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a b s t r a c t 

It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their 

spherical counterparts in biological porous media such as mucus and tumor interstitial 

matrix, but the underlying mechanisms still remain elusive. Here, we present a joint exper- 

imental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive 

interactions with the host medium play key roles in such anomalous diffusion behaviors 

of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables 

nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the mi- 

nor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In 

contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non- 

adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, 

which captures all the experimental observations, generalizes the so-called obstruction- 

scaling model by incorporating the effects of the NPs/matrix interaction via the mean first 

passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffu- 

sion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of 

applications that involve NPs diffusion in complex porous media. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

Increasing the transport rate of NPs through physiological barriers, prominent examples including the gel-like mesh

structures of mucosa and tumor interstitial matrix, is crucial for improving the efficiency of drug delivery systems ( Jain

and Stylianopoulos, 2010; Lai et al., 2009 ). Mucus, a tenacious gel that protects mucosal surfaces from the entry of external

pathogens ( Button et al., 2012; Johansson et al., 2013; McGuckin et al., 2011 ), controls the entry of drug carriers into the
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Table 1 

Parameters of nanoparticles (MSNs) used in the experiments. 

Nanoparticle Aspect ratio Size in SEM (nm) Hydrodynamic diameter (nm) PDI Zeta potential (mV) 

AR1 1.0 80 108 ± 12 0.022 −3.6 ± 1.0 

AR2 1.9 75 × 145 160 ± 18 0.014 −4.7 ± 1.2 

AR3 2.8 78 × 220 210 ± 20 0.060 −2.1 ± 0.7 

AR4 4.1 85 × 350 257 ± 33 0.089 −1.0 ± 0.7 

AR8 7.7 65 × 500 302 ± 48 0.077 −2.6 ± 0.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

circulatory system ( Cone, 2009; Lai et al., 2009 ). The tumor interstitial matrix, another polymer gel-like medium, consti-

tutes a vital barrier to the delivery of drug-loaded NPs to tumor cells ( Jain and Stylianopoulos, 2010 ). Xue et al. developed

a biochemomechanical model for the growth of tumor interstitial matrix ( Xue et al., 2016 ) and a non-equilibrium ther-

modynamics model to capture the effect of tumor matrix on drug transport ( Xue et al., 2017 ). In addition to their steric

hindrance effect on the movement of NPs ( Hofling and Franosch, 2013; Saxton, 1994; Stylianopoulos et al., 2010a ), fibrous

media also exhibit heterogeneous interactions with NPs, including non-specific interactions (van der Waals, electrostatic and

hydrophobic interactions) and specific interactions between complementary structures ( Lai et al., 2009; Ponchel and Irache,

1998; Saxton, 1996; Stylianopoulos et al., 2010b ), which can reduce the mobility of NPs by orders of magnitude. These fun-

damental characteristics of biological media suggest possibilities for rational and mechanism-based design of drug delivery

systems. The shape of NPs is known to strongly affect their intravenous circulation time ( Geng et al., 2007 ), translocation

across cell membrane ( Li et al., 2013; Shi et al., 2011; Wang et al., 2014; Yang and Ma, 2010 ), and intracellular transport

route ( Hinde et al., 2017 ). So far, relatively few studies have focused on the effect of the shape of NPs on their transport

in porous media ( Choi et al., 2015; Fakhri et al., 2010; Han et al., 2006; Lee et al., 2017; Peng et al., 2016 ). Recently, it has

been shown that the diffusivity in mucus of nanorods with diameter × length of 80 × 240 nm is more than 3 times higher

than that of nanospheres with diameter of 80 nm ( Yu et al., 2016 ). Another study reported that nanorods penetrate more

efficiently through the tumor interstitial matrix than nanospheres of the same hydrodynamic radius ( Chauhan et al., 2011 ).

These anomalous diffusion behaviors associated with particle shape could open a new route to more efficient NP-based drug

delivery systems, and this calls for a systematic investigation of the underlying physical mechanisms. 

Various diffusion models based on obstruction effects ( Johansson et al., 1991; Tomadakis and Sotirchos, 1993 ), hydrody-

namic interactions ( Altenberger et al., 1986; Cukier, 1984 ), free volume theory ( Yasuda et al., 1968 ), polymer scaling theory

( Cai et al., 2011, 2015 ) and a microscopic statistical mechanical theory ( Zhang and Schweizer, 2016 ) have been developed

to describe the diffusion of NPs in polymer solutions and gels ( Masaro and Zhu, 1999 ). In particular, an obstruction-scaling

model was developed for the diffusion of spherical solutes in covalently cross-linked hydrogels ( Amsden, 1998, 1999; Had-

jiev and Amsden, 2015 ), and later used to describe the diffusion of spherical NPs in mucus ( Cu and Saltzman, 2009; Olmsted

et al., 2001 ) and to estimate the pore size of human cervicovaginal mucus ( ∼340 nm) ( Lai et al., 2010 ). However, this model

is not applicable to the diffusion of NPs in adhesive mucus, as it neglects adhesive interactions between solute particles

and matrix. In reality, diffusing NPs can strongly interact with mucus, where the diffusivity of uncoated NPs can be three

orders of magnitude lower than that of polyethylene glycol (PEG)-coated NPs ( Lai et al., 2007 ). Therefore, it is imperative to

develop a theoretical model that accounts for the interactions between NPs and matrix. 

This paper is aimed to present a joint experimental and theoretical study to elucidate how the shape of NPs affects their

diffusion in non-adhesive and adhesive polymeric gels. In Section 2 , we report experimentally measured diffusivity of NPs

with different aspect ratios in mucus and hydroxyethyl cellulose (HEC). In Section 3 , we extend Amsden’s obstruction-scaling

model to describe the diffusion of nanorods in non-adhesive polymer solutions/gels. In Section 4 , we establish a framework

based on the mean first passage time (MFPT) theory to incorporate the effect of NP/polymer affinity and study how the

aspect ratio affects the diffusivity of NPs. Our theoretical model pinpoints the underlying mechanisms behind the shape

effect in the diffusion of NPs in non-adhesive and adhesive porous gels, and explains all experimental observations. Finally,

Section 5 summarizes the main conclusions of this study. 

2. Experimental observations 

Mucus was used as a model system to investigate how the shape of NPs affects their diffusion in an adhesive porous

medium, where the mucin fibers exhibit alternating hydrophilic and hydrophobic regions. The hydrophobic regions are

folded and cross-linked to form hydrophobic globules ( Cone, 2009 ) within which even PEG-coated NPs can be trapped ( Lai

et al., 2007; Wang et al., 2008; Xu et al., 2015 ). By adjusting the concentration of reagents and temperature, we fabricated

mesoporous silica NPs (MSNs) with the same minor-axis diameter but different aspect ratios: AR = 1, 2, 3, 4, and 8, denoted

as AR1, AR2, AR3, AR4 and AR8, respectively ( Fig. 1 ). These NPs have nearly neutral zeta potentials to ensure that the AR is

the sole variable and to avoid the influence of surface charge on the NP-mucin interactions ( Table 1 ). The diameter of the

NPs was controlled to vary in a narrow range. Rhodamine isothiocyanate (RITC) was labeled onto the surface of MSNs by

grafting of RITC-APTES ((3-Aminopropyl)triethoxysilane) ( Yu et al., 2016 ). More details about the experiments are provided in

Appendix B . Multiple particle tracking techniques were used to monitor the movement trajectory, mean square displacement

(MSD) and diffusivity of NPs in rat intestinal mucus ( Fig. 2 ). We analyzed 300 particles from each group. The accumulative
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Fig. 1. Scanning electron microscopic (SEM) images of MSNs with different ARs. (a) AR1 with diameter around 80 nm. (b) AR2 with diameter × length of 

75 × 145 nm. (c) AR3 with diameter × length of 78 × 220 nm. (d) AR4 with diameter × length of 85 × 350 nm. (e) AR8 with diameter × length of 65 × 500 nm. 

Table 2 

Typical parameters for mucus system and NPs. 

Parameters Value Explanation 

2 νL 16 × 10 13 /m 

2 Total fiber length per unit volume 

2 L 1 μm Length of the fibers 

R 40 nm, 50 nm, 60 nm Radius of NPs 

R H 70 nm, 80 nm, 90 nm, 100 nm Hydrodynamic radius of NPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSDs at 1 s were 0.29, 0.74, 0.87, 0.34 and 0.014 μm 

2 for MSNs with AR of 1, 2, 3, 4 and 8, respectively ( Fig. 2 (b)). These

results indicate that the diffusivities of AR2 and AR3 are significantly higher than that of AR1 (i.e. spherical NPs). Further-

more, a rapid decrease in diffusivity was observed when the AR increases to 4 and 8, suggesting the existence of an optimal

AR ( ∼3) for the maximum transport rate in adhesive mucus. 

To test whether the high affinity between NPs and mucin fibers is a key factor that leads to the observed anomalous dif-

fusion behaviors, we also investigated the diffusivity of MSNs in hydroxyethyl cellulose (HEC, 0.5%, w/w), a hydrophilic and

non-ionic gel without hydrophobic regions ( Vadodaria and English, 2016 ). HEC has been used to mimic the mesh structure

of mucus, and its porous structure has also been confirmed via cryogenic scanning EM (cryo-SEM) ( Kirch et al., 2012 ). Here

HEC powder was dissolved in deionized water with a concentration of 0.5% (w/w). As shown in Fig. 2 , the diffusivities of

MSNs monotonically decline with increasing AR. Thus, unlike mucus with hydrophobic and adhesive cores at the intersec-

tion of mucin fibers, the HEC fibers could not exert a strong interaction on the NPs. This is consistent with our intuition

that in the absence of sufficiently strong adhesion, increased AR retards the diffusion of MSNs. 

We further investigated the mobility of MSNs in glycerine (80%, v/v), a solution with no porous network but high vis-

cosity. Again, the diffusivities of MSNs monotonically decline with increasing AR ( Fig. 2 ). These results indicate that the

adhesion regions in the porous network of mucus play an essential role in the enhanced diffusivity of nanorods. 

