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In this letter, we report the modulating effects of streamwise system rotation on both the amplitude and
the wavenumber of pressure fluctuations in a plane channel flow. The analysis of the pressure field is
conducted based on a set of comprehensive direct numerical simulation data of six rotation numbers.
It is observed that high pressure fluctuation regions collocate with the Taylor–Görtler-like (TGL)
vortex cores. By decomposing the pressure field into rotation-induced and convection-induced parts,
it is observed that the rotation-induced part dominates the total pressure fluctuations and facilitates
the growth of TGL vortices. Furthermore, through a spectral analysis, it is discovered that the system
rotation acts as a “linear amplifier,” which converts high-wavenumber low-amplitude streamwise
vorticity fluctuations into low-wavenumber high-amplitude pressure fluctuations. Published by AIP
Publishing. https://doi.org/10.1063/1.5048800

Pressure-driven turbulent flow between two infinitely
large plates subjected to a streamwise system rotation repre-
sents a geometrically simple but physically complex problem
due to the coexistence of the mean and turbulent large-scale
secondary flows. The primary (or mean) mode of secondary
flows in the form of the so-called “double S-shaped triple-
zero-crossing patterned” mean spanwise flow has been well
studied in the literature.1–6 Based on their systematic direct
numerical simulation (DNS) study, Yang and Wang7 recently
reported the second (or turbulent) mode of the secondary flows,
referred to as Taylor–Görtler-like (TGL) vortices, occurring
as two-layer streamwise-elongated counter-rotating roll cells.
The streamwise scale of TGL vortices grows rapidly with an
increasing rotation number, while the spanwise scale of TGL
vortices remains stable due to the restriction from the channel
height. In fluid mechanics, Taylor–Görtler vortices typically
refer to the secondary flow structures induced by the centrifu-
gal instability in a boundary layer flow over a concave sur-
face.8,9 Analogous to the centrifugal instability, TGL vortices
induced by the Coriolis force instability are observed in both
spanwise- and streamwise-rotating channel flows.7,10,11 The
existence of TGL vortices is critical for momentum transfer
and influences significantly the flow statistics in both physical
and spectral spaces. However, it is not clear why the stream-
wise wavelength of TGL vortices increases drastically as the
rotation number increases in a streamwise-rotating channel
flow.7

As a continuation of our previous research,7 in this let-
ter, we report the finding of modulating effects of streamwise
system rotation on both the amplitude and the wavenumber

a)Electronic mail: BingChen.Wang@Umanitoba.Ca

of pressure fluctuations in a turbulent plane channel flow.
We demonstrate that the pressure field significantly influ-
ences the size, strength, and characteristic wavelength of TGL
vortices in a fast streamwise-rotating flow. This mechanism
underlying the TGL vortices in a fast streamwise-rotating flow
is essentially different from that for hairpin structures in wall-
shear turbulence because the hairpin structures are dominated
by the strong shear instead of the pressure of a wall-bounded
turbulent flow.12–14

Figure 1 shows the computational domain and coordinate
system for performing DNS of a streamwise-rotating channel
flow. As shown in the figure, x1, x2, and x3 denote the stream-
wise, wall-normal, and spanwise coordinates, respectively, and
u1, u2, and u3 represent the velocity components in the corre-
sponding directions. The continuity and momentum equations
for an incompressible flow subjected to a streamwise system
rotation take the following form:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj
= −

1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
− 2εi1jΩuj −

Π

ρ
δi1, (2)

where p represents the effective pressure, Ω is the angular
velocity of the system rotation, εijk is the Levi-Civita sym-
bol, Π is a constant streamwise pressure gradient that drives
the flow, and δij denotes the Kronecker delta. No-slip bound-
ary conditions are imposed on the two solid walls, and peri-
odic boundary conditions are applied to the streamwise and
spanwise directions.

The new findings are obtained by analyzing the DNS
database established by Yang and Wang,7 which involves six
different rotation numbers: Roτ = 2Ωh/uτ = 0, 7.5, 15, 30, 75,
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FIG. 1. Computational domain for a streamwise-rotating channel flow.

and 150, where h represents one-half of the channel height and
uτ is the wall friction velocity. The highest rotation number
(Roτ = 150) analyzed here is also the highest for streamwise-
rotating flows in the current literature, which facilitates this
study of the effects of streamwise system rotation on the mod-
ulation of the pressure field and growth of TGL vortices. Before
the establishment of this comprehensive DNS dataset,7 the
highest rotation number in the literature was only Roτ = 30,
reported by Yang, Su, and Wu6 in 2010. A very long compu-
tational domain of L1 × L2 × L3 = 512πh × 2h × 8πh (with
16 384× 128× 256 grid points) has been used to perform DNS
at Roτ = 150 in order to capture the streamwise-elongated vor-
tex structures. The Reynolds number is fixed at Reτ = uτh/ν
= 180 in all cases. In presenting the results, we use a pair of
angular brackets 〈·〉 to denote temporal- and plane-averaging,
and subsequently, the fluctuating component of an arbitrary
variable φ is determined as φ′ = φ − 〈φ〉.

