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In order to understand clearly the flow pattern transition and the destabilization mechanism of thermo-
capillary convection for low Prandtl number fluids in a deep annular pool with surface heat dissipation,
we carried out a series of three-dimensional numerical simulations by using the finite volume method.
The radius ratio and the aspect ratio of an annular pool are respectively fixed at 0.5 and 1.0. Prandtl num-
ber of the working fluid is 0.011. Because the total heat dissipation coefficient on the free surface for low
Prandtl fluids is small, Biot number is varied from 0 to 1.0. Results indicate that thermocapillary convec-
tion experiences the transitions from axisymmetric steady state flow into three-dimensional steady flow,
and then into three-dimensional oscillation flow with the increase of Marangoni number. The critical
Marangoni number of flow pattern transition decreases slightly with the increase of Biot number, and
the maximum temperature and velocity fluctuations appear near the lower part of outer wall. The
azimuthal temperature fluctuation on the free surface gradually shrinks to the inner wall, and the
temperature fluctuation region decreases. However, it remains almost unchanged near the bottom of
the annular pool, but the fluctuation amplitude increases.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Thermocapillary convection driven by surface tension gradient
has received considerable attention for its rich dynamical behav-
iors and complex flow pattern transition processes. For thermocap-
illary convection with an adiabatic free surface, many fruitful
research results have been achieved [1–5]. As early as 1983, Smith
and Davis [6,7] discussed the destabilization mechanisms by using
linear stability theory in an infinite liquid layer and showed that
stationary longitudinal rolls and unsteady hydrothermal waves
(HTWs) for the case with flat and non-deformable free surface,
and surface waves for the case with deformable free surface. Fur-
thermore, the formation mechanism of hydrothermal waves is
explained by Smith [8]. Subsequently, Zebib et al. [9] and Ben
Hadid and Roux [10] presented numerical results concerning ther-
mocapillary flows in cavities with different aspect ratios, while
Mercier and Normand [11] and Peng et al. [12] performed numer-
ical simulations for rectangular and annular pools, respectively.
Villers and Platten [13] investigated experimentally and numeri-
cally buoyancy-thermocapillary convection in acetone solution
and found that the flow will experience the processes from single
vortex steady flow into multi vortex steady flow, and into unsteady
flow with the increase of Marangoni number. Zhu et al. [14]
observed various dynamic states in a rectangular pool with the
applied temperature difference between the two sidewalls
adjusted in the range of (0–43) �C by the experiment, and dis-
cussed the relationship between oscillatory frequency and Maran-
goni number. Gillon and Homsy [15] used particle image
velocimetry (PIV) to analyze buoyancy-thermocapillary convection
of 0.65cSt silicone oil layer in a rectangular pool and explained the
influence of Marangoni effect on flow pattern transition. Chen et al.
[16] and Yu et al. [17] carried out the numerical simulation to ana-
lyze the physical mechanism of the hydrothermal wave formation
for the low (Pr = 0.011) and moderate (Pr = 6.7) Prandtl number
fluids in an annular liquid pool. What’s more, some scholars have
experimentally observed the stationary longitudinal roll pattern
and the HTWs in an annular pool [18–22].

Owing to the interfacial non-equilibrium effect, heat dissipation
to the environment on the free surface becomes inevitable.
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Nomenclature

Bi Biot number
d depth of annular pool, m
F dimensionless frequency
h convective heat transfer coefficient, W/(m2�K)
m wave number
Ma Marangoni number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
r radius, m
R dimensionless radius
t time, s
T temperature, K
u radial velocity, m/s
U dimensionless radial velocity
v azimuthal velocity, m/s
V dimensionless azimuthal velocity
V dimensionless velocity vector
w axial velocity, m/s
W dimensionless axial velocity
z axial coordinate, m
Z dimensionless axial coordinate

