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The lack of stability is a problem encountered when applying the classical POD-Galerkin method to problems of unsteady
compressible flows around a moving structure. To solve this problem, a hybrid reduced-order model named POD-ARX is
constructed in this paper. The construction of this model involves two steps, including first extracting the fluid modes with
the POD technique and then identifying the modal coefficients with the ARX model. The POD modes with the block of all
modified primitive variables are extracted from the system response to the training signal. Once the POD modes are
obtained, the snapshots are projected on these modes to determine the time history of modal coeflicients and the resulting
modal coeflicients are used to identify the parameters of ARX model. Then, the ARX model is used to predict the modal
coeficients of the system response to the validation signal. Sample two-dimensional aerodynamic force calculations are
conducted to demonstrate this method. Results show that this method can produce a stable and accurate prediction to the
aerodynamic response with significant improvement of computational efficiency for linear and even some nonlinear
aerodynamic problems. In addition, this method also shows good wide-band characteristics by using the “3211” multistep

signal as the training signal.

1. Introduction

In recent years, with the rapid development of the computer
technology, computational fluid dynamics (CFD) has
become a more and more common tool in the analysis of
flow physics. The ability of performing high-fidelity unsteady
flow simulation makes the CFD solver capture complex flow
phenomenon accurately, such as separated flows and shock
waves. However, due to the huge cost of time and computa-
tional resources, nowadays, the CFD technique is still not
very suitable for analyzing fluid-structure interaction prob-
lems or other unsteady problem that needs repeated calcula-
tions. Therefore, it’s very important to develop a surrogate
model with high levels of both computational efficiency
and accuracy.

In 1990s, a series of unsteady aerodynamic reduced-order
models (ROM) were proposed. Compared to the direct CFD
numerical simulation, these models can not only improve
the computational efficiency significantly but also have the

satisfying computational accuracy. Current researches on
ROM can be generally divided into two groups. The first
branch employs the system identification (SI) methods to
build the relationship between the input and output data,
including the autoregressive with exogenous input (ARX)
model [1, 2], the Volterra series [3-5], and the neural net-
works [6-9]. The second branch is based on the eigenmodes
of the flow field, including the proper orthogonal decomposi-
tion (POD), which projects the governing equations onto
these eigenmodes to obtain a low-order dynamic model
[10-12]. Due to the good performance in the accuracy and
efficiency, the POD technique has become an active area of
the ROM research and has been widely used in optimal
design [13, 14], control design [15, 16], aeroelastic analysis
[17-19], etc. However, due to the influence of inner product,
simplification of the original governing equations, and the
lack of dissipation in numerical schemes, the conventional
POD ROMs are usually unstable and additional stabilization
strategies have to be adopted to solve these problems [20-24].
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In addition, some combinations between POD and system
identification methods have also been proposed in recent
years [25-27].

Lucia and Beran [26] proposed a hybrid approach by
combining POD and Volterra theory. In this method, the
POD technique is used to extract the fluid modes and the
Volterra theory is employed to identify the modal coefficients
of the flow field. This method has been demonstrated on a
two-dimensional subsonic inviscid flow over a bump with
forcing and been successfully used to predict the limit-cycle
oscillation behavior over an elastic panel in supersonic flow
[26, 27]. Although this method has shown its efficiency and
accuracy in aerodynamic response prediction, it also presents
some drawbacks. First, this method extracted the POD
modes from the startup response of full-order model to
validation signal itself and it showed in [27] that the POD
basis derived from the impulse response data was not
adequate for modeling the aeroelastic problems accurately,
which means that these modes are difficult to represent the
dominant feature of the flow generated from other input
signals with different frequencies. Second, Lucia and Beran
[26] and Lucia et al. [27] conducted the orthogonal decom-
position for each variable separately. Although this method
can provide the maximum POD power structure for each
variable, it also makes the system relatively complicated and
heavy. In addition, Placzek [28] points out that since the
variables are correlated with each other, a part of physical
problems may be ignored with this method. Therefore, it is
preferable to form a set of eigenmodes from blocks contain-
ing all the fluid variables. But the traditional conservative
variables are not appropriate because the Navier-Stokes
(N-S)/Euler equations are not quadratic and the Galerkin
projection will yield an inadequate implicit form of the
modal coefficients.

