Modeling NO and SO₂ Oxidation by H_2O_2 in Coal-Fired Flue Gas

Sen Li¹; Yifei Ge, Ph.D.²; and Xiaolin Wei³

Abstract: NO and SO₂ oxidization by H₂O₂ in coal-fired flue gas was modeled, and the effects of temperature and H₂O₂ concentration on NO and SO₂ oxidization were investigated. The pathways of NO and SO₂ oxidization were as follows: H₂O₂ \rightarrow OH \rightarrow HO₂ + NO \rightarrow NO₂ and SO₂ + OH \rightarrow HOSO₂ + O₂ \rightarrow SO₃, respectively. There were optimal temperature ranges of NO and SO₂ oxidization, and the ranges were 650–920 K and 650–750 K, respectively. In the optimal temperature ranges, the NO₂ conversion rate was greater than 0.9 at $MR_{\text{H2O2/NO}} > 1.9$, and the SO₃ conversion rate reached about 0.3 at $MR_{\text{H2O2/SO2}} = 0.1-0.4$. SO₂ oxidization could promote HO₂ formation to oxidize NO. **DOI:** 10.1061/(ASCE)EE.1943-7870.0001458. © 2018 American Society of Civil Engineers.

Author keywords: Hydrogen peroxide; Oxidization; Nitric oxide; NO₂; SO₂.

Introduction

Nitrogen oxides (NO_x) and sulfur oxides (SO_x) are major combustion-generated pollutants from coal-fired power plants. So far the predominate postcombustion processes of De-NO_x and De-SO_x are the selective catalytic reduction (SCR) and the wet flue gas desulphurization (WFGD) respectively, which have high removal efficiencies but high operating costs (Córdoba 2015; Forzatti 2001; Li et al. 2011).

Some studies found NO could be oxidized into NO₂ in flue gas by injecting H_2O_2 (Collins et al. 2001; Myers and Overcamp 2004). Many coal-fired power plants already have WFGD for sulfur dioxide (SO₂) removal. NO₂ is much more soluble in water than NO; thus NO oxidation by injection of H_2O_2 and subsequent removal in WFGD can be an economically viable alternative to other methods of NO_x removal (Myers and Overcamp 2004; Haywood and Cooper 1998).

Cooper et al. (2002) found that the optimal temperature for NO oxidization was about 500°C by injecting H_2O_2 into flue gases, and both NO and SO₂ could be oxidized. Limvoranusorn et al. (2005) investigated the mechanisms of NO oxidization by H_2O_2 , and they thought that SO₂ had some influence on NO oxidization. In order to reduce NO emission in diesel exhaust gas, Kim et al. (2001) investigated the effect of H_2O_2 on NO-to-NO₂ conversion by a detailed chemical kinetic model, but SO₂ was not considered. Actually, SO₂ concentration is high in diesel-fired gas. The composition of coal-fired flue gas is different from that of diesel-fired gas. In the meantime, the residence time of flue gas in a coal-fired boiler is much

¹Professor, State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Rd., Beijing 100190, China (corresponding author). ORCID: https://orcid .org/0000-0002-7630-7741. Email: lisen@imech.ac.cn

Note. This manuscript was submitted on December 18, 2017; approved on May 15, 2018; published online on September 4, 2018. Discussion period open until February 4, 2019; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Environmental Engineering*, © ASCE, ISSN 0733-9372.

longer than that in a diesel engine; thus it requires a more complete understanding of the chemical reaction pathways for NO and SO_2 oxidization by H_2O_2 .

The objective of the study is to gain a better understanding of the mechanisms of NO and SO₂ oxidization by injecting H_2O_2 into coal-fired flue gas. The effects of temperature and H_2O_2 concentration on NO on SO₂ oxidization are investigated, and the reaction pathways are provided.

Kinetic Model

Reaction Mechanism

Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes, and it can solve the conservation equations for mass and energy in a plug flow reactor (Goodwin and Moffat 2014). In the study, Cantera code was used to model NO and SO₂ oxidization by H_2O_2 in a plug flow reactor, and the reaction pathway flux analysis was performed by MixMaster software, which is based on a conserved scalar approach to reaction fluxes (Li 2016).