Greek symbols
a thermal diffusivity, m2/s
e aspect ratio
cT temperature coefficient of surface tension, N/(m�K)
k thermal conductivity, W/(m�K)
g radius ratio
l dynamic viscosity, kg/(m�s)
m kinematic viscosity, m2/s
H dimensionless temperature
q density, kg/m3

s dimensionless time
W dimensionless stream function

Subscripts
0 ambient
i inner
o outer
p period
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Therefore, the effect of heat dissipation on thermocapillary convec-
tion should be considered. Kuhlmann and Albensoeder [23] pre-
sented a linear stability analysis on the buoyant-thermocapillary
flow in an open rectangular cavity with various aspect ratios. A sta-
tionary three-dimensional (3D) cellular flow was obtained at a
small aspect ratio, while for a large aspect ratio, hydrothermal
waves appeared. Peltier and Biringen [24] provided a stability dia-
gram as a function of aspect ratio for the fluid with Pr = 6.78 in
two-dimensional (2D) rectangular cavities. They found that a crit-
ical aspect ratio is near 2.3 and the minimum critical Marangoni
number is near 20,000. Sab et al. [25] investigated 3D steady ther-
mocapillary convection in an open cubic container and showed the
damping effect of the front and back walls on the temperature dis-
tribution by comparing 3D with 2D simulation results in steady
state flows. Jing et al. [26] analyzed the mechanism of the well-
known surface spoke patterns in an open crucible. It was certified
that the spoke patterns on the free surface are caused by Maran-
goni instability. Sim and Zebib [27] reported a series of 3D numer-
ical simulation results on thermocapillary convection in an open
cylindrical annulus. They found that there were two disjoint neu-
tral curves when Pr � 4.4, and heat loss from the free surface pro-
vided an explanation for the dependence of the critical Marangoni
number on the container size at a fixed aspect ratio which was
observed in the experiments by Kamotani et al. [28]. Schwabe
et al. [29] reported the results of microgravity experiments on
thermocapillary convection in open annuli with outer radius of
40 mm, inner radius of 20 mm and various depth. They discussed
the supercritical oscillation periods and the oscillations of
hydrothermal waves at the large aspect ratio. It was found that
the hydrothermal waves exhibit an internal corotating multicellu-
lar pattern. Sim et al. [30] investigated numerically oscillatory
thermocapillary convection in open cylindrical annuli heated from
the outer wall. Results show that the transition to oscillatory states
occurs at critical thermocapillary Reynolds number which depends
on the aspect ratio. Heat loss from the free surface or heat input
from the surroundings to the free surface stabilizes the flow, and
the critical thermocapillary Reynolds number increases with the
increase of Biot number while the critical period goes down. The
numerical results agree better with the experimental ones if the
free surface is assumed to be heated. Oztop et al. [31] reported
the numerical results on the coupled buoyancy and thermocapil-
lary convection and performed the evaluation of entropy genera-
tion. They found that Marangoni number becomes more effective
parameter on total entropy generation at lower Rayleigh numbers.
Sakhy et al. [32] presented the numerical work on Rayleigh-Béna
rd-Marangoni convection in an open cylindrical container heated
by a non-uniform flux. It was found that the flow pattern depends
on Rayleigh number, Biot number, Marangoni number and the
ratio of the thermal conductivities of the solid substrate and the
fluid. Hoyas et al. [33–35] studied the instabilities in a cylindrical
annulus with the heating bottom and the opening free surface to
the atmosphere by linear stability analysis. It was found that Mar-
angoni number, Biot number and Prandtl number become the key
factors affecting the various flow patterns after the flow destabi-
lization and the flow bifurcation routes to chaos.

In our previous works [36,37], we reported a series of numerical
simulation results on the effect of surface heat dissipation on ther-
mocapillary convection in a shallow annular pool. In this case, with
the increase of heat dissipation, the flow has gone through two
bifurcations and transits to different flow patterns, including
hydrothermal waves, radial moving waves and coexisting
hydrothermal waves and radial moving waves, and so on. This
paper presented another sets of numerical simulations to explore
the flow pattern transition and destabilization mechanism of ther-
mocapillary convection for low Prandtl number fluids in a deep
annular pool with surface heat dissipation, which is very different
from those in a shallow annular pool.
2. Problem statement

2.1. Basic assumptions and governing equations

Fig. 1 provides the physical model and the coordinate system for
the problem. A deep annular poolwith inner radius ri, outer radius ro
and depth d is filled with the low Prandtl number fluid
(Pr = 0.011). The radius ratio and the aspect ratio of the
annular pool are respectively defined as g = ri/ro and e = d/(ro � ri).