Figure 2 shows typical vortex structures at Roτ = 150 in
both cross-stream (x2–x3) and horizontal (x1–x3) planes. To
make the figure readable, only a small portion of the span-
wise computational domain is shown in Fig. 2(a) and 1/32 of
the streamwise computational domain is shown in Fig. 2(b).
Because the TGL vortices are elongated in the streamwise
direction, the instantaneous vortex structures extracted from
different cross-stream planes feature common statistical char-
acteristics. As such, to demonstrate the instantaneous TGL
vortex structures, we arbitrarily choose the cross-stream plane
located at x1/h = 0 in Fig. 2(a). From Fig. 2(a), it is interesting
to observe that positive and negative pressure fluctuations p′

collocate with the large-scale vortices rotating in the counter-
clockwise and clockwise directions, respectively. Figure 2(b)
shows that the TGL vortices visualized using the contours
of instantaneous pressure fluctuations p′ are elongated in the
streamwise direction. The streamwise and spanwise scales of
TGL vortices reach 4.8 × 104 and 430 wall units, respectively,
at Roτ = 150.

In order to further study the effect of system rotation on the
pressure field, we take the divergence of Eq. (2) and apply the
divergence-free condition (1) to obtain the following Poisson
equation for pressure, viz.:

1
ρ

∂2p
∂xi∂xi

= −
∂ui

∂xj

∂uj

∂xi
+ 2Ωω1, (3)

where ω1
def
= ∂u3/∂x2 − ∂u2/∂x3 is the streamwise vorticity.

At the two walls, Eq. (2) degenerates to

∂p
∂x2
= ρν

∂2u2

∂x2
2

at x2 = ±h, (4)

which is the boundary condition for the pressure field. Pressure
p can be further decomposed into a rotation-induced compo-
nent pr and a convection-induced component pc, governed by
the following two Poisson equations, respectively:

1
ρ

∂2pr

∂xi∂xi
= 2Ωω1, (5)

1
ρ

∂2pc

∂xi∂xi
= −

∂ui

∂xj

∂uj

∂xi
. (6)

Correspondingly, the boundary condition (4) can be decom-
posed into

∂pr

∂x2
= 0

∂pc

∂x2
= ρν

∂2u2

∂x2
2




at x2 = ±h. (7)

Because Eqs. (5)–(7) are linear with respect to pressure,
p ≡ pr + pc holds strictly. There is an additional constraint
on the rotation-induced pressure pr : in the context of a non-
rotating flow (Roτ = 0), pr must remain constant throughout
the computational domain such that ∂pr /∂xi ≡ 0. With this
additional condition, it is required that the boundary condition
(∂pr/∂x2)x2=±h ≡ 0 must hold. Otherwise, pr would have a
non-constant distribution and would influence the flow field
in a non-rotating channel, which is an unphysical conclusion.
In other words, by definition, the rotation-induced pressure pr

must not have an impact on the flow in a non-rotating channel.
In view of this, the decomposition of the boundary condition
(7) is unique.

A fundamental difference between a streamwise-rotating
flow and a non-rotating flow lies in the Poisson equation sys-
tem that governs the pressure field. From the above linear
decomposition of the pressure, it is clear that in a non-rotating
flow, the pressure field is governed by just one Poisson equa-
tion (6) through the convection mechanism only, whereas in a

FIG. 2. TGL vortices visualized using the contours of pressure fluctuation p′ at Roτ = 150 in (a) the x2–x3 plane located at x1/h = 0 and (b) the x1–x3 plane
located at x2/h = −0.5. Vectors consisting of u′2 and u′3 are superimposed in panel (a) to show the rotating direction of vortices.
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FIG. 3. Profiles of pr ,rms and pc ,rms at (a) Roτ = 7.5,
(b) Roτ = 15, and (c) Roτ = 150.

streamwise-rotating flow, the total pressure field is governed
jointly by two Poisson equations (5) and (6) through both the
rotation and the convection mechanisms. Both Eqs. (5) and
(6) can be solved analytically. Later, it will be shown that it
is the rotation-induced pressure field governed by Eq. (5) that
facilitates the growth of TGL vortices and plays the dominant
role in a streamwise-rotating turbulent plane channel flow. It
should be further indicated here that only the instantaneous
pressure p needs to be solved in DNS, and Eqs. (3)–(7) can be
solved during post-processing of the DNS data obtained.