3. Non-adhesive diffusion model 

We first extend Amsden’s obstruction-scaling model to describe the diffusion of nanorods in non-adhesive porous media

( Fig. 3 (a)). In this model, the diffusivity of spherical NPs in polymer gels is described through the probability of one NP en-

countering a series of openings between the polymer chains whose spacing is larger than the size of the NP ( Amsden, 1999 ).

For spherical NPs, the normalized diffusivity is 

κ = 

D g 

D 0 

= 

∫ ∞ 

R 

g ( r ) dr = P ( r > R ) , (1)

where D g is the diffusivity of the NPs in the polymer solution; D 0 is the diffusivity of the NPs in water; κ is the ratio

between D g and D 0 ; g ( r ) is the distribution function of the radii r of the openings between polymer chains; and R is the

radius of the spherical NPs. 
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Fig. 2. Multiple particle tracking of MSNs in mucus (a), (b) and (c), 0.5% HEC (d), (e) and (f) and 80% glycerine (g), (h) and (i) at room temperature. (a), (d) 

and (g), Representative trajectories of MSNs with different ARs over a time period of 1 s. (b), (e) and (h), Ensemble-averaged accumulative MSD of MSNs 

diffusing over a time period of 1 s. (c), (f) and (i), Effective diffusivities ( D eff) of NPs on a time scale of 1 s. More than 300 particles were analyzed for each 

sample. ∗∗P < 0.01, ∗∗∗P < 0.001, Bonferroni’s test. Data are means ± SEM. 

Fig. 3. Diffusion of NPs in a polymer gel. (a) Schematic showing diffusion of spherical and rod-like NPs in a polymer gel. (b) Schematic showing NP 

diffusion in one-dimensional (1D) cylindrical nanopores with adhesion regions A and B. (c) Schematic showing NP diffusion in a three-dimensional (3D) 

regular network with adhesion regions. (d) Morse potential V (x ) = U 0 ( e 
−2 x/ρ − 2 e −x/ρ ) is used to describe the interaction energy between nanorods per 

unit length and the adhesion region, where U 0 is the adhesion strength, x is the distance between the NP and the adhesion region, and ρ is the potential 

range. 
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Fig. 4. Contact between fibers and a rod NP. (a) Schematic showing a cylinder in a random network composed of straight fibers. (b) Different contact 

manners between NPs and spherical surface � when NPs are placed in the random network of straight fibers. � is a spherical surface expanded from 

point O until it reaches the fibers, and r is the radius of � and referred to as the contact distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hydrodynamic radius of the rod-like NPs, R H , is evaluated as ( Ortega and de la Torre, 2003 ) 

R H = 

(
3 

2 

λ
)1 / 3 

R 

[
1 . 009 + 1 . 395 × 10 

−2 ln λ + 7 . 88 × 10 

−2 
( ln λ) 

2 + 6 . 04 × 10 

−3 
( ln λ) 

3 
]
, (2)

where λ is the AR of the cylinder within 0.1 < λ< 30. The diffusion coefficient of NPs in water, D 0 , can be evaluated by the

Stokes–Einstein equation 

D 0 = 

k B T 

6 πη · R H 

, (3)

where η is the dynamic viscosity of water, k B is the Boltzmann constant, and T is temperature. Combining Eqs. (2) and (3) ,

one can estimate the diffusion coefficient of rod-like NPs. 

Ogston showed that the radii of spherical spaces between a random network composed of straight fibers of negligible

width obey the following distribution ( Ogston, 1958 ), 

g ( r ) = 

(
4 πv Lr + 4 πv r 2 

)
· exp 

[ 
−
(

2 πv L r 2 + 

4 π

3 

v r 3 
)] 

, (4)

where v is the average number of fibers per unit volume and L is the half length of the fibers. Using the distribution of

openings in such a random network to approximate the openings between the polymer chains ( Hadjiev and Amsden, 2015 ),

Amsden obtained the normalized diffusivity of spherical NPs. In fact, mathematically, Eq. (1) is equivalent to the probability

that there are no fibers in contact with the spherical NP when the NP is placed in the random network. Following this

framework, consideration of a random network composed of straight fibers leads to the average number of fibers in contact

with a rod-like NP, N̄ , while the actual number N of fibers in contact with the rod-like NP follows a Poisson distribution

( Chun et al., 1969; Rodbard and Chrambac, 1970 ) 

P ( N = k ) = 

N̄ 

k · exp 

(
−N̄ 

)
k ! 

. (5)

Eq. (5) describes the fraction of space that is penetrated by k fibers; when k = 0 , it is the fraction of space that can

accommodate the NPs. The model is based on the following assumptions: 1) The relaxation of polymer chains is much

slower than the diffusion of NPs so that the polymer matrix can be considered immobile; 2) The distribution of the openings

between polymer chains can be approximated by that in a random network composed of straight fibers. Accordingly, the

normalized diffusivity of the nanorods, i.e. the probability of a rod-like NP encountering a series of openings between the

polymer chains whose spacing is larger than its size, is expressed as 

κ = 

D g 

D 0 

= P ( N = 0 ) = exp 

(
−N̄ 

)
. (6)

3.1. Average number of fibers in contact with rod-like NPs 

Next, we determine the average number of fibers in contact with randomly dispersed rod-like NPs in a fiber network. As

shown in Fig. 4 , O is the center of a NP, � is a spherical surface expanded from point O until it reaches the fibers, and r is

the radius of � and contact distance. Depending on the contact manner between the NP and �, the fibers can be classified

into four kinds: (1) in tangential contact with � and the contact points are within the NP ( l 1 ); (2) end-point contact and

the contact points are within the NP ( l ); (3) tangential contact and the contact points are outside the NP ( l ); (4) end-point
2 3 
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Fig. 5. Fibers in tangential contact with � with contact points within a cylindrical NP. (a) Schematic showing a fiber ( l 1 ) in tangential contact with � with 

contact point within the cylinder. (b) and (c) The projection of the cylinder and the fiber ( l 1 
′ ) on the yz -plane. r , the radius of �, is in the range of (b) [ R, 

λR ] and (c) [ λR, 
√ 

λ2 + 1 R ] . 

 

 

 

 

 

 

 

 

contact and the contact points are outside the NP ( l 4 ) ( Fig. 4 ). The average numbers of these fibers are denoted as N̄ 1 , N̄ 2 ,

N̄ 3 and N̄ 4 , respectively. The expected total number N of fibers in contact with the rod-like NP is 

N̄ = N̄ 1 + N̄ 2 + N̄ 3 + N̄ 4 , (7) 

which can be derived as follows. 

First we deduce N̄ 1 , the average number of fibers having tangential contact with � with contact points within the NP ( l 1 )

( Fig. 4 (b)). Following Ogston (1958) , for fibers in tangential contact with the spherical surface �, the number whose contact

points fall within the region [0, R ] is γ t · R 2 where γt = 2 πv L , v being the average number of fibers per unit volume; the

number of fibers whose contact points fall within the region [ r, r + dr ] is γ t · d ( r 2 ). As shown in Fig. 5 , the number of fibers

whose contact points fall within [ r, r + dr ] and the cylinder is (these fibers are all in contact with the cylinder.) ⎧ ⎪ ⎨ 

⎪ ⎩ 

γt · d 
(
r 2 

)
, r ∈ [ 0 , R ] 

γt · d 
(
r 2 

)
· ( 1 − cos θ ) , r ∈ [ R, λR ] 

γt · d 
(
r 2 

)
· ( cos θ1 − cos θ2 ) , r ∈ 

[
λR, 

√ 

λ2 + 1 R 

] , (8) 

where cos θ = 

√ 

r 2 −R 2 

r , cos θ1 = 

λR 
r , cos θ2 = 

√ 

r 2 −R 2 

r . 

Therefore, N̄ 1 is given by 

N̄ 1 = γt 

[ 

R 

2 + 

∫ λR 

R 
( 1 − cos θ ) · d r 2 + 

∫ √ 

λ2 +1 R 

λR 
( cos θ1 − cos θ2 ) · d r 2 

] 

= γt · f ( λ) · R 

2 , (9) 

where f (λ) = ( 
√ 

λ2 + 1 − λ) · λ + ln ( 
√ 

λ2 + 1 + λ) . 

The deduction of N̄ 2 , N̄ 3 and N̄ 4 is similar to that of N̄ 1 and can be found in Appendix A . 

3.2. Validation of theoretical model by Monte Carlo simulations 

To validate our theoretical model, Monte Carlo simulations were performed to evaluate the number of fibers in contact

with spherical and cylindrical NPs in a network consisting of straight fibers. 

A random network is generated in a cubic box with side length a . The fiber centers are randomly distributed in the box,

and the fibers of length 2 L are oriented randomly. The total number of fibers in the box is N f . Each fiber is discretized into
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Fig. 6. Probability distribution of N , the number of fibers in contact with NPs, from the theoretical model and Monte Carlo simulations. (a) Results for 

spheres. (b)–(d) Results for cylinders with different ARs. The squares in color represent theoretical predictions by Eqs. (11) and (5) for NP with different 

radii, while the colored pluses represent Monte Carlo sampling results. The dashed lines are used to guide the line of sight. The parameters of the model 

system: a = 150 σ , ν = 1 . 28 × 10 −3 σ−3 , L = 6 σ ( σ is the unit of length). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a series of beads with a separation of 0.5 σ , where σ is the unit of length. The box is periodic, and the beads outside the

box are mapped back into the box to ensure a constant fiber concentration in the system. In our simulations, the box size

is a = 150 σ , the product of fiber concentration v and L is 7 . 68 × 10 −3 σ−2 , where the fiber concentration v is expressed as

v = 

N f 

a 3 
, and L is changed from 3 σ to 18 σ . To ensure the accuracy of the sampling, we generated ten random networks with

different configurations. 