Fortunately, some researchers, trying to apply the POD
method in the compressible flow, provide some excellent
ideas. Placzek [28] and Placzek et al. [29] introduced the
modified primitive variables into the analysis of the nonlin-
ear compressible flows around a rigid body with motion by
POD. With the modified primitive variables, the N-S/Euler
equations can be transformed to an explicit format about
the modal coeflicients by the Galerkin projection. However,
the resulting reduced-order model lacks some dissipation
and has to adopt the correction method to produce a stable
response, which brings some new difficulties, such as the
choice of the correction method for different flow conditions
and the complex computation of the parameters.

In order to overcome the disadvantages of the above
methods, a new POD-ARX model is constructed in this
paper. The model is constructed by extracting the modes by
POD technique and identifying the modal coefficients by
the ARX model. As a difference model, the ARX model is
very easy to implement with existing unsteady CFD codes
and extremely efficient computationally. It is also well suit-
able for the multi-input/multioutput (MIMO) identification
procedure and has been extensively used in aeroelastic prob-
lems [1, 2, 30-33]. Besides, recent researches have proved
that the ARX model can be used in the nonlinear problems
of an airfoil in pitching motion under large angle of attack
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in the near-instable flows [34-36]. The modified primitive
variables are applied as a block to conduct the proper
orthogonal decomposition, and POD modes are extracted
from the snapshots obtained by full-order system response
to the training signal with a wide range of frequencies.
Finally, the performance of the method was validated by
a subsonic inviscid flow sample around the moving
NACAO0012 airfoil.

2. Construction of the Reduced-Order Model

2.1. Overview of Proper Orthogonal Decomposition. The
aim of POD is to find a set of optimal orthogonal basis
®={¢,i=1,2,...,m} to provide a best approximation
to the behavior of the full-order system dynamics. Since
the snapshots are usually centered, the problem can be
transformed into finding the best basis to approximate
the fluctuations of the snapshots around a mean state.
Consequently, the problem in the discrete domain can be
expressed as follows [26]:

a0 =4+ M=y + ¥ a(d =g + 071, (1)

i=1

where g, represents the full-order base solution, which can be
a steady CFD solution or an average solution of the snapshots
used to extract the POD modes; ® represents a linear trans-
formation between the full-order solution g(t) and the
reduced-order solution §(t); and the modal matrix ®@ is made
up of fluid modes {¢,}, which is also called the POD modes.
The modal coefficients {a;} make up the column of the
matrix g(t).The optimal basis functions can be yielded by
solving the following eigenvalue problem [26]:

STSV = VA, (2)

®=SV, (3)

where S is an (N x M) matrix, M is the number of snapshots
and N is the number of data points in each snapshot.
Snapshots, which are also called samples, represent the
solutions of full-order system dynamics at different time.
These solutions are generally collected to provide a good
variety of flow field behaviors. V is the matrix of eigenvectors
of STS, and the vectors make up the column of V. A is the
corresponding nonnegative diagonal matrix arranged in
descending order that represents the eigenvalues of the
system. Thus, once the snapshot matrix S is created, the
eigenvalues and eigenvectors of the eigen-equation (2) can
be solved. However, the matrix is so huge that it requires
massive memory storage and is very time consuming to solve.
In practice, the snapshot matrix S is usually redundant and
can be eliminated by resizing the eigenvectors in V and
eigenvalues in A. Finally, the modal matrix @ can be solved
using (3). The eigenvalue can be interpreted as the weight
of contribution to each mode in the POD reconstruction
and the “energy” captured by the retained modes relative to
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the whole set of eigenvalues of the correlation matrix S”S can
be defined as follows:

Ai
SA‘)

J=17%5

200 3

(4)

™M

where 7 represents the “energy” captured by the retained
POD modes. Since the eigenvalue sequence A, A,, ..., A,
descends rapidly, generally, the first few POD modes can
capture more than ninety percent of the total “energy,” which
is usually enough to describe the system physics. More details
about the method can be found in reference [26].