Figure 3 compares the profiles of the root-mean-square
(RMS) of pressure fluctuations pr ,rms and pc ,rms at Roτ = 7.5,
15, and 150. Because both pr ,rms and pc ,rms are symmetric
about the channel center (x2 = 0), we only show their profiles
within the lower half of the channel. As shown in Fig. 3(a), at
Roτ = 7.5, the magnitude of pr ,rms is comparable to that of
pc ,rms. In fact, pr ,rms ≤ pc ,rms holds only if x2/h ≤ 0.64. How-
ever, as is evident from Fig. 3(b), as the rotation number
increases to Roτ = 15, the magnitude of pr ,rms becomes larger
than that of pc ,rms across the entire channel. Finally, as the
rotation number further increases to Roτ = 150, the magni-
tude of pr ,rms becomes significantly larger than that of pc ,rms,
indicating an absolute dominance of rotation-induced pressure
fluctuations over convection-induced pressure fluctuations (at
a very high rotation number). In order to further understand
this dominant effect of pr ,rms, Figs. 4(a) and 4(b) compare
the profiles of ω1,rms and pr ,rms at various rotation numbers,
respectively. As shown in Fig. 4(a), the effect of Roτ on the
magnitude of ω1,rms is non-monotonic as the trend reverses at
Roτ = 15. Although the profile ofω1,rms varies slightly with Roτ
around x2/h = 0.9, in general, the magnitude ofω1,rms is insen-
sitive to Roτ . By contrast, as shown in Fig. 4(b), the effect of
system rotation on the rotation-induced pressure fluctuations
is drastic, and specifically, the magnitude of pr ,rms increases
monotonically with an increasing Roτ value.

By comparing Figs. 4(a) and 4(b), it is clear that the rota-
tion effects on the fluctuations of ω1 and pr are different.

However, from Eq. (5), it is understood that the instanta-
neous values of pr and ω1 are connected linearly through
a Poisson equation. Because both Eq. (5) and the boundary
condition for pr [the first condition of Eq. (7)] are linear,
the same equation and boundary condition hold for p′r , i.e.,
∂2p′r /∂xi∂xi = 2ρΩω′1 with ∂p′r /∂x2 = 0 at x2 = ±h. Clearly,
the role of system rotation (as indicated by Ω) is to lin-
early amplify the conversion of the streamwise vorticity fluc-
tuations ω′1 into the rotation-induced pressure fluctuations
p′r . In other words, large-scale streamwise vorticity fluctua-
tions (ω′1) enter the source term (i.e., 2ρΩω′1) of the Poisson
equation, which “powers” rotation-induced pressure fluctu-
ations (p′r). Because the magnitude of ω′1 is insensitive to
Roτ , the value of pr ,rms grows almost linearly with respect
to Roτ . In consequence, the pressure fluctuations shown in
Fig. 3(c) are dominated by pr ,rms at a very high rotation number
Roτ = 150. As is clear from Eq. (3), the influences of convec-
tion and system rotation on the pressure field are independent
of each other. Therefore, it is expected that the effect of sys-
tem rotation on flow dynamics and structures enhances as the
rotation number increases. Furthermore, based on the study of
non-rotating channel flows,15 it is understood that the mag-
nitude of pc,rms/ρu2

τ tends to be insensitive to the Reynolds
number. The turbulence flow structures induced by convection
and system rotation are very different in terms of their length
scales, which can be quantified through the following spectral
analysis.