A cylinder with radius R and aspect ratio λ was randomly placed in the random network. Then we counted the number

of fibers in contact with the cylinder denoted by N . We repeated this procedure 1,0 0 0,0 0 0 times with ten different random

networks to evaluate the distribution of N and the probability when N is equal to 0. 

The probability of no fibers in contact with a sphere in a fibrous network was derived by Ogston (1958) . The model

includes an assumption that the number of fibers in contact with a sphere, N , follows Poisson distribution ( Chun et al.,

1969; Rodbard and Chrambac, 1970 ). Thus the average number of fibers in contact with a sphere is given by 

N̄ = 2 πv L R 

2 + 

4 π

3 

v R 

3 , (10)

where R is the radius of the sphere ( Chun et al., 1969; Ogston, 1958 ). If N follows Poisson distribution, then 

P ( N = k ) = 

N̄ 

k · exp 

(
−N̄ 

)
k ! 

, (11)

and 

P ( N = 0 ) = exp 

(
−N 

)
= exp 

(
−2 πvL R 

2 − 4 π

3 

v R 

3 
)
. (12)

Using Monte Carlo sampling, we obtain the probability distribution of N for spheres with different radii in a model

fiber network ( Fig. 6 (a)). It is seen that the simulation results agree well with the theoretical predictions from Eq. (11) . For

cylinders, Monte Carlo results are also consistent with the theoretical predictions by Eq. (5) ( Fig. 6 ). Therefore, through our

designed simulations, we prove that the number of fibers in contact with a sphere or cylinder follows Poisson distribution,

and prove the accuracy of the theoretical model. In the following we would use Eq. (6) to obtain the probability of no fibers

in contact with the cylinder. 
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Fig. 7. The probability of no fibers in contact with NPs. The parameters of the model system: a = 150 σ , νL = 7 . 68 × 10 −3 σ−3 , (a) L = 18 σ , (b) L = 3 σ . 

Lines with different colors represent theoretical results of the spheres and the cylinders of different ARs, while symbols represent Monte Carlo results. 

Fig. 8. Extended obstruction-scaling model for rod-like NPs in a non-adhesive gel. (a) Diffusivity ( D g ) of rod-like NPs with the same minor-axis diameter as 

a function of the aspect ratio λ. The circles represent the diffusivities of spherical NPs with the same diameter. R is the radius of the NP. (b) Diffusivity ( D g ) 

of rod-like NPs with the same hydrodynamic diameter as a function of λ. The circles represent the diffusivities of spherical NPs of the same hydrodynamic 

size. R H is the hydrodynamic radius of the NPs. The parameters used in (a) and (b) are listed in Table 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We further compared the probability κ , theoretically predicted by Eqs. (12) and (6) , with Monte Carlo simulations ( Fig. 7 ).

The results also agree very well, indicating the Eq. (6) could be utilized to evaluate the diffusivity of nanorods in porous

medium. 

3.3. Diffusivity of nanorods in non-adhesive porous media 

We now investigate how the AR influences the diffusivity of nanorods with the same diameter but different lengths

( Fig. 8 (a)). The diffusivity decreases sharply as the rod length increases. For example, the diffusivities of nanorods with an

AR of 2 are 0.32-fold ( R = 40 nm ), 0.19-fold ( R = 50 nm ), and 0.10-fold ( R = 60 nm ) those of NPs with an AR of 1 ( Fig. 8 (a)).

This prediction is consistent with the experimental observation of NPs diffusing in non-adhesive HEC. This is not surprising

as the NPs with high AR are expected to have a large hydrodynamic diameter. We also compare the diffusivities of nanorods

with the same hydrodynamic diameter. The diffusivity of the NPs is found to increase with the AR ( Fig. 8 (b)). Specifically,

the diffusivities of nanorods with an AR of 5 are 2.4-fold ( R H = 80 nm ), 3.1-fold ( R H = 90 nm ), and 4.2-fold ( R H = 100 nm )

those of NPs with an AR of 1 ( Fig. 8 (b)). The effect of the AR, as expected, becomes more significant as the NPs become

longer and thinner. Note our results can also apply to gel electrophoresis and gel filtration of rod-like molecules ( Rodbard

and Chrambac, 1970; Viovy, 20 0 0 ). 

4. Adhesive diffusion model 

4.1. One-dimensional (1D) adhesive diffusion model 

To model the adhesive characteristics of mucus, we assume that there are discrete adhesion zones within the poly-

mer solution, reflecting the fact that there exist heterogeneous hydrophobic and hydrophilic regions within the mucin

fibers ( Cone, 2009 ). We also assume that the NPs undergo hopping diffusion, i.e. , they will be adsorbed to one ad-

hesion region first (region A), and then detach after a while before being re-adsorbed to another adhesion region
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Fig. 9. Schematic showing NPs diffusion in a 1D cylindrical nanopore with adhesion regions A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Skaug et al., 2013; Walder et al., 2011 ) (region B), as shown in Fig. 3 (b) and(c). The time for the NPs to move (hop) from

region A to region B can be calculated with the MFPT theory as follows. 

We consider the diffusion of NPs in a 1D cylindrical nanopore with equally distributed adhesion regions at a spacing of

r 0 ( Figs. 3 (b) and 9 ). For the purpose of mathematical manipulation, the interaction energy between the rod-like NPs per

unit length and the adhesion region is described by the Morse potential 

V ( x ) = U 0 

(
e −2 x/ρ − 2 e −x/ρ

)
, (13)

where U 0 is the adhesion strength, x is the distance between one point on the NP and the adhesion region, and ρ is the

potential range, which is set to 20 nm ( Fig. 3 (d)). The interaction energy U A ( r ) between the whole NP and the adhesion

region A can be expressed by the integral of the Morse potential, which is a function of r , the distance between the center

of the NP and the adhesion region A ( Fig. 9 ). The interaction energy between rod-like NPs and the adhesion region B is

denoted by U B ( r ). The energy landscape when an NP moves from A to B is denoted by U ( r ) which is the sum of U A ( r ) and

U B ( r ) 

U ( r ) = U A ( r ) + U B ( r ) . (14)

U A ( r ) and U B ( r ) are given by ( Fig. 9 ) 

U A ( r ) = 

∫ L/ 2 

0 

V ( | AM | ) d m 1 + 

∫ L/ 2 

0 

V ( | AN | ) d m 2 , (15)

and 

U B ( r ) = U A ( r 0 − r ) , (16)

where | AM | = | r − m 1 | , | AN | = | r + m 2 | . 
From Kramers’ theory ( Hanggi et al., 1990 ), the mean first passage time (MFPT) for a NP to move from A to B is given by

t = 

1 

D g 
·
∫ r 0 

0 

exp 

(
−U ( r ) 

k B T 

)
·
[∫ r 0 

r 

exp 

(
U ( y ) 

k B T 

)
dy 

]
· dr, (17)

where D g is the diffusivity of the NPs outside the adhesion region, k B is the Boltzmann constant, and T is temperature. The

effective diffusivity of the NPs in the 1D cylindrical nanopore is given by 

D e = 

r 0 
2 

2 t 
. (18)

Setting r 0 = 200 nm , which is the typical pore size of the rat intestinal mucus, we obtain the energy landscape for rod-

like NPs ( 2 R = 80 nm ) of different lengths when NPs move from region A to B ( Fig. 10 ) and their diffusivities ( Fig. 11 (a)).

When U 0 ≥ 0.15 k B T /nm, the diffusivity first increases then decreases with the rod length. NPs with a length of approximately

200 nm have the maximum diffusivity ( Fig. 11 (a)). For U 0 = 0.15 k B T/nm, the diffusivity of NPs with a length of 200 nm is

11.0-fold that of NPs with a length of 80 nm. Adhesion (only a few k B T ( Smart, 2005 )) can significantly affect the diffusivity

of NPs in polymer gels, resulting in higher diffusivity for NPs of a certain length. When U 0 = 0 , this model becomes the

obstruction-scaling model, i.e. , D e = D g , and the diffusivity decreases sharply with increasing NP length ( Figs. 11 (a) and

8 (a)). 

4.2. Three-dimensional (3D) adhesive diffusion model 

For the 3D case, we construct 3D orthonormal regular networks with cross-linking points as the adhesion regions

( Fig. 3 (c)). The distance between the adjacent adhesion regions A and B is r 0 , the average time for NPs to move from A

to B is t , and the effective diffusivity of the NPs is 

D e = 

r 0 
2 

. (19)

6 t 
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Fig. 10. Energy landscape for rod-like NPs of different lengths to move from region A to B (1D). (a)–(f) NPs with diameter of 2 R = 80 nm and lengths of 

80 nm, 120 nm, 160 nm, 200 nm, 240 nm and 280 nm, respectively. U 0 is the adhesion strength with a unit of k B T/nm, the potential range ρ is set to 20 nm. 

Fig. 11. Diffusivity of NPs in adhesive porous media (1D). (a) Effective diffusivity ( D e ) of NPs in 1D nanopores at different adhesion strengths as a function 

of the NP length, L . The diameter of the NPs considered is 80 nm. (b) Energy barrier when rod-like NPs of different lengths move from A to B, which is 

defined as the difference between the maximum and the minimum potential energies. (c) Effective diffusivity of rod-like NPs with the same hydrodynamic 

radius ( R H = 70 nm ) in 1D nanopores as a function of λ. In all cases, the distance between the adjacent adhesion regions A and B is r 0 = 200 nm . 

 

 

 

 

 

 

For the convenience of mathematical derivation of the MFPT, we assume that there is a spherical absorbing wall � with

a radius of r 0 around the adhesion zone A, and t is approximately given by the MFPT for a NP to move from A to � ( Fig. 12 ).

The energy landscape when a NP move from A to � is denoted by U ( r ), where r is the distance between the center of the

NP and the adhesion region A. We will obtain the MFPT for a NP to move from A to � as follows. 