The reaction mechanism included 401 reversible reactions and 73 species. The mechanism was an extension of GRI-Mech 3.0 in which the reactions of sulfur were selected from Mueller's study (Mueller et al. 2000) and to incorporate into GRI-Mech 3.0, and the mechanism included 401 reversible reactions and 73 species. The submechanism involving species containing sulfur was validated by the experiment of the effect of SO₂ on NO emission in the CO/H₂O/O₂/NO/SO₂ system (Mueller et al. 2000).

Model Validation of NO Oxidization by H₂O₂

In order to further validate the reaction mechanism of NO oxidization by H_2O_2 , Kasper's experiment of NO oxidization by H_2O_2 was simulated in a plug flow reactor model (Kasper et al. 1996). In the experiment, the initial NO concentration was 500 ppm, N_2 gas was used as balance gas, and the residence time was 0.7 s in the reactor. The measured and simulated NO emission results are shown in Fig. 1. Although there is a difference between the simulated and measured values, the change trends of NO emission with H_2O_2 concentration are in good agreement. Therefore, the reaction

²School of Engineering Science, Univ. of Chinese Academy of Sciences, Beijing 100190, China. Email: geyifei@imech.ac.cn

³Professor, State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Rd., Beijing 100190, China. Email: xlwei@imech.ac.cn

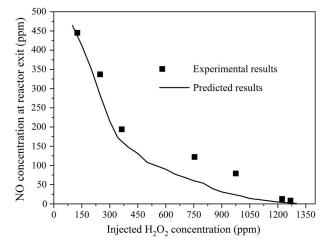


Fig. 1. Comparison of the experimental and predicted NO emission.

Table 1. Compositions of coal-fired flue gas

Species	Concentration (% by volume)
CO ₂	14.96
H ₂ O	6.55
O ₂	2.89
N ₂	75.49
SO ₂	0.11
NO	0.08
СО	0.005

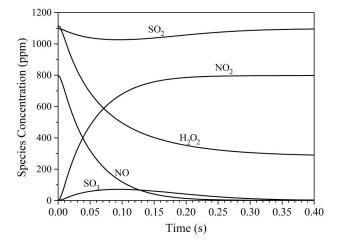
mechanism can be used to analyze the influencing mechanism of NO oxidization by H_2O_2 .

Simulation Conditions

In the simulation of NO and SO_2 oxidation by H_2O_2 , an adiabatic system of a plug flow reactor model is used to model NO oxidization in coal-fired flue gas at constant pressure (1.01 bar), and the residence time of flue gas reactions is 0.4 s. A typical Chinese coal is selected as fuel, and the main compositions of coal-fired flue gas are presented in Table 1, where some trace compositions are ignored in the study.

In order to investigate the effect of the H_2O_2 injection amount on NO and SO₂ oxidation, the molar ratio of H_2O_2 to NO ($MR_{H2O2/NO}$) and the molar ratio of H_2O_2 to SO₂ ($MR_{H2O2/SO2}$) are respectively defined as

$$MR_{\rm H2O2/NO} = C_{0,\rm H2O2}/C_{0,\rm NO}$$
(1)


$$MR_{\rm H2O2/SO2} = C_{0,\rm H2O2}/C_{0,\rm SO2}$$
(2)

where $C_{0,\text{NO}}$, $C_{0,\text{SO2}}$, and $C_{0,\text{H2O2}}$ = initial concentrations of NO, SO₂, and H₂O₂ in flue gas, respectively.

Simulation Results and Discussion

Effects of Temperature and H_2O_2 Concentration on NO and SO₂ Oxidization

Fig. 2 shows the variations of SO_x and NO_x with the residence time in the plug flow reactor. The results indicate that, with the increase of residence time, H_2O_2 concentration in flue gas decreases, NO and SO_2 are respectively oxidized into NO_2 and SO_3 , and the

Fig. 2. Concentration variations of SO_x and NO_x with the residence time in the plug flow reactor at $C_{0,\text{H2O2}} = 1,120$ ppm, $C_{0,\text{SO2}} = 1,100$ ppm, $C_{0,\text{NO}} = 800$ ppm, and T = 750 K.

consumptions of NO and SO_2 coincide with the formations of NO₂ and SO₃ as follows:

$$C_{0,\text{NO}} - C_{t,\text{NO}} = C_{t,\text{NO2}} \tag{3}$$

$$C_{0,\text{SO2}} - C_{t,\text{SO2}} = C_{t,\text{SO3}} \tag{4}$$

where, $C_{t,NO}$, $C_{t,NO2}$, $C_{t,SO2}$, and $C_{t,SO3}$ = concentrations of NO, NO₂, SO₂, and SO₃ at residence time *t*.