2.2. Model Reduction. Once the POD basis functions have
been identified using the method of snapshots, the Euler
equations must be recast to solve the modal coefficients
in lieu of the full-system variables. For incompressible
flows, this is generally accomplished using the Galerkin
method. But for compressible flows, the reduced-order
model of the Euler equations is generally difficult to solve
due to the resulting implicit formulation. To solve the
problem, Placzek et al. [29] introduces modified primitive
variables g = ((1/p), u, p)" into the unsteady N-S equations,
which are then expressed as a polynomial form and adequate
for the Galerkin projection.

The Euler equations in a moving frame with the mod-
ified primitive variables g = ((1/p), u,p)" can be written as
follows [29]:

+(u=s)-V9=9divuy,

+(u-s)-Vu=-9Vp-w-u, (5)

ot
0
ot
P _ .
= +(u-s)-Vp=—ypdivu,
ot
where 9=1/p and p is the density, u is the velocity vector
of the fluid, p is pressure, s is the velocity of the mesh and
can be described by s =5, + w x r, where s, and w represent
the translation velocity and the angular velocity of the mesh,
respectively. r is the position vector relating to the moving

frame, y is the heat capacity ratio.
Equation (5) can also be rewritten in the quadratic form:

q=Q%(q) + T(4> 50 w), (6)

where Q¢ and T are defined by

[ —u-V9+9divu
Q°g.q)=| -u-Va-9vp |,

:—u SV};g yp div u )
T(gssw)=|s-Vu-w-u

L s'Vp

Introduce q(t) =q,+ Y.\ a;(t)¢; into (6) and project
the two sides of the system equations (6) onto each
POD mode {¢.}; (6) becomes a quadratic ordinary differ-
ential equation:

a;(t) =(Q(q: 9), ¢) + ((Q'(3: 29). ¢;) + (Q(A:9). 4;))
+(Q(Ag, Aq), ¢;) + (T(d> sp> @), i) + (T(Ags 5, @), ¢7)

=K+ Z Lyaj( Z Riga;(t)a(t) + K'u,(t)
i,j=1 Jok=1

+ ZLIJ m
(8)

= [s,w]" and the parameters K, Ly, Ry K", and
L?j“ are constants related to the basis functions, which can

where u,,

be computed from the analytical expressions and the
details can be found in reference [28, 29].

2.3. Overview of ARX. The ARX model is a linear difference
model, which describes the response of a system as a sum
of scaled previous outputs and scaled values of inputs to the
system. For a multi-input/multioutput system, the model
can be written as follows:

Z Ay, (k

v (k+1)

nb-1
)+ Y Buk-i, )

where y (k) is the vector of system output at the kth step,
u (k) is the vector of system input at the kth step, matrices
A, and B; are the constant coeflicients to be identified, na
and nb are called the ARX model orders. According to the
equation, the system response at given time can be expressed
as an algebraic series of multiplications and additions.

The accuracy of the model depends highly on the
inputs used to obtain the training data. There must be as
much information about the system’s dynamics as possible
to be packed into the training set of data for the identifi-
cation procedure. By comparing the “32117 multistep
input signal with other different input signals, Cowan
[33] points out that the 3211 input signal is easy to imple-
ment in experiments and can excite the best frequency
response. Once the system inputs and outputs are given,
the matrices A; and B; can be calculated by the least-
squared method and the construction of the ARX model
is completed.

2.4. Construction of the POD-ARX Reduced-Order Model. 1t
should be noted that the reduced-order model constructed
in Section 2.2 is instable because the model lacks artificial
dissipation in the process of construction. To reproduce the
correct behavior of the original full-order model, Placzek
et al. [29] contrasts several correction methods and recom-
mends that the Tikhonov regularization method be a more
robust method for the nonautonomous system. Using this
method, the accuracy and stability of the response have been
significantly improved for both the short- and the long-term
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FiGgure 1: Comparison of aerodynamic coefficients between CFD codes and experiment.

behavior of the full-order model. Although this method is an
identification method, it still needs the calculation of the
parameters K;, L;j, Ry, Ki", and L7, which is time consuming
and complex. In addition, the choice of the parameters of the
regularization method is also difficult.