4.2.1. MFPT without external potential 

In order to solve the problem, we suppose there is an invisible hand at the absorbing wall (Maxwell’s demon). As long

as the NP is captured at r 0 , it will be instantly placed back to the origin and start to diffuse again. If we think of a large

number of similar systems (ensemble), we can speak of a steady state flux from the origin toward the absorbing wall. The

flux can be described as a probability distribution function p ( r ) which gives a steady-state flux as 

j = −D · ∂ p 

∂r 
· 4 π r 2 = constant . (20) 

For the absorbing wall, the boundary condition is 

p ( r 0 ) = 0 (21) 
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Fig. 12. Schematic showing the diffusion of NPs from the adhesion region A to the spherical absorbing wall �. 

 

 

 

 

 

 

 

 

 

 

and a probability distribution function must satisfy ∫ r 0 

0 

p ( r ) · 4 π r 2 · dr = 1 . (22)

Integrating j = −D · ∂ p 
∂r 

· 4 π r 2 from r to r 0 and using p( r 0 ) = 0 , we have 

p ( r ) = 

j 

4 πD 

·
(

1 

r 
− 1 

r 0 

)
. (23)

Integrating again from 0 to r 0 and using 
∫ r 0 

0 
p(r) · 4 π r 2 · dr = 1 yields the steady state flux (number of NPs captured per

unit time) as 

j = 

6 D 

r 0 2 
. (24)

The time for one NP to travel from 0 to r 0 is therefore 

t = 

1 

j 
= 

r 0 
2 

6 D 

, (25)

which is the mean first passage time. 

4.2.2. MFPT in the presence of an external force/potential 

Next we address the MFPT of a NP in the presence of a potential U ( r ) which exerts a force on the particle, 

F ( r ) = −dU ( r ) 

dr 
. (26)

Due to the presence of an external force, the particle flux is modified to 

j = −D · ∂ p 

∂r 
· 4 π r 2 + v · p · 4 π r 2 , (27)

where v = 

F 
ξ

is the drift velocity of the particle due to the force F, ξ being the drag coefficient. Therefore, 

j = −D · ∂ p 

∂r 
· 4 π r 2 − 1 

ξ
· p · 4 π r 2 · dU ( r ) 

dr 
. (28)

According to the Einstein relation 

Dξ = k B T , (29)

we can rewrite the above equation as 

j = −D · 4 π r 2 
(

∂ p 

∂r 
+ 

p 

k B T 
· dU ( r ) 

dr 

)
= constant . (30)



442 J. Wang et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 431–457 

 

 

 

 

 

 

 

 

Multiplying both sides by exp ( U 
k B T 

) , 

j · exp 

(
U 

k B T 

)
= −D · 4 π r 2 

(
exp 

(
U 

k B T 

)
· ∂ p 

∂r 
+ 

p 

k B T 
· exp 

(
U 

k B T 

)
· dU ( r ) 

dr 

)
= −D · 4 π r 2 

d 

dr 

[ 
p · exp 

(
U 

k B T 

)] 
, (31) 

then integrating from r to r 0 while noting p( r 0 ) = 0 gives 

j ·
∫ r 0 

r 

1 

4 πy 2 
· exp 

(
U ( y ) 

k B T 

)
dy = D · p ( r ) · exp 

(
U ( r ) 

k B T 

)
, (32a) 

or 

p ( r ) = 

j 

D 

· exp 

(
−U ( r ) 

k B T 

)
·
∫ r 0 

r 

1 

4 πy 2 
· exp 

(
U ( y ) 

k B T 

)
dy. (32b) 

Integrating again from 0 to r 0 and using 
∫ r 0 

0 
p(r) · 4 π r 2 · dr = 1 , we obtain 

D = j ·
∫ r 0 

0 

exp 

(
−U ( r ) 

k B T 

)
· r 2 ·

[∫ r 0 

r 

1 

y 2 
· exp 

(
U ( y ) 

k B T 

)
dy 

]
· dr. (33) 

Similar to the free diffusion case, the MFPT is identified to be 

t = 

1 

j 
= 

1 

D 

·
∫ r 0 

0 

exp 

(
−U ( r ) 

k B T 

)
· r 2 ·

[∫ r 0 

r 

1 

y 2 
· exp 

(
U ( y ) 

k B T 

)
dy 

]
· dr. (34) 

When U(r) = 0 (i.e., in the absence of any external potential) or U(r) = constant (i.e., in the absence of any external

force, f (r) = 0 ), the above formula gives 

t = 

1 

j 
= 

1 

D 

·
∫ r 0 

0 

r 2 ·
(

1 

r 
− 1 

r 0 

)
· dr = 

r 0 
2 

6 D 

, (35) 

which is consistent with the result of the free diffusion case. 

4.2.3. Energy landscape U ( r ) for a NP to move from A to �

The interaction energy between rod-like NPs per unit length and the adhesion region is also described by Morse potential

shown in Eq. (13) . The interaction energy U A ( r, θ ) between the whole NP and the adhesion region A can be expressed by the

integral of the Morse potential, which is a function of r , the distance between the center of the NP and the adhesion region

A, and θ , the orientation of the NP ( Fig. 12 ). The interaction energy between rod-like NPs and the spherical absorbing wall,

�, can be represented by the interaction energy, U B ( r, θ ), between rod-like NPs and the adhesion region B. The potential

energy, U ( r, θ ), is the sum of the interaction energy between the NP and the adhesion regions A and B 

U ( r, θ ) = U A ( r, θ ) + U B ( r, θ ) . (36) 

U A ( r, θ ) and U B ( r, θ ) are given by ( Fig. 12 ) 

U A ( r, θ ) = 

∫ L/ 2 

0 

V ( | AM | ) d m 1 + 

∫ L/ 2 

0 

V ( | AN | ) d m 2 , (37a) 

where | AM | = 

√ 

r 2 + m 1 
2 − 2 · r · m 1 · cos θ , | AN | = 

√ 

r 2 + m 2 
2 + 2 · r · m 2 · cos θ , and 

U B ( r, θ ) = U A ( r 0 − r, θ ) . (37b) 

For a given r , the probability density of θ is 

P ( r, θ ) = 

1 

Z ( r, θ ) 
· exp ( −U ( r, θ ) ) · sin θ, (38) 

where Z ( r, θ ) is the partition function and can be expressed as 

Z ( r, θ ) = 

∫ π/ 2 

0 

exp ( −U ( r, θ ) ) · sin θ · dθ . (39) 

For a given r , the mean potential energy U ( r ) is 

U ( r ) = 

∫ π/ 2 

0 

U ( r, θ ) · P ( r, θ ) · dθ . (40) 

Combining Eqs. (36) –(40) , we obtain the energy landscape U ( r ) for a NP to move from A to �. By substituting

Eq. (40) into Eq. (34) and replacing D with D g , which is the diffusivity of the NPs outside the adhesion region and taken as

the diffusivity of the NPs in non-adhesive gels, we can get the MFPT for a NP to diffuse from A to � as 

t = 

1 ·
∫ r 0 

exp 

(
−U ( r ) 

)
· r 2 ·

[∫ r 0 1 

2 
· exp 

(
U ( y ) 

)
dy 

]
· dr, (41) 
D g 0 k B T r y k B T 
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Fig. 13. Energy landscape for rod-like NPs of different lengths when NPs move from A to � (3D). (a)–(f) NPs with a length of 80 nm, 120 nm, 160 nm, 

200 nm, 240 nm, and 280 nm, respectively. U 0 is the adhesion strength with a unit of k B T/nm, the potential range ρ is set to 20 nm. The diameter of the 

NPs is 80 nm. 

Fig. 14. Diffusivity of NPs in adhesive porous media (3D). (a) Effective diffusivity ( D e ) of NPs in 3D porous media at different adhesion strengths, plotted 

against the NP length, L . The diameter of the NPs considered is 80 nm. (b) Energy barrier when rod-like NPs of different lengths move from A to B, which 

is defined as the difference between the maximum and the minimum potential energies. In all cases, the distance between the adjacent adhesion regions 

A and B is r 0 = 200 nm . 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4. Diffusivity of rod-like NPs in adhesive porous media 

Given the adhesion strength of U 0 , we obtain the energy landscape ( Fig. 13 ), MFPT values for NPs with different

lengths and, accordingly, their effective diffusivity ( Fig. 14 (a)). For rod-like NPs with a diameter of 2 R = 80 nm , when

U 0 ≥ 0.15k B T/nm, the diffusivity of NPs reaches a maximum at NP length of 200 nm. When U 0 = 0 and U 0 = 0 . 05 k B T / nm ,

the diffusivity decreases with increasing NP length ( Fig. 14 (a)). These results are similar to those in the 1D case and clearly

show that NPs of a certain length diffuse fastest in mucus. 

The observed variation in the position of the diffusivity peak with the length of the NPs could be explained by the

depth of the energy barrier during NP diffusion, as shown in Fig. 14 (b) for the 3D case and in Fig. 11 (b) for the 1D case.

In the presence of adhesion (e.g., U 0 = 0 . 2 k B T / nm ), the energy profile has a deep well located in the adhesion region for

short nanorods, indicating that these nanorods will be trapped by the attraction of the adhesion region where they re-

side ( Figs. 10 (a)–(c) and 13 (a)–(c)). In contrast, for overly long nanorods, the deep well lies outside the adhesion regions

( Figs. 10 (f) and 13 (f)), indicating that these NPs will be trapped by the attraction of two adhesion regions. Only for nanorods

with intermediate length does the energy landscape exhibit a shallow well, suggesting a low energy barrier to NP transport

( Figs. 13 (d) and 14 (b)). At such a length, the NPs can experience attraction from adjacent adhesion region, thereby reducing

the energy barrier. 



4 4 4 J. Wang et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 431–457 

Fig. 15. Diffusivity of NPs of different diameters. (a) Effective diffusivity ( D e ) of NPs of different diameters in 1D nanopores when the adhesion strength 

U 0 = 0 . 2 k B T / nm . (b) Maximum effective diffusivity for nanorods with the same minor-axis diameter at different adhesion strengths. The squares represent 

NPs with length similar to the spacing between the adhesion regions ( r 0 ), and the circles represent NPs with λ = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also calculate the diffusivity of NPs with the same hydrodynamic diameter, as shown in Fig. 11 (c). Given R H = 70 nm ,

the rod becomes long and thin as the AR, λ, increases. It seems that in the presence of adhesion, the profile of diffusivity

as a function of length is not monotonic. There also exists an optimal length at which NPs exhibit maximum diffusivity

( Fig. 11 (c)). 