Compared to SO₂, NO is easily oxidized (Fig. 2). At the reactor outlet (i.e., at t = 0.4 s), the conversion rates of NO₂ and SO₃ (*CR*_{NO} and *CR*_{SO2}) are respectively defined as

$$CR_{\rm NO2} = C_{0.4,\rm NO2}/C_{0,\rm NO}$$
 (5)

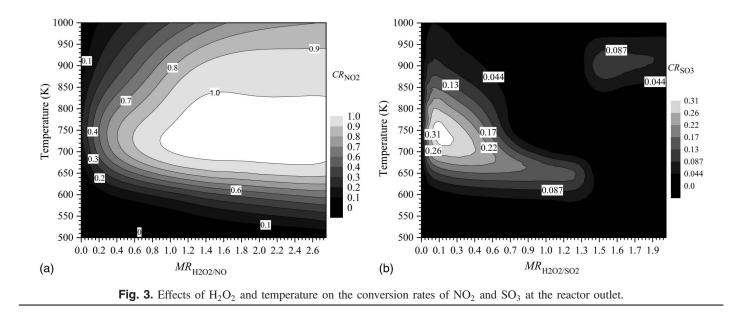

$$CR_{\rm SO3} = C_{0.4,\rm SO3} / C_{0,\rm SO2} \tag{6}$$

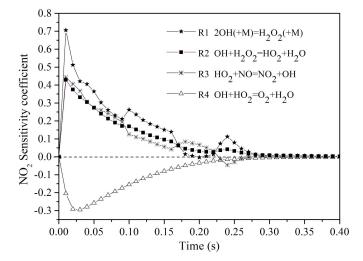
Fig. 3 shows the effects of H_2O_2 and temperature on the conversion rates of NO₂ and SO₃. As Fig. 3(a) shows, at a given $MR_{\rm H2O2/NO}$, with the increase of temperature, the NO₂ conversion rate first rises to a peak value and then falls; thus the temperature has an optimal range. With the increase of $MR_{\rm H2O2/NO}$, the optimal range of temperature becomes wide, and the NO₂ conversion rate is greater than 0.9 at $MR_{\rm H2O2/NO} > 1.9$ and T = 650-920 K.

In the practical tail flue gas duct of a coal-fired utility boiler, the temperature of flue gas is in the optimal temperature range, H_2O_2 can be injected at 920 K, NO is first effectively oxidized, and subsequently SO_2 is oxidized with the decease of flue gas temperature. H_2O_2 can be rapidly and efficiently consumed, and injecting H_2O_2 has no effect on the heating surface of the boiler. For storage and transportation safety, in industrial applications, usually, H_2O_2 concentration is 30%.

As Fig. 3(b) shows, the SO₃ conversion rate can reach about 0.3 at $MR_{\rm H2O2/SO2} = 0.1-0.4$ and T = 650-750 K, and the SO₃ conversion rate is obviously less than the NO₂ conversion rate. The optimal temperature range of SO₂ oxidization is narrower than that of NO₂ oxidization, SO₂ is easy to oxidize at a lower temperature, and increasing the H₂O₂ amount at $MR_{\rm H2O2/SO2} > 0.4$ is not conducive to SO₂ oxidization.

In order to understand the mechanism of NO₂ oxidization by H_2O_2 , the normalized sensitivity of NO₂ concentration toward reactions is calculated. The sensitivity analysis coefficients are obtained through the perturbation of the pre-exponential factor *A*

in the Arrhenius equation of reactions, and the normalized sensitivity coefficient (S_i) is defined as


$$S_i = \frac{\partial \ln c}{\partial \ln k_i} \tag{7}$$

where $c = NO_2$ concentration; and $k_i = pre-exponential factor A in the Arrhenius equation of the reaction$ *i*. The value of the sensitivity coefficient indicates a positive or negative influence on*c* $by <math>k_i$, a positive value means that the value of *c* increases as k_i increases, and a negative value means that the value of *c* decreases as k_i increases. The reason for the high value of the coefficient is that the reaction is the key chain branching step and strongly promotes NO₂ formation.