The system rotation modulates not only the amplitude but
also the wavenumber of pressure fluctuations. The modulation
effect on the amplitude of p′r has been well demonstrated in
Fig. 4(b). In order to further understand the modulation effects
on the wavenumber of p′r , a spectral analysis is necessary.
Performing the Fourier transform on Eq. (5) over the x1–x3

plane yields

1
ρ

(−k2
1 − k2

3 +
d2

dx2
2

)p̂r = 2Ωω̂1. (8)

FIG. 4. Profiles of (a) ω1,rms and (b)
pr ,rms at various rotation numbers.
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Here, p̂r = p̂r(k1, x2, k3) and ω̂1 = ω̂(k1, x2, k3) are the
rotation-induced pressure and streamwise vorticity in the
Fourier space, respectively, and k1 and k3 represent
the streamwise and spanwise wavenumbers, respectively.
The solution to Eq. (8) can be obtained analytically,16

viz.,

p̂r =
2ρΩ

h

∫ h

−h
G(k, x2, x̄2)ω̂1(k1, x̄2, k3)dx̄2. (9)

Here, the Green function G(k, x2, x̄2) reads16

G(k, x2, x̄2) =




−
cosh[k(x̄2 − h)] cosh[k(x2 + h)]

2kh cosh(kh) sinh(kh)
, k , 0 and x2 < x̄2

−
cosh[k(x̄2 + h)] cosh[k(x2 − h)]

2kh cosh(kh) sinh(kh)
, k , 0 and x2 > x̄2

|x̄2 − x2 |

2h
, k = 0

, (10)

where k = (k2
1 + k2

3 )
1
2 . According to Eq. (10), the value of G is

negative for k , 0 such that the values of p′r and ω′1 exhibit a
negative correlation (k = 0 corresponds to the mean pressure
〈pr〉 and mean vorticity 〈ω1〉). Because p′r is the dominant
component of p′ at Roτ = 150, this explains the interest-
ing observation from Fig. 2(a) that the positive and negative
extrema of p′well overlap the centers of TGL vortices rotating
in the counterclockwise and clockwise directions, respectively.
Furthermore, the magnitude of G at specific values of x̄2/h and
x2/h decreases monotonically as k increases, indicating that the
integral transform based on kernel function G tends to shift the
spectra of ω′1 toward smaller wavenumbers.

To verify this conclusion of the spectral analysis, it
is useful to compare the pre-multiplied streamwise spectra
Φ1(ω′1) andΦ1(p′r). Following the literature,17–19 we show pre-
multiplied spectra (instead of the spectra) to clearly demon-
strate the contributions from different wavelengths in a semi-
logarithmic coordinate. Here, the pre-multiplied streamwise
spectrum Φ1(φ′) of an arbitrary fluctuating flow quantity φ′ is
defined as Φ1(φ′) = k1E1(φ′), where the streamwise spectrum
E1(φ′) is calculated as the Fourier transform of the streamwise
two-point correlation R1(φ′), viz.,

E1(φ′) =
1
π

∫
R1(φ′)e−ik1r1 dr1. (11)

Here, i =
√
−1, the two-point correlation function is defined

as R1(φ′) = 〈φ′(x1, x2, x3, t)φ′(x1 + r1, x2, x3, t)〉, and r1 is the
streamwise separation between two points.

Figure 5 compares Φ1(ω′1), Φ1(p′r), Φ1(u′2), and Φ1(u′3)
at Roτ = 150 in the plane located at x2/h = −0.5, where TGL
vortices are populated [see Fig. 2(a)]. In Fig. 5, the value of
Φ1(φ′) is normalized by 〈φ′φ′〉 such that the area below each
spectrum curve remains unity. As is evident from Fig. 5,Φ1(p′r)
peaks at a smaller wavenumber k1h than does Φ1(ω′1), which
confirms the previous analysis that the Green function G shifts
the pre-multiplied spectra ofω′1 toward smaller wavenumbers.
The peaks of u′2 and u′3 are close to each other and are between
those of p′r and ω′1.

Figure 6(a) further compares the streamwise pre-
multiplied spectra of p′r at various rotation numbers. It
is evident from Fig. 6(a) that Φ1(p′r) shifts progressively
toward smaller wavenumbers as the rotation number increases,

which is consistent with our previous observation of the scale
trend of TGL vortices.7

Figure 6(b) shows the effect of the rotation number on the
streamwise pre-multiplied spectra of u′2. As demonstrated in
Fig. 6(b), the peak ofΦ1(u′2) in a non-rotating channel (Roτ = 0)
occurs at k1h = 4.5. This peak is contributed exclusively by the
convection-induced pressure fluctuations p′c (because in a non-
rotating channel, p′r ≡ 0). Once the system rotation is imposed
on the flow, at a low rotation number Roτ = 7.5, the peak at
k1h = 4.5 is still present, but its magnitude is smaller than
that at Roτ = 0. A secondary peak occurs at a much smaller
wavenumber k1h = 0.38 (at Roτ = 7.5), which is close to the
peak location (k1h = 0.31) of p′r shown in Fig. 6(a), indicating
that this secondary peak is a consequence of the rotation-
induced pressure fluctuations p′r . The peak of Φ1(u′2) for p′c
diminishes rapidly as the rotation number becomes greater
than 15, and the spectrum shifts toward smaller wavenumbers
as the rotation number further increases. The pre-multiplied
spectrum of u′3 also shifts toward smaller wavenumbers but
is not shown to keep the discussion concise. The effects of
system rotation on u′2 and u′3 are consistent with that on p′r
shown in Fig. 6(a), indicating that large-scale velocity fluctu-
ations u′2 and u′3 correlate with the rotation-induced pressure
fluctuation p′r .