In addition, we obtain the diffusivity of nanorods with different diameters given the adhesion strength U 0 = 0 . 2 k B T / nm .

The results show that nanorods with a length of ∼200 nm (close to the separation distance between adhesion regions, r 0 )

achieve the maximum diffusivity regardless of the NP diameter ( Fig. 15 (a)). The optimal diffusivities of nanorods with the

same minor-axis diameter at different adhesion strengths are shown in Fig. 15 (b). With increasing adhesion strength, the

profiles of the diffusivities decrease first, then tend to become flat, and the NPs with the optimal diffusivity shift from

nanospheres to nanorods (with length near r 0 ). Thus, for NPs diffusing in a porous medium with discrete adhesion regions,

nanorods whose length is comparable to the spacing of the adhesion regions can achieve high diffusivity. 

4.3. Discussions 

In the theoretical model, we have assumed that the NPs hop from one adhesive region to the next during diffusion in

adhesive mucus. To verify the hopping experimentally, we performed additional tracking studies under stimulated emission

depletion (STED) microscopy. White gridlines were added to the STED images to aid the tracking of the displacements of the

particles. As indicated by the arrowheads in Fig. S1 and Video 1 in Supplementary material, two nanorods exhibited sudden

shifts in position at certain time points, which suggests hopping diffusion. In comparison, no such hopping phenomenon

was observed during nanorod diffusion in HEC (Fig. S2 and Video 2 in Supplementary material). 

In this work, we have assumed that the cross-linked sites in adhesive gels are adhesion regions that interact with NPs,

while the others are non-interactive. The interactive and non-interactive sites could be switched in our theoretical model

without fundamentally influencing our results. This means that the heterogeneous interactions of polymers with NPs play

key roles in the superior diffusivity of nanorods. If the NPs experience homogeneous interactions throughout the whole

media, that is, if U ( r ) is a constant along the fiber (i.e. , the external force f (r) = 0 ), then the adhesive case reduces to the

non-adhesive case ( D e = D g , Eq. (35) ). This reduction suggests that in a medium lacking heterogeneous interactions, the

nanorods should not diffuse faster than spherical NPs with the same minor-axis diameter. 

The interaction energy between the whole NP and the adhesion region, V ( r ), can also be described by a piecewise linear

potential function with a well depth of U ( Fig. 16 (b)), which is expressed as 

V ( r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−U, r ≤ L/ 2 

−U ·
(
1 − r−L/ 2 

m 

)
, L/ 2 < r ≤ L/ 2 + m 

0 , r > L/ 2 + m 

, (42) 

where L is the length of NPs, m is potential range. We assume that the potential range is less than half the separation of

the adhesion regions, i.e. m < r 0 /2. The energy landscapes, V ( r ), when NPs of different lengths move from adhesion region

A to B are shown in Fig. 16 , it can be represented by the piecewise linear potential function shown in Fig. 16 (g), which is

expressed as 

V ( r ) = U ·

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−1 , 0 ≤ r ≤ a 

1 −k 
b 

· r −
[
1 + ( 1 − k ) · a 

b 

]
, a ≤ r ≤ a + b 

−k, a + b ≤ r ≤ a + b + c 

− 1 −k 
b 

· r + 

1 
b 

· [ ( a + b + c ) − k ( a + 2 b + c ) ] , a + b + c ≤ r ≤ a + 2 b + c 

−1 , a + 2 b + c ≤ r ≤ 2 a + 2 b + c 

, (43) 
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Fig. 16. Energy landscape when NPs of different lengths move from adhesion region A to B, and the diffusivity of NPs. (a) Schematic showing NPs diffusion 

in 1D cylindrical nanopores with adhesion regions A and B. (b) Interaction potential between the NPs and the adhesion region as a function of distance. L 

is the length of NPs, m the potential range, U the potential well depth. (c)–(f) Energy landscapes when NPs of different lengths move from adhesion region 

A to B. (g) Schematic showing the energy landscape when NPs diffuse from adhesion region A to B. (h) Effective diffusivity of NPs in 1D nanopores at 

different adhesion strength, plotted against the NPs length, L . The diameter of the NPs considered is 80 nm, the potential range m is set to 20 nm. 

 

 

 

where a, b, c and k are parameters shown in Fig. 16 (g). The values of a, b, c and k can be given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a = L/ 2 

b = m 

c = r 0 − L − 2 m 

k = 0 

, (44a)

when L ≤ r 0 − 2 m ; ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a = L/ 2 

b = r 0 − L − m 

c = L + 2 m − r 0 

k = ( 2 m + L − r 0 ) /m 

, (44b)

when r 0 − 2 m < L ≤ r 0 − m ; ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a = r 0 − m − L/ 2 

b = m + L − r 0 

c = r 0 − L 

k = ( 2 m + L − r 0 ) /m 

, (44c)
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when r 0 − m < L ≤ r 0 ; ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

a = r 0 − m − L 
2 

b = m 

c = L − r 0 

k = 2 

, (44d) 

when r 0 < L ≤ 2( r 0 − m ) . 

Given the energy landscapes V ( r ) for a NP moving from one adhesion region A to the adjacent adhesion B, the mean first

passage time (MFPT) for a NP to diffuse from A to B is given by: 

t = 

1 

D 

∫ 2 a +2 b+ c 

0 

exp 

[ 
−V ( x ) 

k B T 

] 
·
{∫ 2 a +2 b+ c 

x 

exp 

[ 
V ( y ) 

k B T 

] 
· dy 

}
· dx, (45) 

where D is diffusivity of NPs. Substituting Eq. (43) into Eq. (45) , t can be expressed as 

t = 

1 

D 

{[
2 ab + bc 

( 1 − k ) ̄U 

+ 

2 b 2 

( 1 − k ) 
2 
Ū 

2 
+ ac 

]
exp 

[
( 1 − k ) ̄U 

]
−

[
2 ab + bc 

( 1 − k ) ̄U 

− 2 b 2 

( 1 − k ) 
2 
Ū 

2 
− ac 

]
exp 

[
−( 1 − k ) ̄U 

]}

+ 

1 

D 

[
2 a 2 + 

c 2 

2 

− 4 b 2 

( 1 − k ) 
2 
Ū 

2 

]
, (46a) 

with Ū = 

U 
k B T 

when k 
 = 1, and 

t = 

1 

2 D 

· ( 2 a + 2 b + c ) 
2 

(46b) 

when k = 1 . 

Consider rod-like NPs with a diameter of 2 R = 80 nm , we obtained the effective diffusivity of these NPs with differ-

ent lengths, as shown in Fig. 16 (h), which are similar to those when the interaction is described by the Morse potential,

indicating that the model does not depend on one specific potential, indicative of the generality of our results. 

5. Conclusions 

We have conducted a joint experimental and theoretical study of the physical mechanisms that underlie anomalous dif-

fusion of rod-like nanoparticles in mucus, an adhesive biological polymeric gel of key importance to drug delivery systems.

By extending the so-called obstruction-scaling model to the diffusion of non-spherical solute particles, we demonstrate that

the diffusivity of NPs in non-adhesive porous media would increase monotonically with the aspect ratio of nanorods with

the same hydrodynamic diameter and decrease with the aspect ratio of nanorods with the same minor-axis diameter. Exper-

imental results based on the diffusion of NPs in HEC solution verify our theoretical predictions. In contrast, in an adhesive

porous medium, we find that the aspect ratio of the NPs and their adhesive interactions with the host polymer play key

roles in tuning the diffusivity of the nanorods, resulting in an optimal aspect ratio at which the NPs achieve the maxi-

mum diffusivity. By incorporating the matrix-NPs interactions into the obstruction-scaling model via the MFPT theory, it is

shown that such anomalous diffusion can be attributed to adhesion-induced hopping of NPs in the adhesive porous gel. Our

theoretical models and predictions have been validated through STED microscopy and measurements of NPs diffusion in

mucus as a typical model system of an adhesive polymer solution and in HEC as a typical model system of a non-adhesive

polymer solution. Our study provides physical insights into the anomalous diffusion behaviors of rod-like NPs in biologi-

cal systems. The developed theoretical models provide guidelines for a range of applications involving particle diffusion in

complex porous media, with a prominent example being the development of efficient drug delivery system. 
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Appendix A. Average number of fibers in contact with rod-like NPs 

A.1. Fibers in end contact with � with contact points within the NP 

Here we deduce N̄ 2 , the average number of fibers having end contact with � with contact points within the NP ( l 2 )

( Fig. 4 (b)). For fibers that are defined as end contact with the spherical surface �, the number whose contact points fall

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/100000001


J. Wang et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 431–457 447 

Fig. A1. Fibers in end contact with � with contact points within a cylindrical NP. (a) Schematic showing a fiber ( l 2 ) in end contact with � with contact 

point within the cylinder. (b) and (c) Projection of the cylinder and the fiber ( l 2 
′ ) on the yz -plane. r , the radius of �, is in the range of (b) [ R, λR ] and (c) 

[ λR, 
√ 

λ2 + 1 R ] . 

 

 

 

 

 

 

 

 

 

 

 

within the region [0, R ] is γ e · R 3 where γe = 

4 πv 
3 ; the number whose contact points fall within the region [ r, r + dr ] is

γ e · d ( r 3 ). As shown in Fig. A1 , the number of fibers whose contact points fall within [ r, r + dr ] and the cylinder is (these

fibers are all in contact with the cylinder) ⎧ ⎪ ⎨ 

⎪ ⎩ 

γe · d 
(
r 3 

)
, r ∈ [ 0 , R ] 

γe · d 
(
r 3 

)
· ( 1 − cos θ ) , r ∈ [ R, λR ] 

γe · d 
(
r 3 

)
· ( cos θ1 − cos θ2 ) , r ∈ 

[
λR, 

√ 

λ2 + 1 R 

] , (A1)

where cos θ = 

√ 

r 2 −R 2 

r , cos θ1 = 

λR 
r , cos θ2 = 

√ 

r 2 −R 2 

r . 