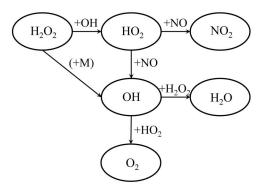
As Fig. 4 shows, the normalized sensitivity coefficients of R1–R4 are the top four reactions, and it means these four reactions are most important for NO_2 formation. They are

$$H_2O_2(+M) = 2OH(+M)$$
 (R1)

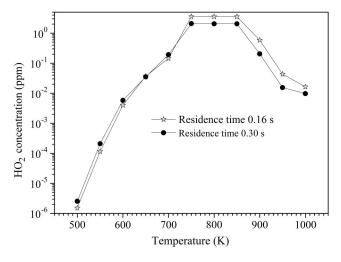
$$OH + H_2O_2 = HO_2 + H_2O \tag{R2}$$

Fig. 4. Sensitivity of NO₂ concentrations toward the most important reactions at $C_{0,H202} = 1,120$ ppm, $C_{0,NO} = 800$ ppm, $C_{0,SO2} = 1,100$ ppm, and T = 750 K.

 $HO_2 + NO = NO_2 + OH \tag{R3}$


$$HO_2 + OH = O_2 + H_2O \tag{R4}$$

Since the values of the sensitivity coefficients of R1, R2, and R3 reactions are positive, it means that above three reactions are conducive to NO₂ formation, and the OH free radical plays an important role for the formation HO₂. As R4 demonstrates, free radicals of OH and HO₂ are consumed, which inhibits NO oxidization.


In order to investigate the NO oxidization reaction mechanism, a reaction pathway flux analysis was performed using MixMaster code (a Python program that is part of the Cantera suite), and the integral path analysis was based on a conserved scalar approach to reaction fluxes (Goodwin et al. 2017). Fig. 5 illustrates the schematic diagram of reaction pathways for O-containing species at t = 0.16 s.

As Fig. 5 shows, a part of H_2O_2 first decomposes into a free radical OH by R1, the remnant H_2O_2 reacts with OH to form HO_2 by R2, and then NO is oxidized by HO_2 through R3. The reaction pathways of NO oxidization are as follows: $H_2O_2 \rightarrow OH \rightarrow$ $HO_2 + NO \rightarrow NO_2$. In the above reaction pathways, the free radicals of OH and HO_2 are crucial to NO oxidization, and OH promotes HO_2 formation to oxidize NO.

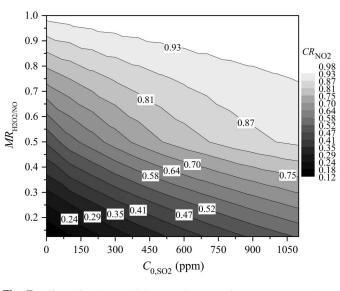

Fig. 6 shows the effect of temperature on the HO_2 free radical. With the increase of temperature, HO_2 concentration first increases

Fig. 5. Schematic diagram of reaction pathways for O-containing species in plug flow reactor at t = 0.16 s ($C_{0,H202} = 1,120$ ppm, $C_{0,NO} = 800$ ppm, $C_{0,SO2} = 1,100$ ppm).

Fig. 6. Effect of temperature on free radical of HO₂ at $C_{0,H202} = 1,120$ ppm, $C_{0,NO} = 800$ ppm, and $C_{0,SO2} = 1,100$ ppm.

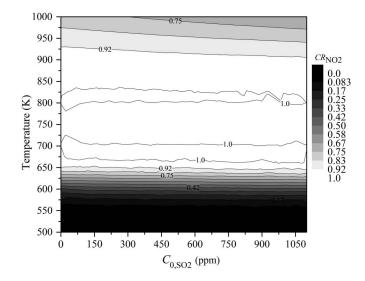
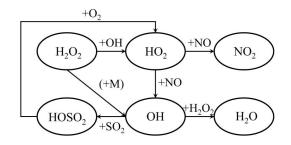


Fig. 7. Effect of H_2O_2 and SO_2 on NO conversion rate at T = 750 K.


at 500–750 K, then almost keeps constant at 750–850 K, and finally decreases at above 850 K. At 650–920 K, HO₂ concentration is high, and thus NO₂ conversion rate can be obtained, as shown in Fig. 3(a). Since OH concentration is low at low temperature (500–750 K), increasing the temperature can enhance OH formation to promote NO oxidization by R1, R2, and R3. However, when the temperature reaches above 850 K, a high concentration of OH enhances HO₂ consumption to inhibit NO oxidization reaction by R4.