Fig. 1. Physical model and the coordinate system.
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The bottom is adiabatic, which satisfies no-slip and impermeable
boundary conditions. At the top free surface, heat dissipation to
ambient was taken into account. The horizontal free surface is
assumed to be flat andnon-deformable. The total surface heat trans-
fer coefficient is marked by h. The inner and outer cylinders
are isothermally maintained at specific temperatures Ti and To
(To > Ti), respectively.

In order to simplify the problem, the following basic assump-
tions is introduced. (1) The fluid is an incompressible Newtonian
fluid. The thermophysical properties are all constant except for
the surface tension. (2) The velocity is small, and the flow is lami-
nar. (3) The free surface is flat and non-deformable. (4) If there is
evaporation cooling on the free surface, the evaporation rate is
too slow to affect the depth of the liquid layer.

By applying (ro � ri), v/(ro � ri), (ro � ri)2/v and lv/(ro � ri)2 as
scale quantities for length, velocity, time and pressure, respec-
tively, we have

ðR; ZÞ ¼ ðr; zÞ
ro � ri

; ðU;V ;WÞ ¼ ðu;v ;wÞ
m=ðro � riÞ ; s ¼ t

ðro � riÞ2=m
;

P ¼ p

lm=ðro � riÞ2

Based on the above assumptions, the governing equations of
continuity, momentum and energy together with the proper
boundary conditions can be expressed by the following forms:

r � V ¼ 0 ð1Þ

@V
@s

þ V � rV ¼ �rP þr2V ð2Þ

@H
@s

þ V � rH ¼ 1
Pr

r2H ð3Þ

In the formula, V, s and P respectively represented the dimen-
sionless velocity vector, time and pressure.H is the dimensionless
temperature, which is defined as

H ¼ ðT � TiÞ=ðTo � TiÞ ð4Þ
Here shows the initial conditions:

s ¼ 0;U ¼ V ¼ W ¼ 0;H ¼ �ln½Rð1� gÞ=g�=lng ð5a-bÞ
According to the above assumptions, the following boundary

conditions are considered:
At the inner cylinder (R = Ri = ri/(ro � ri) = g/(1 � g), 0 � Z � e):

U ¼ V ¼ W ¼ 0;H ¼ 0; ð6a-bÞ
At the outer cylinder (R = Ro = ro/(ro � ri) = 1/(1 � g), 0 � Z � e):

U ¼ V ¼ W ¼ 0;H ¼ 1; ð7a-bÞ
At the bottom (Z = 0, g/(1 � g) < R < 1/(1 � g)):

U ¼ V ¼ W ¼ 0; @H=@Z ¼ 0: ð8a-bÞ
At the free surface (Z = e, g/(1 � g) < R < 1/(1 � g)), the radial

velocity U and the azimuthal velocity V depend on the balance
effect between the thermocapillary force and the shear stress of
the fluid. At the same time, the axial velocity caused by surface
evaporation is too small to be neglected. Therefore,

@U
@Z

¼ �Ma
Pr

@H
@R

;
@V
@Z

¼ �Ma
Pr

@H
R@h

;W ¼ 0; ð9a-bÞ

where Ma is Marangoni number, Ma = cTDT(ro � ri)/(la), cT surface
tension temperature coefficient, l dynamic viscosity, a thermal
diffusivity.

The thermal boundary condition on the free surface can be
expressed as

�k@T=@z ¼ hðT � T0Þ ð10Þ
where k is thermal conductivity. Supposing T0 = Ti, Eq. (10) is also
expressed in the dimensionless form

�@H=@Z ¼ BiH: ð11Þ
where Bi is surface heat dissipation Biot number, Bi = h(ro � ri)/k.

2.2. Calculation conditions and numerical method

In this work, the radius ratio and the aspect ratio of the annular
pool are respectively fixed at g = 0.5 and e = 1.0. Surface heat dis-
sipation Biot number is within the range of Bi = 0–1.0. Marangoni
number is gradually increased from 102 to 103.