The objective of this paper is to determine the modal
coeflicients of (8) using the system identification model
with the motion signal being the system input and the
modal coefficients being the system output. Furthermore,
when Aq < g, Q°(Agq, Aq), and T(Ag, sy, w) are small rela-
tive to Q%(q, q), Q°(¢,Aq), Q°(Aq, q), and T(q, sy, w), their
projections Y7, Rjza;(t)a,(t) and Zj'inglfr(t)aj(t) are also
small. That is to say, (8) can be treated as a linear or weak
nonlinear system. Therefore, the ARX model is chosen
here as the identification model. Then a hybrid ROM
can be developed in this paper by combining the POD
technique and the ARX model. In this method, the POD
technique is used to extract the fluid modes from the
snapshots and the ARX model is used to identify the
modal coefficients of the flow field. The details of this
method are described as follows:

(1) Observe and record the snapshots of the system for a
predetermined input signal (training signal)

(2) Extract the POD basis functions from the snapshots
gathered in step (1) by POD technique

(3) Project the snapshots onto the basis functions to
obtain the time history of the modal coefhicients

(4) Construct the ARX model using the SI technique,
with the input signal in step (1) and the time history

of the modal coeflicients in step (3) being taken as the
input and output data, respectively

(5) Predict the modal coefficients according to a new
input signal by the ARX model obtained in step
(4). Then construct the resulting flow field using
the modal coefficients and the corresponding
POD modes

3. CFD Code Validation

The full-order solver uses the cell-centered finite volume
method to solve the Euler equation. The AUSM+ scheme is
used to discretize the computation domain [37], while the
implicit LU-SGS scheme is used for temporal integration
[38]. For the unsteady calculation, the dual-time stepping
method is adopted, with the fourth-order Runge-Kutta
scheme for the subiteration.

The solver was validated with the pitching motion of
NACAO0012 in transonic flow. The airfoil was forced to pitch
about its quarter chord and the motion is described as

a(t) = ay + da sin (wt), (10)
where «, is the mean angle of attack, «,, is the amplitude of
the motion, and the reduced frequency k is defined by

, (11)

where V  is the free-stream velocity of the flow and ¢
is the chord of the airfoil. In this case, a,=0.016deg,
da=2.51deg, Ma_, =0.755, and k =0.0814. Figure 1 is the
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comparison of the aerodynamic coefficients obtained from
CFD codes and experiment [39], which shows that the
CFD codes are reliable for the calculation of unsteady
aerodynamic forces.

4. Results

4.1. Wide-Band Characteristics of the ROM. Using the
POD-ARX hybrid reduced-order model outlined in Section
2.4, the aerodynamic characteristics of a two-dimensional
NACAOQ012 airfoil with pitching motion is investigated
here. A C-shape structure mesh is used and the mesh
consists of N =47944 nodes, which means the DOFs of
the full-order model are Nv =191766. The full-order Euler
solver is employed to provide snapshots for the POD
modes, as well as the base solution for comparison with
the ROMs results.

The model will be investigated in a subsonic flow with
Ma, =0.6 and the motion of the airfoil will be limited to
the pitching motion described as (11) at «, = 3 deg.

Cowan [33] compared several different training signals
and pointed out that the “3211” multistep input signal has
a wide range of frequency. Therefore, the “3211” input signal,
including a total of 310 time steps, is adopted here and shown
in Figure 2. A set of M =310 dimensionless flow field is
extracted at each time from startup to provide snapshots
for proper orthogonal decomposition. The frequency charac-
teristic of the “3211” multistep signal is shown in Figure 3. It
is found that the training signal has a good coverage to
the frequency band from nearly 40 Hz to 90 Hz, with the
dominant frequency being 65 Hz.

Equation (4) is adopted here to evaluate the “energy”
captured by the POD modes. It is found that the first 8
POD modes contain more than 99% “energy” of the flow
field. Consequently, the first 8 POD modes are extracted here
to conduct the model reduction.