Therefore, N̄ 2 is given by 

N 2 = γe 

[ 

R 

3 + 

∫ λR 

R 
( 1 − cos θ ) · dr 3 + 

∫ √ 

λ2 +1 R 

λR 
( cos θ1 − cos θ2 ) · dr 3 

] 

= γe · g ( λ) · R 

3 , 

(A2)

where g(λ) = 

3 λ
2 . 

A.2. Fibers in end contact with � with contact points outside the NP 

Next we deduce N̄ 4 , the average number of fibers having end contact with � with contact points outside the NP ( l 4 ,

Fig. 4 (b)). These fibers can be classified into two kinds ( l 4 a and l 4 b ): the contact points are located outside the side of the

cylinder (region I in Fig. A2 (b)), and the contact points are located outside the bottom side of the cylinder (region II in

Fig. A2 (b)). The number of these two kinds of fibers is denoted by N̄ 4 a and N̄ 4 b , respectively. Then 

N̄ 4 = N̄ 4 a + N̄ 4 b . (A3)

(1) For fibers in end contact with � with contact points within the region I ( Fig. A2 (c)), α2 should be in the range of

[ α2 min , α2 max ], where α2 min = θ − α1 with α1 = atan 

1 
λ

and θ = asin 

R 
r . α2 max is related to the length of the fiber and given

by 

α2 max = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

acos r √ 

1+ λ2 R 
, 2 L ≥

√ (
1 + λ2 

)
R 

2 − r 2 

asin 

[ 

Rr +2 L ·
√ 

4 L 2 + ( r 2 −R 2 ) 
r 2 +4 L 2 

] 

− α1 , 2 L < 

√ (
1 + λ2 

)
R 

2 − r 2 
. (A4)
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Fig. A2. Fibers in end contact with � with contact points outside the NPs. (a) Schematic showing fibers in end contact with � ( l 4 ) with contact points 

outside the cylinder. (b) These fibers ( l 4 ) are classified into two kinds ( l 4 a and l 4 b ): the contact points located outside the side of the cylinder (region I), 

and located outside the bottom side of the cylinder (region II). (c) Projection of the cylinder and the fiber ( l 4 a 
′ ) on the yz -plane. r , the radius of �, is in the 

range of [ R, 
√ 

λ2 + 1 R ] . (d) and (e) Intersection of the �-plane with the cylinder or the extension of the cylinder, and the blue part is the intersection of 

the �-plane with the cylinder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

In addition, for fibers with contact point A and on �-plane ( Fig. A2 (a)), projection of these fibers on the yz -plane is l 4 a 
′ 

( Fig. A2 (c)), and η should be in the range of [0, ηmax ], where ηmax is a function of α2 and the fiber length, 2 L. ηmax is given

by 

ηmax = 

{ 

atan 

[ √ 

1+ λ2 R −r·cos α2 

r·sin α2 

] 
− α2 , 2 L ≥ | AC | 

acos 
[

r·sin ( α1 + α2 ) −R 
2 L 

]
− ( α1 + α2 ) , 2 L < | AC | 

, (A5) 

where | AC | is the distance between point A and point C ( Fig. A2 (c)) and given by | AC | =√ 

( 1 + λ2 ) R 2 + r 2 − 2 
√ 

1 + λ2 R · r · cos α2 . Meanwhile, for fibers with the contact point A and on the �-plane, when

the fibers are in contact with the cylinder, β should be in the range of [0, βmax ]. βmax is a function of α2 , η and L . Next we

will obtain the expression of βmax . 

Intersection of the �-plane with the cylinder or the extension of the cylinder is an ellipse, as shown in Figs. A2 (d) and

(e), and the blue part is the intersection of the �-plane with the cylinder. Point P, which is the tangent point where line

segment AP intersects the ellipse, may be on the cylinder ( Fig. A2 (d)) or on the extension of the cylinder ( Fig. A2 (e)). The

coordinate components of point P ( x P , y P , z P , t P ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x P = 

R 

r · sin ( α1 + α2 ) 

√ 

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

y P = −
[

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

r · sin ( α1 + α2 ) · cos ( α1 + α2 + η) 
· sin ( α1 + α2 + η) + r · cos ( α1 + α2 ) 

]
z P = 

R 

2 

r · sin ( α1 + α2 ) 

t P = 

R 

2 

r · sin ( α1 + α2 ) · cos ( α1 + α2 + η) 

. (A6) 

(i) When point P is on the cylinder, the inequality y P ≥ −λR must be satisfied. The inequality y P ≥ −λR is equivalent to

the following inequality: 

α2 ≤ acos 

(
r 2 − R 

2 

λ · R · r 

)
− α1 = αC , (A7a) 

and 

η ≤ atan 

{
[ λR − r · cos ( α1 + α2 ) ] · r · sin ( α1 + α2 ) 

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

}
− ( α1 + α2 ) = ηC . (A7b) 
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The length of segment AP is: 

| AP | = 

√ 

[ r 2 · si n 

2 ( α1 + α2 ) − R 

2 ] · [ r 2 · si n 

2 ( α1 + α2 ) − R 

2 · si n 

2 ( α1 + α2 + η) ] 

r 2 · si n 

2 ( α1 + α2 ) · co s 2 ( α1 + α2 + η) 
. (A8)

When 

| AP | ≤ 2 L, (A9)

βmax = ∠ PAH = β1 ( Fig. A2 (d)). β1 is given by 

β1 = acot 

[ √ 

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

R · cos ( α1 + α2 + η) 

] 

. (A10)

When 

| AP | > 2 L, (A11)

βmax = ∠ JAT = β2 with | AT | = 2 L ( Fig. A2 (d)). β2 is given by 

β2 = acos 
−r · sin ( α1 + α2 ) · cos ( α1 + α2 + η) + 

√ 

r 2 · si n 

2 ( α1 + α2 ) + 

(
4 L 2 − R 

2 
)

· si n 

2 ( α1 + α2 + η) 

2 L · si n 

2 ( α1 + α2 + η) 
. (A12)

In short, when Eqs. (A7a), (A7b) and (A9) are satisfied, βmax = β1 ; when Eqs. (A7a), (A7b) and (A11) are satisfied, βmax =
β2 . 

(ii) When point P is on the extension of the cylinder, then y P < −λR , which means Eqs. (A7a) and (A7b) are not all

satisfied. In this case, the line KQ is the intersection of �-plane and the bottom of the cylinder ( Fig. A2 (e)). The coordinate

components of point Q ( x Q , y Q , z Q , t Q ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x Q = 

√ 

R 

2 −
[

r · sin ( α1 + α2 ) − λR − r · cos ( α1 + α2 ) 

tan ( α1 + α2 + η) 

]2 

y Q = −λR 

z Q = r · sin ( α1 + α2 ) − λR − r · cos ( α1 + α2 ) 

tan ( α1 + α2 + η) 

t Q = 

r · sin ( α1 + α2 ) 

cos ( α1 + α2 + η) 
− λR − r · cos ( α1 + α2 ) 

sin ( α1 + α2 + η) 

. (A13)

The length of the segment AQ is 

| AQ | = 

{
R 

2 − r 2 · si n 

2 ( α1 + α2 ) + [ λR − r · cos ( α1 + α2 ) ] 
2 + 2 r · sin ( α1 + α2 ) · λR − r · cos ( α1 + α2 ) 

tan ( α1 + α2 + η) 

}1 / 2 

. (A14)

When 

| AQ | ≤ 2 L, (A15)

βmax = ∠ QAH = β3 ( Fig. A2 (e)). β3 is given by 

β3 = atan 

√ 

[ R · sin ( α1 + α2 +η) ] 
2 −{ r · sin ( α1 + α2 ) · sin ( α1 + α2 + η) −[ λR − r · cos ( α1 + α2 ) ] · cos ( α1 + α2 +η) } 2 

λR − r · cos ( α1 + α2 ) 
. 

(A16)

When 

| AQ | > 2 L, (A17)

βmax = β2 , and β2 is given by Eq. (A12) . 

For all fibers in end contact with � at point A, the proportion of fibers in contact with the cylinder is ∫ ηmax 

0 

2 L 2 · sin β

2 πL 2 
d η = 

∫ ηmax 

0 

sin β

π
d η. (A18)

The number of fibers having end contact with � in the region [ r, r + dr ] ∩ 

[ α2 , α2 + d α2 ] is γe · d( r 3 ) · sin ( α1 + α2 ) · d α2 ,

and the number of fibers having contact with the cylinder in these fibers is 

γe · sin ( α1 + α2 ) ·
∫ ηmax sin β

π
d η · d α2 · d 

(
r 3 

)
. (A19)
0 
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Fig. A3. Fibers in end contact with � with contact points outside the NP. (a) Schematic showing a fiber in end contact with � ( l 4 b ) with contact point 

outside the bottom side of the cylinder. (b) Projection of the cylinder on the yz -plane and illustration of γ c . (c) Projection of the cylinder and the fiber 

( l 4 b 
′ ) on the yz -plane. r , the radius of �, is in the range of [ λR, 

√ 

λ2 + 1 R ] . (d) and (e) Intersection of the �-plane with the cylinder (the area in blue). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

Integrating Eq. (A19) with variables α2 (from α2 min to α2 max ) and r (from R to 
√ 

1 + λ2 R ), we obtain N̄ 4 a , which is

expressed as 

N̄ 4 a = γe ·
∫ √ 

1+ λ2 R 

R 

[∫ α2 max 

α2 min 

sin ( α1 + α2 ) ·
∫ ηmax 

0 

sin β

π
d η · d α2 

]
· d 

(
r 3 

)
= γe · H 1 ( λ, R, L ) , (A20) 

where H 1 ( λ, R, L ) = 

∫ √ 

1+ λ2 R 
R [ 

∫ α2 max 
α2 min 

sin ( α1 + α2 ) ·
∫ ηmax 

0 
sin β
π dη · d α2 ] · d( r 3 ) . 