For the discretization of the fundamental equations, the finite
volume method is adopted. The central-difference scheme is for
the diffusion terms while the convective terms are treated by the
QUICK scheme. The SIMPLE algorithm is used for correcting simul-
taneously the pressure and the velocity. The dimensionless time
step varies in the range between 0.5 � 10�3 and 2 � 10�3. During
the whole iterative process for solving, if the maximum relative
error of temperature and velocity is less than 10�5, we considered
that the iterative method has to be convergent to a solution.

Non-uniform staggered grid of 52R � 52Z � 180h with denser
meshes near the solid walls and the free surface than those in other
regions is applied. To verify the convergence of the mesh, the
numerical simulation is carried out at four different grids of 32R

� 32Z � 90h, 42R � 42Z � 120h, 52R � 52Z � 180h and 62R � 62Z �
240h at Ma = 400 when Bi = 0.0, 0.5 and 1.0, respectively. Results
indicate that the flow patterns in all four grids are the same. The
relative deviations of azimuthal wave number m and the maxi-
mum azimuthal dimensionless temperature fluctuation between
grids 52R � 52Z � 180h and 62R � 62Z � 240h are all less than 5%.
When both the numerical accuracy and the computational expense
are taken into account, the grid of 52R � 52Z � 180h is chosen for all
cases. On the other hand, the code version for 3D numerical simu-
lation of thermocapillary convection has been verified in the previ-
ous papers [12,16–18,36–38].
3. Results and discussion

When the temperature gradient exists on the free surface, the
surface tension gradient will drive the fluid flowing from the high
temperature wall to the low temperature wall along the free sur-
face. If the temperature difference between inner wall and outer
wall is small, thermocapillary convection is two-dimensional,
steady and axisymmetric. In this case, the flow field can be
expressed by the streamlines in the R-Z plane. The dimensionless
flow function is defined as
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U ¼ 1
R
@w
@Z

; W ¼ �1
R
@w
@R

; ð12Þ

Fig. 2 reveals the distributions of isotherms and streamlines
under different Biot numbers at Ma = 180. It can be found that
the whole annular pool is occupied by a large thermocapillary con-
vection cell, and the center of the flow cell is almost located in the
center of the liquid pool. However, for high Prandtl fluids, the cen-
ter of the flow cell in the annular pool is closer to the free surface
and the flow near the bottom of the liquid pool is very weak, as
shown in Refs. [30,38]. Therefore, Prandtl number of the working
fluid has an important influence on the flow cell structure. When
Biot number is small, the radial temperature gradient on the free
surface near the inner wall is larger, the flow is stronger, and the
streamlines are denser. With the increase of Biot number, the free
surface temperature near the inner wall drops, the radial temper-
ature gradient decreases gradually and the thermocapillary effect
Fig. 2. Streamlines (left) and isotherms (right) of 2D axisymmetric s
weakens. However, near the outer wall, the radial temperature gra-
dient and the thermocapillary force increase, and thus the thermo-
capillary convection cell moves outward slightly, which is different
from the results in a shallow annular pool [36,37]. Meanwhile, the
flow intensity strengthens continuously, and the dimensionless
flow function increases.

With the increase of Marangoni number, the flow strengthens
continuously. When Marangoni number exceeds some critical
value, two-dimensional axisymmetric flow will first be trans-
formed into 3D steady flow, and then into 3D oscillatory flow with
the further increase of Marangoni number no matter Biot number.
However, in a shallow annular pool, two-dimensional axisymmet-
ric flow will directly bifurcate to 3D oscillatory flow at a strong
heat dissipation [36,37]. Because the maximum temperature gradi-
ent appears near the inner wall on the free surface, the flow
begins to lose its stability near the inner wall. Fig. 3 gives the
teady flow in a meridional plane at Ma = 180. dH = 0.05, dw = 5.



Fig. 3. Variation of the critical Marangoni numbers of the flow pattern transition
with Biot number.
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critical Marangoni numbers of two flow pattern transition. Obvi-
ously, with the increase of surface heat dissipation Biot number,
the average radial temperature gradient on the free surface
increases and the flow strengthens, so the flow is more prone to
instability, and the corresponding critical Marangoni number also
decreases gradually.