The snapshots are projected onto the basis functions to
determine the time history of the modal coefhicients. Then,
the resulting data is used as the training data to identify the
parameters A; and B; of the ARX model. A variety of ARX
model orders (na and nb) are tried until the best fit for the
training data is found. The model orders na=5 and nb="5
are ultimately chosen as the best fit for the training data.
Then, the “3211” multistep signal is input to the newly con-
structed ARX model to test if it could accurately predict the
modal coefficients of multistep response. Figure 4 shows the
comparison of the multistep time history of modal coeffi-
cients obtained from the Euler solution and those from
the ARX model. Note that the former were obtained by
directly projecting the Euler solution onto the basis func-
tions. We can see that the reduced-order model fits the
training data extremely well. For a quantitative analysis,
a relative error is defined to evaluate the performance of
the ROM:

_ 2
_ lyrom = YcenllE % 100%, (12)

o
2
leroll
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FIGURE 2: Training signal.
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where ypoy and yopp represent the ROM output and the
output of the Euler solver, respectively. According to the
above equation, the relative errors of different modes are
both less than 0.1%.

First, the validation signal described by (10) is set to be
f=65Hz. The comparison of modal coeflicients obtained
from Euler and ROM solution to the oscillation signal is
shown in Figure 5. Obviously, the results by the model match
well with those from the Euler solution, with the relative
error of each coefficient being 0.3%, 0.59%, 4.47%, 1.13%,
4.98%, 2.2%, 3.8%, and 2.9%, respectively. Besides, it can be
found that the first 2 modes achieve better agreement than
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F1GURE 4: Comparison of modal coefficients obtained from Euler and ROM solution to “3211” signal.

the other modes. The reason for this phenomenon may lie in
the fact that the first two modes can capture more linear
characteristic of the system (the dominant characteristic of
this linear system) while the last several modes maintain
more nonlinear characteristic.

For a more intuitive evaluation to the result of the
ROM, the flow field is reconstructed according to (1).
The pressure distributions on the airfoil predicted by the
CFD and ROM at four instants in time T/4, 2T/4, 3T/4,
and T during the 5th period are shown in Figure 6.

Apparently, the pressure distribution on the airfoil obtained
from the ROM shows excellent agreement with the result
from CFD.

In addition, the time histories of lift coefficients and
moment coefficients are also compared between the ROM
and CFD by the integral of the surface pressure on the airfoil,
shown in Figure 7. The relative error of the lift coefficients
and the moment coefficients is 1.1% and 4.2%, respectively.
It is evident that the model has accurately predicted the
aerodynamic response.
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F1Gure 5: Comparison of modal coeflicients obtained from Euler and ROM solution to oscillation signal with f = 65 Hz.

In order to further exhibit the characteristic of this
model, two different validation signals with f=40Hz
and f=90Hz are input to the ROM to predict the
response. The aerodynamic coeflicients and the pressure
distributions on the airfoil at four instants in time T/4,
2T/4, 3T/4, and T during the 4th period predicted by
CFD and ROM are shown in Figures 8-11. The results
show that the pressure distributions and the aerodynamic
coeflicients from the ROM both agree well with those

from the Euler solver at f = 40 Hz (the relative error of the lift
coefficient and moment coeflicient is 1.1% and 4.9%). By
contrast, the relative error of the lift coefficients and moment
coefficients is 1.5% and 6.8% at f = 90 Hz. Obviously, due to
the frequency being far away from the dominant frequency of
the “3211” signal, the errors are slightly larger at f = 90 Hz,
but the accuracy is still acceptable in unsteady aerodynamic
calculation. Therefore, we can see that the ROM developed
in this paper performs well in a wide range of frequencies,
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mainly resulting from the good combination of the model
with the “3211” multistep signal.