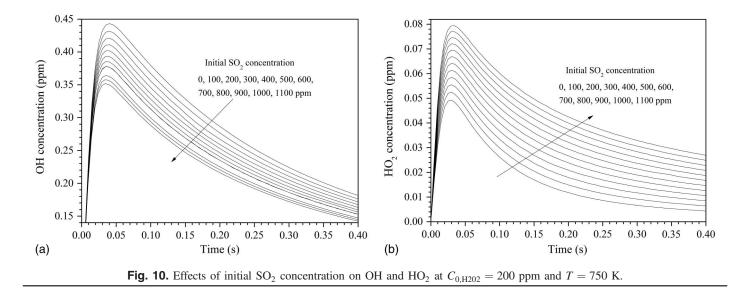
Effects of SO₂ Concentration on NO Conversions

In order to analyze the effect of SO₂ on NO oxidization by H₂O₂, NO emission at the plug flow reactor outlet is investigated at 750 K, and the simulation result is shown in Fig. 7. The NO₂ conversion rate increases with the increase of H₂O₂ and SO₂ concentrations. When $C_{0,SO2}$ increases from 0 to 1,100 ppm, CR_{NO2} increases from 0.18 to 0.57 at $MR_{H2O2/NO} = 0.2$, and it increases from 0.75 to 0.93 at $MR_{H2O2/NO} = 0.8$. Thus, at low H₂O₂ concentration, the increase of initial SO₂ concentration has a notable influence on the NO₂ conversion rate (Fig. 7).

Fig. 8. Effect of temperature and SO₂ on NO oxidization at $MR_{\text{H2O2/NO}} = 1.75$.

Fig. 9. Schematic diagram of reaction pathways for O-containing species at t = 0.3 s and T = 750 K.

Fig. 8 shows the effects of initial SO₂ concentration and temperature on NO oxidization at high $MR_{\rm H2O2/NO}$. Compared to temperature, SO₂ concentration has a negligible influence on the NO₂ conversion rate at high $MR_{\rm H2O2/NO}$. Thus, temperature has a dominant effect on NO oxidization at high H₂O₂ concentration, and the NO₂ conversion rate can reach above 0.9 at T = 650-925 K.


In order to analyze the influence mechanism of SO₂ on NO oxidization by H₂O₂ at low $MR_{\rm H2O2/NO}$, the reaction pathways of O-containing species in a plug flow reactor at t = 0.3 s are presented in Fig. 9. Compared to Fig. 5, Fig. 9 indicates that, at low $MR_{\rm H2O2/NO}$, SO₂ enhances HO₂ formation to oxidize NO by the following reactions:

$$SO_2 + OH = HOSO_2$$
 (R5)

$$HOSO_2 + O_2 = HO_2 + SO_3 \tag{R6}$$

The competitive reactions between R4 and R5 inhibit HO₂ consumption, and R6 promotes HO₂ formation to oxidize NO through R3. In the meantime, SO₂ is oxidized through R5 and R6, and the reaction pathways of SO₂ oxidization are as follows: SO₂ + OH \rightarrow HOSO₂ + O₂ \rightarrow SO₃.

Fig. 10 shows the effect of SO₂ concentration on the free radicals of OH and HO₂ at low $MR_{\rm H2O2/NO}$. With the increase of SO₂ concentration, OH concentration decreases by R5 [Fig. 10(a)], HO₂ concentration increases by R6 [Fig. 10(b)], and finally NO oxidization is promoted by R3 (Fig. 7).

At high H_2O_2 concentration, the reactions of R1 and R2 are controlled by temperature; thus increasing temperature can effectively promote HO₂ formation to oxidize NO by R1–R3 (Fig. 8).

Conclusions

NO and SO₂ oxidization by H₂O₂ in coal-fired flue gas was simulated, and the effects of temperature and H₂O₂ concentration on SO₃ and NO₂ conversion rates were investigated. There are optimal temperature ranges of NO and SO₂ oxidization, and they are 650–920 K and 650–750 K, respectively. Increasing $MR_{\rm H2O2/NO}$ makes the optimal temperature range of the NO₂ conversion rate become wide. In the optimal temperature ranges, the NO₂ conversion rate is greater than 0.9 at $MR_{\rm H2O2/NO} > 1.9$, and the SO₃ conversion rate can reach about 0.3 at $MR_{\rm H2O2/SO2} = 0.1-0.4$. The SO₃ conversion rate is obviously less than the NO₂ conversion rate, and SO₂ is easy to oxidization were as follows: H₂O₂ \rightarrow OH \rightarrow HO₂ + NO \rightarrow NO₂ and SO₂ + OH \rightarrow HOSO₂ + O₂ \rightarrow SO₃, respectively.