In order to analyze the distribution of temperature fluctuation
in 3D steady flow, the azimuthal temperature fluctuation dH is
introduced, which is defined as

dH ¼ HðR; Z; h; sÞ � 1
2p

Z 2p

0
HðR; Z; h; sÞdh ð13Þ

Fig. 4 shows the dimensionless temperature fluctuation distri-
bution at different cross sections in 3D steady flow. When the fluid
flowing along the free surface touches the inner wall, the flow
direction becomes downward, as shown in Fig. 2. The sudden
change of flow direction will arouse the temperature fluctuation
along the azimuthal direction. Therefore, the temperature fluctua-
Fig. 4. Azimuthal temperature fluctuation of 3D steady flow
tion on the free surface mainly appears near the inner wall, and the
temperature distribution along the azimuthal direction near the
outer wall is almost uniform. On the contrary, near the bottom of
the liquid pool, after the outward radial flow meets the outer wall,
the flow direction also changes suddenly, so that the azimuthal
temperature fluctuation near the bottom of the liquid pool occurs
mainly near the outer wall, and the temperature distribution along
the azimuthal direction near the inner wall is almost even. Com-
paring the temperature fluctuations at the bottom and on the free
surface of the liquid pool, it can be found that wave numbers along
the azimuthal direction are the same and azimuthal positions are
also synchronous, although radial positions of temperature fluctu-
ations are different. In the middle of liquid pool, that is, the cross
section of Z = 0.5, a new temperature fluctuation pattern is induced
because of the shear action between the downward and upward
flows, which has the same wave number with that at the bottom
and on the surface, but a staggered azimuthal position with half
a wave, as shown in the dashed line region in Fig. 4. Comparison
of Fig. 4 (a) and (b), it can be seen that with the increase of Biot
number, the azimuthal temperature fluctuation on the free surface
gradually shrinks to the inner wall, the temperature fluctuation
region decreases. However, the temperature fluctuation region
remains unchanged at the bottom, and the fluctuation amplitude
increases. On the other hand, Biot number has slight effect on wave
number. With the same Marangoni number, the variation of wave
number is no more than 2 when Biot number increases from 0 to
1.0.

Fig. 5 shows the variation of the maximum temperature fluctu-
ation dHmax in transverse cross section with axial position Z at dif-
ferent Biot numbers. The azimuthal temperature fluctuation
mainly originates from the sudden change of flow direction near
the top inner wall and the bottom outer wall, where the strong
shear of the downward and upward flows are generated. As a
result, the temperature fluctuates greatly near the bottom and
the top, while it fluctuates slightly in the middle because of the
weak shear. On the other hand, the flow satisfies the non-slip con-
dition at the bottom of the liquid pool, but the top is free surface, so
on Z = 1.0 (left), 0.5 (middle) and 0.0 (right) at Ma = 400.



Fig. 5. Variation of the maximum temperature fluctuation in transverse cross
section with the axial position. Circle: Bi = 0.0; triangle: Bi = 0.5; square: Bi = 1.0.
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velocity gradient is large near the bottom of the liquid pool and
small near the free surface, so that the temperature fluctuation
near the bottom is about twice as large as that near the free sur-
face. At the same time, with the increase of Biot number, the flow
in the liquid pool will be enhanced, so the temperature fluctuation
amplitude will totally increase. However, the increase of Biot num-
Fig. 6. Velocity vector field (left) and isotherms (right) of 3D stead
ber will result in the decrease of the radial temperature gradient
near the inner wall on the free surface, so the temperature fluctu-
ation amplitude on the free surface will decrease slightly, as shown
in partial enlarged detail in Fig. 5.

Fig. 6 reveals the velocity vector field and the isotherms of 3D
steady flow on Z � h section of 0<h<p/4 at R = 1.25 and 1.75 when
Ma = 400 and Bi = 0.5. Obviously, near the inner wall, except for the
downward main flow, only in the vicinity of the bottom there is the
secondary flow in the azimuthal direction, and away from the bot-
tom the secondary flow is weak. The convection toward the bottom
has little effect on the azimuthal temperature distribution, so the
azimuthal temperature fluctuation at R = 1.25 is mainly located
near the free surface. Near the outer wall, except for the upward
main flow, the secondary flow region near the bottom expands
upward, and the flow is enhanced. Therefore, the azimuthal tem-
perature fluctuation near the bottom at R = 1.75 increases. Because
the bottom is the adiabatic boundary, the azimuthal temperature
distribution depends mainly on the velocity distribution of out-
ward backflow near the bottom. Therefore, although the directions
of the secondary flows on the free surface and near the bottom are
opposite, the temperature fluctuation is synchronous in the azi-
muthal direction.