(2) For fibers in end contact with � with contact points within the region II ( Fig. A2 (b)), γ should be in the range of

[ γ min , γ max ] ( Fig. A3 (c)), where γmax = acos λR 
r , 

γmin = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

asin 

[ 

r −
√ 

r 2 −( 1+ λ2 ) ( r 2 −λ2 R 2 ) 

( 1+ λ2 ) R 

] 

, 2 L ≥ | CE | 

asin 

[ √ 

4 L 2 + r 2 −λ2 R 2 ·r−2 L ·λR 

4 L 2 + r 2 
] 
, 2 L < | CE | 

, with | CE | = 

R − r · sin γc 

cos γc 

and γc = asin 

r −
√ 

r 2 −( 1+ λ2 )( r 2 −λ2 R 2 ) 

( 1+ λ2 ) R 
( Fig. A3 (b)). 

In addition, for fibers with contact point D and on �-plane ( Fig. A3 (a)), projection of these fibers on the yz -plane is l 4 b 
′ 

( Fig. A3 (c)), and ζ should be in the range of [0, ζ max ], where ζ max is a function of γ and the fiber length, 2 L. ζ max is given

by 

ζmax = 

{ 

γ − atan 

[
r·cos γ −λR 
R −r·sin γ

]
, 2 L ≥ | CD | 

γ − asin 

r·cos γ −λR 
, 2 L < | CD | 

, (A21) 
2 L 
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where | CD | is the distance between point C and point D ( Fig. A3 (c)) given by | CD | = 

√ 

( r · cos γ − λR ) 2 + ( R − r · sin γ ) 2 .

Meanwhile, for fibers with the contact point D and on the �-plane, when the fibers are in contact with the cylinder, ξ
should be in the range of [0, ξmax ]. ξmax is a function of γ , ζ and L . Next we will deduce the expression of ξmax . 

Intersection of the �-plane with the cylinder is the blue part of the ellipse ( Fig. A3 (d) and (e)). The coordinate compo-

nents of point F ( x F , y F , z F , t F ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x F = 

√ 

R 

2 −
[

r · cos ζ − λR · cos ( γ − ζ ) 

sin ( γ − ζ ) 

]2 

y F = −λR 

z F = 

r · cos ζ − λR · cos ( γ − ζ ) 

sin ( γ − ζ ) 

t F = 

r · sin γ

cos ( γ − ζ ) 
+ 

r · cos γ − λR 

sin ( γ − ζ ) 

. (A22)

The length of segment DF is 

| DF | = 

√ (
1 + λ2 

)
R 

2 + 2 λR · r · sin ζ

sin ( γ − ζ ) 
− r 2 · sin ( γ + ζ ) 

sin ( γ − ζ ) 
. (A23)

When 

| DF | ≤ 2 L, (A24)

ξmax = ∠ JDF = ξ1 ( Fig. A3 (d)). ξ 1 is given by 

ξ1 = atan 

√ 

[ R · sin ( γ − ζ ) ] 
2 − [ r · cos ζ − λR · cos ( γ − ζ ) ] 

2 

r · cos γ − λR 

. (A25)

When 

| DF | > 2 L, (A26)

ξmax = ∠ JDM = ξ2 with | DM | = 2 L ( Fig. A3 (e)). ξ 2 is given by 

ξ2 = acos 
r · cos γ − λR 

2 L · sin ( γ − ζ ) 
. (A27)

For all fibers having end contact with � at point D, the proportion of fibers in contact with the cylinder is ∫ ζmax 

0 

2 L 2 · sin ξ

2 πL 2 
d ζ = 

∫ ζmax 

0 

sin ξ

π
d ζ . (A28)

The number of fibers having end contact with � in the region [ r, r + dr ] ∩ 

[ γ , γ + dγ ] is γ e · d ( r 3 ) · sin γ · d γ , and the

number of fibers having contact with the cylinder in these fibers is 

γe ·
(

sin γ ·
∫ ζmax 

0 

sin ξ

π
d ζ · d γ

)
· d 

(
r 3 

)
. (A29)

Integrating Eq. (A29) with variables γ (from γ min to γ max ) and r (from λR to 
√ 

1 + λ2 R ), we obtain N̄ 4 b , which is express

as 

N̄ 4 b = γe ·
∫ √ 

1+ λ2 R 

λR 

[∫ γmax 

γmin 

(
sin γ ·

∫ ζmax 

0 

sinξ

π
dζ

)
· dγ

]
· d r 3 

= γe · H 2 ( λ, R, L ) , (A30)

where H 2 ( λ, R, L ) = 

∫ √ 

1+ λ2 R 
λR 

[ 
∫ γmax 
γmin 

( sin γ · ∫ ζmax 

0 
sinξ
π dζ ) · dγ ] · d r 3 . 

A.3. Fibers in tangential contact with � with contact points outside the NP 

Next we deduce N̄ 3 , the average number of fibers having tangential contact with � with contact points outside the NP

( l 3 , Fig. 4 (b)). These fibers can also be classified into two kinds ( l 3 a and l 3 b ): the contact points located outside the side

of the cylinder (region I in Fig. A4 (b)), and the contact points located outside the bottom side of the cylinder (region II in

Fig. A4 (b)). The number of these two kinds of fibers is N̄ 3 a and N̄ 3 b , respectively. Then 

N̄ 3 = N̄ 3 a + N̄ 3 b . (A31)

(1) For fibers in tangential contact with � with contact points within the region I ( Fig. A4 (c)), α2 should be in the range

of [ α2 min , α2 max ], where α2 min = θ − α1 with α1 = atan 

1 
λ

and θ = asin 

R 
r . α2 max is related to the length of the fiber and given
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Fig. A4. Fibers in tangential contact with � with contact points outside the NP. (a) Schematic showing fibers in contact with the cylinder ( l 3 ), which are in 

tangential contact with � and the contact points are outside the cylinder. (b) These fibers ( l 3 ) are classified into two kinds ( l 3 a and l 3 b ): the contact points 

located outside the side of the cylinder (region I), and the contact points located outside the bottom side of the cylinder (region II). (d) Projection of the 

cylinder and the fiber ( l 3 a 
′ ) on the yz -plane. r , the radius of �, is in the range of [ R, 

√ 

λ2 + 1 R ] . (d) and (e) Intersection of the �-plane with the cylinder 

or the extension of the cylinder, and the blue part is the intersection of the �-plane with the cylinder. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

by Eq. (A4) . For fibers with contact point A and on �-plane ( Fig. A4 (a)), projections of these fibers on the yz -plane is l 3 a 
′ 

( Fig. A4 (c)). When the fibers are in contact with the cylinder, m (the length of segment AB) should be in the range of [ m min ,

2 L ], where m min is equal to the length of line segment AW ( Fig. A4 (c)) and given by 

m min = 

r · sin ( α1 + α2 ) − R 

cos ( α1 + α2 ) 
. (A32) 

Meanwhile, β should be in the range of [0, βmax ]. βmax is a function of α2 , m and L . Next we will obtain the expression

of βmax . 

Intersection of the �-plane with the cylinder or the extension of the cylinder is an ellipse, as shown in Fig. A4 (d) and

(e), and the blue part is the intersection of the �-plane with the cylinder. Point P, which is the tangent point where line

segment AP intersects the ellipse, may be on the cylinder ( Fig. A4 (d)) or on the extension of the cylinder ( Fig. A4 (e)). The

coordinate components of point P ( x P , y P , z P , t P ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x P = 

R 

r · sin ( α1 + α2 ) 

√ 

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

y P = − r 2 − R 

2 

r · cos ( α1 + α2 ) 

z P = 

R 

2 

r · sin ( α1 + α2 ) 

t P = 

R 

2 

r · sin ( α1 + α2 ) · cos ( α1 + α2 ) 

. (A33) 

(i) When point P is on the cylinder, the inequality y P ≥ −λR must be satisfied, which is equivalent to the following

inequality 

α2 ≤ acos 

(
r 2 − R 

2 

λ · R · r 

)
− α1 = αC . (A34) 

The length of segment AP is given by 

| AP | = 

√ 

[ r 2 · si n 

2 ( α1 + α2 ) − R 

2 ] ·
(
r 2 − R 

2 
)

r 2 · co s 2 ( α1 + α2 ) 
. (A35) 

When 

| AP | ≤ m, (A36) 
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βmax = ∠ PAH = β4 ( Fig. A4 (d)). β4 is given by 

β4 = acot 

[ √ 

r 2 · si n 

2 ( α1 + α2 ) − R 

2 

R · cos ( α1 + α2 ) 

] 

. (A37)

When 

| AP | > m, (A38)

βmax = ∠ JAT = β5 with | AT | = m ( Fig. A4 (d)). β5 is given by 

β5 = acos 
−r · cos ( α1 + α2 ) + 

√ 

r 2 + 

(
m 

2 − R 

2 
)

m · sin ( α1 + α2 ) 
. (A39)

In short, when Eqs. (A34) and (A36) are satisfied, βmax = β4 ; when Eqs. (A34) and (A38) are satisfied, βmax = β5 . 