Acknowledgments

Financial support by the National Natural Science Foundation of China (No. 51376189) and National Key Research and Development Plan of China (No. 2016YFB0601503) are acknowledged.

References

- Collins, M. M., C. D. Cooper, J. D. Dietz, C. A. Clausen III, J. D. Dietz, and L. M. Tazi. 2001. "Pilot-scale evaluation of H₂O₂ injection to control NO_x emissions." *J. Environ. Eng.* 127 (4): 329–336. https://doi.org/10 .1061/(ASCE)0733-9372(2001)127:4(329).
- Cooper, C. D., C. A. Clausen, and L. Pettey. 2002. "Investigation of ultraviolet light-enhanced H₂O₂ oxidation of NO_x emissions." *J. Environ. Eng.* 128 (1): 68–72. https://doi.org/10.1061/(ASCE)0733-9372(2002) 128:1(68).
- Córdoba, P. 2015. "Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs." *Fuel* 144 (15): 274–286. https://doi.org /10.1016/j.fuel.2014.12.065.

- Forzatti, P. 2001. "Present status and perspectives in de-NO_x SCR catalysis." *Appl. Catal. A-Gen.* 222 (1–2): 221–236. https://doi.org/10.1016 /S0926-860X(01)00832-8.
- Goodwin, D. G. N., H. K. Moffat, and R. L. Speth. 2017. "Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes." Accessed May 20, 2017. https://www .cantera.org.
- Goodwin, D. M. N., and H. S. R. Moffat. 2014. "Cantera: A suite of objectoriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes." Accessed Mar 15, 2017. https://sourceforge.net/projects/cantera.
- Haywood, J. M., and C. D. Cooper. 1998. "The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases." J. Air Waste Manage. 48 (3): 238–246. https://doi.org/10.1080/10473289.1998 .10463679.
- Kasper, J. M., C. A. Clausen, and C. D. Cooper. 1996. "Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas-phase oxidation of nitric oxide." *J. Air Waste Manage*. 46 (2): 127–133. https://doi .org/10.1080/10473289.1996.10467444.
- Kim, I., J. Park, and S. Goto. 2001. Conversion of nitric oxide to nitrogen dioxide using hydrogen peroxide. SAE Technical Paper Rep. No. 2000-01-1931. Warrendale: SAE International.
- Li, J., H. Chang, J. Hao, L. Ma, and R. T. Yang. 2011. "Low-temperature selective catalytic reduction of NO_x with NH₃ over metal oxide and zeolite catalysts—A review." *Catal. Today* 175 (1): 147–156. https://doi .org/10.1016/j.cattod.2011.03.034.
- Li, S. 2016. "Modeling of pressure effects on flame structure and soot formation of n-heptane/air co-flow laminar flames by skeletal reaction mechanism." *Appl. Therm. Eng.* 106 (5): 1458–1465. https://doi.org/10 .1016/j.applthermaleng.2016.03.006.
- Limvoranusorn, P., C. D. Cooper, and J. D. Dietz. 2005. "Kinetic modeling of the gas-phase oxidation of nitric oxide using hydrogen peroxide." *J. Environ. Eng.* 131 (4): 518–525. https://doi.org/10.1061/(ASCE) 0733-9372(2005)131:4(518).
- Mueller, M. A., R. A. Yetter, and F. L. Dryer. 2000. "Kinetic modeling of the $CO/H_2O/O_2/NO/SO_2$ system: Implications for high-pressure fall-off in the $SO_2 + O(+M) = SO_3(+M)$ reaction." *Int. J. Chem. Kinet.* 32 (6): 317–339. https://doi.org/10.1002/(SICI)1097-4601 (2000)32:6<317::AID-KIN1>3.0.CO;2-L.
- Myers, J. E. B., and T. J. Overcamp. 2004. "Hydrogen peroxide scrubber for the control of nitrogen oxides." *Environ. Eng. Sci.* 19 (5): 321–327. https://doi.org/10.1089/10928750260418953.