When Marangoni number exceeds the second critical value, 3D
steady flow will destabilize and transform into 3D oscillatory flow.
In order to analyze the variation of temperature fluctuation in 3D
y flow on Z � h section of 0 < h < p/4 at Ma = 400 and Bi = 0.5.
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oscillatory flow, the time fluctuation of temperature dH is intro-
duced as

dH ¼ HðR; h; Z; sÞ � 1
sp

Z sp

0
HðR; h; Z; sÞds ð14Þ

in which, sp is the fluctuation period.
Fig. 7 shows the snapshots of temperature fluctuation in the R-Z

plane of h = 0 within a period for 3D oscillatory flow at Ma = 500
and Bi = 0.5. It is shown from the diagram that the temperature
fluctuations originate near the bottom, and then propagate to the
free surface. During the propagating process, the temperature fluc-
tuation amplitude decreases first and then increases. It is further
proved that the flow instability is mainly caused by the sudden
change of flow direction near the upper inner wall and the bottom
outer wall in a deep pool for low Prandtl number fluids. In a shal-
low pool, the flow destabilization should be attributed to the HTWs
instability [6,7,36,37]. Therefore, the aspect ratio of the pool is an
important factor for the flow destabilization mechanism. On the
other hand, Jing et al. [26] investigated thermocapillary convection
Fig. 7. Snapshots of temperature fluctuation in the R-Z plane of h = 0 at Ma = 50

Fig. 8. Snapshots of temperature fluctuation on free surface (above) and bottom (below)
of LiNbO3 melt with Prandtl number of 13.6 in an open cylindrical
liquid pool with surface radiation heat dissipation. The results
show that Marangoni effect on the free surface is the main cause
of the surface wheel pattern formation, and the fluctuations of
temperature and velocity only occur near the free surface. At the
same time, Li et al. [38] numerically simulated thermocapillary
convection of 0.65cSt silicone oil (Pr = 6.7) in the annular pool
and showed that the fluctuations of temperature and velocity orig-
inate from the boundary layer near the wall. Therefore, Prandtl
number of the working fluid should be responsible for the destabi-
lization mechanism of thermocapillary convection in a deep annu-
lar pool.

Fig. 8 gives the snapshots of temperature fluctuation within a
period for 3D oscillatory flow on the free surface and at the bottom
when Ma = 500 and Bi = 0.5. Obviously, the temperature fluctua-
tion includes the azimuthal temperature fluctuation and the radial
temperature fluctuation of time-dependent caused by large cells in
the R-Z plane. On the free surface, the azimuthal temperature fluc-
tuation exists near the inner wall, and the azimuthal position is
stable. But near the outer wall, the time-dependent radial
0 and Bi = 0.5 at every quarter-period of oscillation for 3D oscillatory flow.

atMa = 500 and Bi = 0.5 at every quarter-period of oscillation for 3D oscillatory flow.
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temperature fluctuation is dominant. Fig. 9 shows the evolution of
free surface temperature with time at R = 1.17, 1.5 and 1.83,
respectively. Obviously, the azimuthal temperature fluctuation is
dominant near the inner wall, and the azimuthal positions of the
peaks and the troughs remain unchanged. Therefore, the space–
time diagram (STD) along a circumference of surface temperature
Fig. 9. Variations of surface temperature distribution on free surface with ti

Fig. 10. Time dependency of radial velocity and temperature (left) and the frequency sp
Bi = 0.5. Solid lines: radial velocity; dotted lines: temperature.
consists of a set of vertically discontinuous lines. Near the outer
wall, the radial temperature fluctuation is dominant and axisym-
metric, so the STD consists of a set of horizontal straight lines. It
is just the opposite at the bottom of the annular pool, that is, the
radial temperature gradient is main near the inner wall, and the
azimuthal temperature fluctuation is dominate near the outer wall.
me at Ma = 500 and Bi = 0.5 when R = 1.17, 1.50 and 1.83, respectively.

