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I N A recent study, Matthew L. Fotia [1] conducted an analysis
about the mechanics of combustion mode transition. We

appreciate his efforts in trying to shed light on the understanding of
discontinuous variation in pressure during themode transition. Three
sets of nonallowable flow configurations in the isolator are identified,
and the author claimed that one of themwas associated with negative
entropy generation based on the second law of thermodynamics
analysis of the isolator impulse theory of Heiser and Pratt [1,2]. This
is a critical conclusion for the scramjet research, which theoretically
demonstrates possible performance mutations during the flight.
However, we find that the formula derivation and the physical model
used to describe the isolator core flow are not absolutely correct.
For the purpose of discussion and clarity, Eqs. (3–8) quoted in the

present Comment are numbered the same as in [1]. And the original
equations in [1] have some mistakes; the revised equations are
distinguished by an asterisk (“�”) from the original ones.
Considering that no chemical reaction happens and heat transfer is

negligible, the isolator flow can be assumed as a steady, adiabatic
process with negligible wall friction, which is same as that of Heiser
and Pratt [2]. The fluid was treated as calorically perfect gas. The
author expressed the differential entropy, static pressure, and Mach
number in a one-dimensional compressible flow as
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In Equations (3*) and (4*), some typing or printingmistakes of [1]
have been revised according to [3]. However, we doubt the rationality
of Eq. (3), which is a basis of the theoretical derivation in [1].

A correlation, expressed as Eq. (0) in this Comment, is implicit in

Eq. (3*).
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It reflects essentially the differential stagnation pressure in one-

dimensional frictionless flowwith heat addition [3]. Eqs. (4*) and (5)

are also derived by substituting Eq. (0) into Eqs. (1) and (2), which

express the differential pressure and Mach number in one-

dimensional frictionless compressible flow with heat addition [3].
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In fact, onceEq. (0) is applied, the core flowhas been considered as

compressible flow in a variable-area duct with heat addition, which is

in conflict with the isolator flow physical process and the assumption

of Heiser and Pratt’s theory. Eq. (0) seems to be not applicable for the

isolator flow. Therefore, Eqs. (3*), (4*), and (5) are not feasible to

describe the adiabatic flow in the isolator.
Besides, there are other errors in the theoretical derivation of

negative entropy generation in [1]. As to an adiabatic isolator flow,

the change in entropy should be restricted as ds∕cp ≥ 0, according to
the second law of thermodynamics. By combining Eqs. (3*), (4*),

and (5), Fotia [1] claimed that a condition was created that requires
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However, Eq. (6) is able to correctly represent the constraint of

entropy change only forM < 1, because the correct derivation result
of Eq. (6) ought to be
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Because the flow in the isolator can be supersonic or subsonic, the

term “1 −M2” also can be positive or negative. In this regard, if

inequality (6*) is divided by 1 −M2 on both sides, the inequality sign

may change when the flow Mach number is less than 1.0. That is to

say, inequality (6) is not quite proper for being used to describe the

constraint, ds∕cp ≥ 0.
Fotia [1] further derived a more appropriate form of the constraint

by introducing the stagnation pressure as

dP0

P0

� dP

P
� γM2

2� �γ − 1�M2

dM2

M2
(7)

Substituting Eq. (7) into inequality (6), he rewrote the constraint as

γM2

�1 −M2�
P

A
−
�
dP

dA
� Ωloss

�
≥ 0 (8)

where the loss of stagnation pressure is contained in the Ωloss term.
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However, considering that inequality (6) is not a feasible
description, the validity of inequality (8) can also be questionable. In
fact, the correct form can be attained by substituting Eq. (7) into
inequality (6*), and it reads
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For ease of comparison between inequality (8) and inequality (8*),
Ωloss is used to replace the term of dP0∕P0 in inequality (8*); thus it
can be rewritten as
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Inequality (8) in [1] can be generated by dividing both sides of
inequality (8**) by �1 −M2��2 −M2�dA∕P. Nevertheless, the
inequality sign may change because the sign of the term 1 −M2 may
change at certain flowMach number. Moreover, according to Heiser
and Pratt’s isolator relation, Eqs. (1) and (2) in [1], the change in the
core flow areaA shows a quadratic formwith decreasing isolator exit
Mach numberM2, and the area reaches aminimum value at a specific
isolator exit Mach number. Thus, the sign of dA will also vary with
the isolator exit Mach number. Note that, for given M1 � 2.2, and
γ � 1.34, the sign of dA changes atM2 � 1.30. And with an eye on
the fact that the term �1 −M2��2 −M2�dA∕P also changes its sign at
M2 � 1.00, it is clear how the negative entropy region
(1.00 < M2 < 1.30) was derived incorrectly. Therefore, we think
that the negative entropy region, as shown in Fig. 5 in [1], does not
exist within the exit Mach number M2 range of 1.0–1.3.
In Heiser and Pratt’s isolator model, the exit flow must be a

confined core flow surrounded by a region of separated flow for any
imposed back pressure in the admissible range. The whole straight
isolator ABCD is chosen as the control volume for the analysis, as
shown in Fig. 1. The pressure is uniform across the exit cross-
sectional plane, which is a reasonably good assumption for
supersonic compression, and the mean axial velocity in the separated
region is either zero or negligible [2]. Let us consider the core flow
and separated region separately. For the control volume of the
separated flow regionDEFG, the impulse function, I � _mu� PA, is
P2ADG at the exit DG and ∫P dA along the dividing curve EFG. The
separated flow exit pressure P2 is greater than the upstream pressure
for an isolator flow with imposed back pressure. Hence, under the
assumption of negligible wall friction, the momentum exchange
between the separated flow and the core flow should be taken into
account to make the separated flow obey the conservation law of
momentum. In other words, it means that there should be viscous

shear force between the separated flow and the core flow in the
isolator model. Therefore, it may be reasonable to assume a flow in a
variable-area duct with friction to describe the core flow in the
isolator.
As to an adiabatic flow in a variable-area duct with friction, the

differential entropy, static pressure, and Mach number can be
expressed as
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where f represents nondimensional friction coefficient, and D
represents hydraulic diameter.
And since
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differential static pressure and Mach number can be rewritten as
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Combining Eqs. (9), (13), and (14) and considering the constraint
ds∕cp ≥ 0, a new condition can be obtained according to the
aforementioned derivation process, which is the same as Eq. (8*)
or Eq. (8**).
To summarize, the negative entropy region was achieved by

incorrect formula derivation. Furthermore, the physical model of
compressible flow in a variable-area duct with heat addition, which
was implicitly employed to analyze the isolator flow, is unjustified.
But in-depth analysis on the isolator flow can be expected, and thanks
are still given for the author’s efforts in [1].
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Fig. 1 Control volume for analysis of isolator with confined or

separated flow at exit [2].
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