξ(ξ = γCCSIM−TSStp
γCCSIM−TSSmp

). Thus, we can obtain that the difference of the perfor-
mance in reproducing 3D models between CCSIM-TSStp and CCSIM-TSSmp increases as
ξ decreases. Fitting the four points (red squares), we obtain the black line in Fig. 14. The
near linearity of the results confirms that the quality of the realizations generated by CCSIM-
TSStp decreases rapidly as the heterogeneity of the pore space of the sample increases. This
is due to the fact that, as the heterogeneity of the pore space increases, the connectivity
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Fig. 14 The variance of ξ with
V, ξ is the ratio of γCCSIM−TSStp
and γCCSIM−TSSmp, V is the
variance-mean ratios of pore-size
distributions of the rock samples.
The red squares are ξ of the four
samples, and the black line is the
fitting curves of the four red
squares

Fig. 15 The comparison of pore-size distributions of several realizations generated by CCSIM-TSSmp (gray)
with those of the Micro-CT image (black) of C1 (a), C2 (b), C3 (c) and C4 (d)

becomes more complex. However, the two-point connectivity probability function is insuf-
ficient to characterize the shape and spatial continuity of complex structures. Therefore, we
can obtain that the CCSIM-TSSmp algorithm performs better than CCSIM-TSStp, especially
for heterogeneous porous media.

Finally, the pore-size distribution of the realizations generated by CCSIM-TSSmp are
investigated. For the sake of comparison, the pore-size distributions of the realizations and
the Micro-CT image of the four rock samples are plotted in Fig. 15. The results indicate a
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very good agreement between the realizations and theMicro-CT image for the heterogeneous
porous media.

4 Summary

In this paper, an improved method based on CCSIM and three-step sampling method-called
CCSIM-TSS is proposed to reconstruct the digital coremodel of heterogeneous porousmedia.
In particular, the two-point and multiple-point connectivity probability functions are used as
vertical constraint conditions to preserve the long-range connectivity of the pore space. After
analysis of digital rocks, some important conclusions are obtained as follows:

1. Quantitative comparison is made by computing the two-point connectivity function,
absolute permeabilities and pore-size distributions for the original samples, as well as the
realizations generated by CCSIM and CCSIM-TSS. The CCSIM-TSS (CCSIM-TSStp
and CCSIM-TSSmp) algorithm was demonstrated to be able to produce higher quality
realizations than CCSIM.

2. By further comparison of the reconstructed models of CCSIM-TSStp and CCSIM-
TSSmp, we found that as the heterogeneity of the pore space increases, CCSIM-TSSmp
performs much better than CCSIM-TSStp. In other words, CCSIM-TSSmp is more suit-
able for highly heterogeneous pore space than CCSIM-TSStp.

Acknowledgements This work is supported by the Strategic Priority Research Program of the Chinese
Academy of Sciences (grant No. XDA14010304), the National Natural Science Foundation of China (Grant
No. 41404114 and No. 41690132), the National Program on Key Basic Research Project (973 Program, Grant
No. 2014CB239004) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant
No. XDB10020302).

Appendices

A. Two-Point Correlation Function (ACF)

The void–void (pore–pore) ACF is defined by

ACF(r) = E {[I (u) − φ] [I (u + r) − φ]}
φ − φ2 (A-1)

where the averaging is over all locations uwithin the volume, and I (u) is an indicator function
such that I (u) = 1, if u is in the pore space, and I (u) = 0 otherwise. The porosity is simply
ϕ = E {I (u)}, E {I (u)} is the mean of I (u) over all locations u within the volume.

B. Multiple-Point Connectivity Probability Functions

The multiple-points connectivity probability is proposed by Krishnan and Journel (2003).
It is a measure of the connectivity of the system within an image. The truncated tolerance
cone is defined, as shown in Fig. 16. Consider a seed location u in channel: I (u) = 1 (u is
in the pore space). Within the defined tolerance cone, we would like to connect u through
a channel path to another maximally distant location u is in the pore space u′, that distance
being measured along the axis of the cone.

More precisely, the calculation of the multiple-points connectivity probability proceeds
as:
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Fig. 16 The truncated tolerance
cone. bandw is the bandwidth,
controlling deviation from the
central target direction at larger
distances. Maxlag is the
maximum distance

Loop through all nodes u of the study area.

• If I (u) = 0, set dmax = 0 and go to next node u.
• If I (u) = 1, i.e., location u belongs to the pore space, call MATLAB function bwselect

to determine within the tolerance cone with apex at u, the set (body) of all locations u′
belonging to the pore space, i.e., I (u′) = 1. Loop through all these locations u′ and
determine the maximum distance dmax to the apex u. Increment the n proportions of
continuous (and curvilinear) channel paths of length n�h ≤ dmax. �h is a unit vector in
any given direction.

It should be emphasized that the tolerance angle is± 22.5◦, the bandwidth is 10 pixels during
calculating the curvilinear directional connectivity in this paper.
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