(ii) When point P is on the extension of the cylinder, then y P < −λR , which means Eq. (A34) is not satisfied. In this case,

the line KQ is the intersection of �-plane and the bottom of the cylinder ( Fig. A4 (e)). The coordinate components of point

Q ( x Q , y Q , z Q , t Q ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x Q = 

√ 

R 

2 −
[

r − λR · cos ( α1 + α2 ) 

sin ( α1 + α2 ) 

]2 

y Q = −λR 

z Q = 

r − λR · cos ( α1 + α2 ) 

sin ( α1 + α2 ) 

t Q = 

r − λR · cos ( α1 + α2 ) 

sin ( α1 + α2 ) · cos ( α1 + α2 ) 

. (A40)

The length of segment AQ is 

| AQ | = 

√ (
1 + λ2 

)
R 

2 − r 2 . (A41)

When 

| AQ | ≤ m, (A42)

βmax = ∠ QAH = β6 ( Fig. A4 (e)). β6 is given by 

β6 = atan 

√ 

R 

2 − r 2 −
(
1 + λ2 

)
R 

2 · co s 2 ( α1 + α2 ) + 2 λ · R · r · cos ( α1 + α2 ) 

λR − r · cos ( α1 + α2 ) 
. (A43)

When 

| AQ | > m, (A44)

βmax = β5 , and β5 is given by Eq. (A39) . 

For all fibers in tangential contact with � at point A, the proportion of fibers having contact with the cylinder is ∫ 2 L 

m min 

2 β

π
· dm 

2 L 
. (A45)

The number of fibers having tangential contact with the spherical surface � in the region [ r, r + dr ] ∩ 

[ α2 , α2 + d α2 ] is

γt · d( r 2 ) · sin ( α1 + α2 ) · d α2 , and the number of fibers having contact with the cylinder in these fibers is 

γt · sin ( α1 + α2 ) ·
∫ 2 L 

m min 

2 β

π
· dm 

2 L 
· d α2 · d r 2 . (A46)

Integrating Eq. (A46) with variables α2 (from α2 min to α2 max ) and r (from R to 
√ 

1 + λ2 R ), we obtain N̄ 3 a expressed as 

N̄ 3 a = γt ·
∫ √ 

1+ λ2 R 

R 

[∫ α2 max 

α2 min 

sin ( α1 + α2 ) ·
∫ 2 L 

m min 

2 β

π
· dm 

2 L 
· d α2 

]
· d r 2 

= γt · G 1 ( λ, R, L ) , (A47)

where G 1 ( λ, R, L ) = 

∫ √ 

1+ λ2 R 
R [ 

∫ α2 max 
α2 min 

sin ( α1 + α2 ) ·
∫ 2 L 

m min 

2 β
π · dm 

2 L · d α2 ] · d r 2 . 



454 J. Wang et al. / Journal of the Mechanics and Physics of Solids 112 (2018) 431–457 

Fig. A5. Fibers in tangential contact with � with contact points outside the NP. (a) Schematic showing a fiber in tangential contact with � ( l 3 b ) with 

contact point outside the bottom side of the cylinder. (b) Projection of the cylinder on the yz -plane and illustration of γ c . (c) Projection of the cylinder and 

the fiber ( l 3 b 
′ ) on the yz -plane. r , the radius of �, is in the range of [ λR, 

√ 

λ2 + 1 R ] . (d) and (e) Intersection of the �-plane with the cylinder (the area in 

blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

(2) For fibers in tangential contact with � with contact points within the region II ( Fig. A4 (b)), γ should be in the range

of [ γ min , γ max ], where γmax = acos λR 
r , 

γmin = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

asin 

[ 

r −
√ 

r 2 −( 1+ λ2 ) ( r 2 −λ2 R 2 ) 

( 1+ λ2 ) R 

] 

, 2 L ≥ | CE | 

asin 

[ √ 

4 L 2 + r 2 −λ2 R 2 ·r−2 L ·λR 

4 L 2 + r 2 
] 
, 2 L < | CE | 

, with | CE | = 

R − r · sin γc 

cos γc 

and γc = asin 

r −
√ 

r 2 −( 1+ λ2 )( r 2 −λ2 R 2 ) 

( 1+ λ2 ) R 
( Fig. A5 (b)). In addition, for fibers with contact point D and on �-plane ( Fig. A5 (a)),

projections of these fibers on the yz -plane is l 3 b 
′ ( Fig. A5 (c)). When the fibers are in contact with the cylinder, n (the length

of segment DH) should be in the range of [ n min , 2 L ], where n min is equal to the length of line segment DK and given by 

n min = 

r · cos γ − λR 

sin γ
. (A48) 

Meanwhile, ξ should be in the range of [0, ξmax ]. ξmax is a function of γ , n and L . Next we will obtain the expression of

ξmax . 
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Intersection of the �-plane with the cylinder is the blue part of the ellipse ( Fig. A5 (d)). The coordinate components of

point F ( x F , y F , z F , t F ) are given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x F = 

√ 

R 

2 −
(

r − λR · cos γ

sin γ

)2 

y F = −λR 

z F = 

r − λR · cos γ

sin γ

t F = 

r − λR · cos γ

sin γ · cos γ

. (A49)

The length of segment DF is 

| DF | = 

√ (
1 + λ2 

)
R 

2 − r 2 . (A50)

When 

| DF | ≤ n, (A51)

ξmax = ∠ JDF = ξ3 ( Fig. A5 (d)). ξ 3 is given by 

ξ3 = atan 

√ 

( R · sin γ ) 
2 − ( r − λR · cos γ ) 

2 

r · cos γ − λR 

. (A52)

When 

| DF | > n, (A53)

ξmax = ∠ JDM = ξ4 with | DM | = n ( Fig. A5 (e)). ξ 4 is given by 

ξ4 = acos 
r · cos γ − λR 

m · sin γ
. (A54)

For all fibers having tangential contact with � at point D, the proportion of fibers having contact with the cylinder is ∫ 2 L 

n min 

2 ξ

π
· dn 

2 L 
. (A55)

The number of fibers having tangential contact with � in the region [ r, r + dr ] ∩ 

[ γ , γ + dγ ] is γ t · d ( r 2 ) · sin γ · d γ , and

the number of fibers having contact with the cylinder in these fibers is 

γt ·
(

sin γ ·
∫ 2 L 

n min 

2 ξ

π
· dn 

2 L 
· dγ

)
· d r 2 . (A56)

Integrating Eq. (A56) with variables γ (from γ min to γ max ) and r (from λR to 
√ 

1 + λ2 R ), we obtain N̄ 3 b expressed as 

N̄ 3 b = γt ·
∫ √ 

1+ λ2 R 

λR 

[∫ γmax 

γmin 

(
sin γ ·

∫ 2 L 

n min 

2 ξ

π
· dn 

2 L 

)
· dγ

]
· d r 2 

= γt · G 2 ( λ, R, L ) , (A57)

where G 2 ( λ, R, L ) = 

∫ √ 

1+ λ2 R 
λR 

[ 
∫ γmax 
γ ( sin γ · ∫ 2 L 

n 
2 ξ
π · dn 

2 L ) · dγ ] · d r 2 . 

min min 

Table A1 

Molar ratios of chemicals used in the fabrication of 

MSNRs. 

MSNRs Molar ratio of H 2 O: CTAB: NH 4 OH: TEOS 

AR2 10 0 0: 0.12: 7.5: 1.1 

AR3 10 0 0: 0.2: 7.5: 0.7 

AR4 10 0 0: 0.4: 10: 1.4 

AR8 10 0 0: 0.5: 7.5: 0.8 
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Appendix B. Experimental details 

B.1. Materials 

Experiment reagents. RITC (Sigma-Aldrich), 3-aminopropyltriethoxysilane (APTES) (Aladdin), Cetyltrimethylammonium 

bromide (CTAB), tetraethoxysilane (TEOS) and other chemicals were purchased from the Sinopharm Chemical Reagent Com-

pany. Centrifuge (Beckman Coulter Allegra 64R centrifuge, USA), lyophilizer (Leica EM CPD300, Leica, Germany), transmission

electron microscope (SU82220, HITACHI, Japan), Zetasizer (Nano–ZS, Malvern instruments, United Kingdom), fluorescence in- 

verted microscope (DMI 40 0 0B, Leica, Germany). 

Animal care. Male Sprague–Dawley (SD) rats (6-8 weeks old) were provided by the Animal Experiments Center of the

Shanghai Institute of Materia Medica, Shanghai, China. Animals had free access to rat chow and tap water. Animal experi-

ments were carried out according to the Institutional Animal Care and Use Committee (IACUC) guidelines of the Shanghai

Institute of Materia Medica. (IACUC code, 2015-12-GY-20) 

B.2. Methods 

Fabrication of MSNs. For AR1, NaOH (0.28 g) and CTAB (1 g) were dissolved in deionized water at 80 °C via vigorous

stirring. TEOS (5 ml) was then introduced dropwise, followed by continuous stirring for 2 h. The solution was centrifuged and

washed with ethanol three times, and the particles were resuspended in ethanol with HCl followed by overnight reaction to

remove the CTAB. The final products were collected by lyophilization. For the MSNRs, CTAB and NH 4 OH were first dissolved

in deionized water and stirred for 1 h. After introducing TEOS dropwise, the reaction was allowed to take place for 3 h at

room temperature. The following steps were the same as those of AR1. Molar ratios of each chemical was presented in

Table A1 . 

RITC labeling. RITC was covalently bound with APTES in ethanol, and then the prepared MSNs were added to form the

conjugation. (To control the similar zeta potentials of all particles, the molar ratio of APTES was 8:4:4:3:2 for AR1, AR2, AR3,

AR4 and AR8, respectively.) The reaction was carried out for 8 h, and the solution was centrifuged, washed with ethanol,

and ultra-sonicated three times to remove the unconjugated RITC and APTES. Particles were collected and stored. 

Characterization. Non-labeled MSNs were dissolved in ethanol, and the morphological images were captured by SEM.

The hydrodynamic diameter and zeta potentials of the RITC-labeled particles were measured in Zeta sizer. 

Multiple particle tracking. SD rats were fasted 18 h before sacrifice. Fresh mucus was carefully isolated from the inner

surface of the intestinal lumen. Particle solution of 5 ul (200 ug/ml) was added to freshly obtained mucus (200 ul), fol-

lowed by catching movies using The resolution was set to 32.6 ms in order to ensure enough frames caught per second for

subsequent analysis. The trajectories and MSD at a time scale of 1 s were computed by ImageJ. 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jmps.2017.12.014 .
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