The interaction between p′r and u′2 or u′3 is nonlinear, which
can be further understood through the transport equation of
Reynolds stresses [Eq. (7.4) in the work of Yang and Wang7].
In our previous study,7 it was shown that the budget balance

FIG. 5. Pre-multiplied streamwise spectra of ω′1, p′r , u′2, and u′3 in the plane
located at x2/h = −0.5 for Roτ = 150.
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FIG. 6. Pre-multiplied streamwise
spectra of (a) p′r , (b) u′2, and (c) ω′1 in
the plane located at x2/h = −0.5 for
various rotation numbers.

of 〈u′2u′2〉 is dominated by two counteracting terms, i.e., the
pressure term G22 and the Coriolis terms C22 = 4Ω〈u′2u′3〉 (and
similarly, the budget balance of 〈u′3u′3〉 is dominated by G33

and C33 = −C22) in a fast streamwise-rotating flow. Here, the
pressure term is defined as Gij = −

〈
u′i∂p′/∂xj + u′j∂p′/∂xi

〉
/ρ.

Large-scale fluctuating streamwise vorticity ω′1 is cor-
related with velocity fluctuations (i.e., u′2 and u′3) of the
TGL vortices, as is clear from the definition equation of ω′1.
Figure 6(c) compares the streamwise pre-multiplied spectra of
ω′1 at various rotation numbers. Similar to Φ1(p′r) and Φ1(u′2)
demonstrated in Figs. 6(a) and 6(b), respectively, Φ1(ω′1) also
shifts toward smaller wavenumbers as the rotation number
increases. Although the magnitude of ω1,rms is insensitive
to the rotation number [see Fig. 4(a)], the results shown in
Fig. 6(c) indicate that as the rotation number increases, TGL
vortices become increasingly elongated in the streamwise
direction, which tends to reduce the dominant wavenumbers
of ω′1.

To conclude, in order to investigate the influence of
streamwise system rotation on the size, strength, and char-
acteristic wavelength of TGL vortices, we decomposed the
pressure field linearly into a rotation-induced component and a
convection-induced component (p′r and p′c, respectively), gov-
erned by two independent Poisson equations. By contrast, in a
non-rotating channel flow, pressure fluctuations are governed
by one single Poisson equation, for the convection-induced
component only. The Coriolis force acts on the pressure field
as a source term in the Poisson equation that governs the value
of p′r . It is discovered that the streamwise system rotation func-
tions as a linear amplifier. In response to a fast system rotation,
the system rotation (Ω) converts streamwise vorticity fluctua-
tionsω′1 into rotation-induced pressure fluctuations p′r through
the source term of a Poisson equation. Owing to the Laplace
differential operator of the Poisson system, both the amplitude
and the wavenumber of p′r are modulated by the streamwise
system rotation imposed.

It is discovered that there exists a critical rotation number,
at which the effect of rotation-induced pressure fluctuations
outweighs that of the convection-induced pressure fluctua-
tions. TGL vortices are not observed if the rotation number
is very low. This is because the pressure is dominated by the
convection-induced part at a low rotation number such that the
pre-multiplied streamwise spectra of the velocity fluctuations
peak at streamwise wavenumber k1h = 4.5 [as indicated by
Φ1(u′2)]. However, at a relatively high rotation number, a sec-
ondary peak occurs at a much smaller wavenumber k1h = 0.38,
indicating that this secondary peak is a consequence of the
rotation-induced pressure fluctuations p′r . Furthermore, the
peak of Φ1(u′2) for convection-induced pressure fluctuations
p′c diminishes rapidly as the rotation number becomes greater
than 15, and the spectrum shifts toward smaller wavenum-
bers as the rotation number continues to increase. As such,
the fundamental difference between streaky structures and
TGL vortices is revealed through this study (by precisely
identifying their characteristic wavenumbers, k1h = 4.5 and
0.38), which are two different types of turbulence structures
in a wall-bounded rotating flow, dominated by convection and
streamwise-rotation, respectively.
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