ectrum of radial velocity (right) at different monitoring points when Ma = 500 and
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Fig. 11. Three-dimensional oscillatory flow atMa = 600 and Bi = 0.5. (a) Snapshot of temperature fluctuation on the free surface; (b) The frequency spectrum of radial velocity
at R = 1.5 on free surface; (c) Variations of surface temperature distribution with time on free surface at R = 1.17 (left) and 1.83 (right).
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Fig. 10 shows the time dependency of radial velocity and tem-
perature and the frequency spectrum of radial velocity at different
monitoring points when Ma = 500 and Bi = 0.5. Obviously, both
velocity and temperature fluctuations have strong periodicity,
but the fluctuation between them is not synchronous, and there
is a certain phase difference. Near the free surface and the inner
wall, the phase difference is (3/7)p, and near the bottom and the
outer wall, the phase difference is p. According to the spectrum,
although the phase difference between velocity fluctuation and
temperature fluctuation varies in different positions of the annular
liquid pool, the dimensionless fluctuation frequency is always the
same, which is F0 = 55.04. On the other hand, it can be found that
the amplitudes of the temperature and velocity fluctuations near
the bottom are larger than those near the free surface by compar-
ison of Fig. 10 (a) and (b).

With the increase of Marangoni number, the flow on the R-Z
plane is enhanced, and the oscillation process becomes more com-
plex. Fig. 11 gives the snapshot of temperature fluctuation, the fre-
quency spectrum of radial velocity at a monitoring point and the
evolution of surface temperature distribution with time at
R = 1.17 and 1.83 whenMa = 600 and Bi = 0.5. At this time, the tem-
perature fluctuation along the azimuthal direction on the free sur-
face is no longer uniform at any time, but the temperature at some
azimuthal positions is higher, and it is lower at other positions. The
azimuthal positions of the high and low temperature regions also
change alternately, which leads to two dominant frequencies on
the spectrogram, namely F0 = 51.79 and Fa = 3.70. F0 is the oscilla-
tion frequency of the large cell on the R-Z plane, while Fa reflects
the alternation of the azimuthal positions of the high and low tem-
perature regions. On the other hand, it can be seen from Fig. 11(c)
that the azimuthal temperature fluctuation near the free surface
will be no longer stable and there exists a small oscillation along
the azimuthal direction. Therefore, the STD at R = 1.17 is composed
of a set of vertical twists and turns. At the same time, the axisym-
metric radial temperature fluctuation near the outer wall is no
longer symmetrical, so the horizontal lines on the STD at R = 1.83
also begin to tilt and fracture. When Marangoni number increases
further, thermocapillary convection will be bifurcated into chaotic
flow.
4. Conclusions

A series of three-dimensional numerical simulations are per-
formed to analyze clearly the flow pattern transition and the desta-
bilization mechanism of thermocapillary convection for low
Prandtl number fluid in a deep annular pool when surface heat dis-
sipation is taken into account. From the obtained results, the fol-
lowing conclusions can be formulated:

(1) With the increase of Marangoni number, there are two types
of flow pattern transition: the first is axisymmetric steady
flow into 3D steady flow, and the second is 3D steady flow
into 3D oscillation flow after the flow destabilization.

(2) The critical Marangoni number of flow pattern transition
decreases slightly with the increase of Biot number. The flow
destabilization is caused by the sudden change of flow direc-
tion near the upper part of inner wall and the lower part of
outer wall. The maximum temperature and velocity fluctua-
tions appear near the lower part of outer wall.

(3) With the increase of Biot number, the azimuthal tempera-
ture fluctuation on the free surface gradually shrinks to the
inner wall, and the temperature fluctuation region
decreases. However, the temperature fluctuation region at
the bottom remains almost unchanged, but the fluctuation
amplitude increases. Under the same Marangoni number,
the variation of wave number will not be more than 2 when
Biot number increases from 0 to 1.
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