4.2. Nonlinear Performance of the ROM. To evaluate the
performance of the POD-ARX ROM in nonlinear problems,

in this section, the ROM will be investigated under a larger
mean angle of attack. Figure 12 is the lift coefficient curve
of the airfoil when Ma_, = 0.6. It is obvious that the system
begin to exhibit the nonlinear aerodynamic characteristics
when «a > 5deg.
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Figure 13 is the pressure distributions on the airfoil
predicted by CFD and ROM at four instants in time T/4,
2T/4, 3T/4, and T during the 4th period when a, =7 deg
and f =65Hz. The corresponding aerodynamic results are
shown in Figure 14. The results show that the pressure
distributions and the aerodynamic coefficients from the
ROM both agree well with those from the Euler solver
(the relative error of the lift coefficient and moment coef-
ficient is 2.1% and 5.9%). However, it should be noted that
due to the influence of the nonlinearity of the system, the
“3211”7 multistep signal cannot fully excite the physical
characteristics of the flow field which is very important
for the extraction of the POD modes. Therefore, in this
case, the first 500 steps (nearly one and a half period) of
the validation signal are chosen as the training signal. In
addition, more POD modes (m=16) and more ARX
model orders (na =10 and nb=10) are chosen to conduct
the model reduction. In fact, in the case of large mean
angle of attack, it is not only difficult to fully excite all
the physical characteristics of the flow field by the training
signal but also difficult to obtain a stable steady-state base
flow. When we further increase the mean angle of attack
a, to 8deg, it is found that the steady-state flow becomes
unstable and the ROM suffers from a failure.

5. Computational Efficiency of the ROM

To evaluate the efficiency of the POD-ARX method in a more
intuitive way, in this section, we will make a comparison
about the computational time of the full-order solver and
ROM. Results from the case in Section 4.1 are summarized
in Table 1, where all the computations are run on a personal
computer (CPU: 3.2 GHZ, Memory: 8.0 GB) and the calcula-
tion time is measured by the CPU time covering five periods
of motion.

Apparently, the cost of identifying the ARX model is
almost negligible. When the time for training the input
signal by the full-order CFD solver (3056 seconds) and
extracting the POD modes (5497 seconds) is taken into
account, the whole model reduction process will cost 8553
seconds. Therefore, the computational efficiency can be
improved by almost fifty percent. Once the ROM is built
up, the calculation time is almost negligible when applying
the model to the corresponding problems.

6. Conclusions

A new hybrid POD-ARX reduced-order model is developed
in this paper by combining the POD technique and the
ARX model. The method involves extracting the fluid basis
functions with the POD technique and using the ARX model
to identify the modal coefficients. The method is tested on a
NACAO0012 airfoil with pitching motion in subsonic inviscid
flow. First, the motion at small angle of attack («, = 3 deg) is
conducted. The “3211” multistep signal is used as the
training signal to obtain the fluid snapshots and finally eight
basis functions are extracted by the POD technique. Then, an
eight-output ARX model is constructed. Three validation
signals with different frequencies are input to the ARX

11

« (degree)

FiGure 12: Lift coeflicient curve of the airfoil when Ma_, =0.6.

model, respectively. The resulting time histories of the
modal coefficients and the aerodynamic coefficients of
the flow field both achieve good agreement with those
obtained from the full-order CFD solver. When ignoring
the time for obtaining the snapshots and extracting the
POD modes, the computational time of the ROM can be
reduced by nearly five orders of magnitude. Second, to
evaluate the nonlinear performance of the method, a
pitching motion at a larger angle of attack (a,=7deg) is
conducted. Since the nonlinear characteristics of the flow
field, the “3211” multistep signal fails to excite the full
characteristics of the flow field and hence the first 500
steps of the validation signal is used as the training signal.
A total of 16 basis functions are extracted to construct the
ROM. The results obtained from the ROM have a good
agreement with those from the Euler solver.

The results have proven that the POD-ARX model can
provide stable and accurate predictions for the unsteady
aerodynamic response efficiently. Furthermore, compared
with the POD-Volterra method, the POD-ARX model has
good wide-band characteristics due to the easy combination
with the “3211” multistep signals in the linear range, which
is especially suitable to problems with uncertain frequencies
or a wide range of frequencies. In addition, using all the
primitive variables as a block also benefits to reduce the
numbers of the identification terms. And compared with
the correction method proposed in reference [29], the
ARX model is very efficient and easy to implement without
any additional calculations of the system parameters. How-
ever, it should be noted that for nonlinear problems, an
appropriate training signal and a stable steady-state base
flow is very important to the ROM. The initial investigation
about this method is made just for two-dimensional
aerodynamic problems in this paper. Future work will
concern on the three-dimensional problems and the
aeroelastic analysis.
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TasLE 1: Computational efficiency.

Flow solver Fluid DOFs CPU time
Full order 191776 15165 sec
POD-ARX 8 0.2 sec
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