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Highlights 

• A strain gradient shear-lag model for the staggered bio-structure is developed in 

which the effects of microstructures and scale were incorporated.   

• The analytical expressions of the overall effective modulus, interfacial strengths 

and deformations of the staggered bio-structure material are obtained. 

• The size effects of the properties of the staggered bio-structure are studied.  

• The predicted effective moduli of nacreous layer in different shells are compared 

with corresponding experimental results and are in good agreement with 

experimental results.  
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Abstract 

  Staggered structure materials, or “brick and mortar” structure materials, are widely 

observed in natural biomaterials. In this paper, based on strain gradient theory, a 

trans-scale shear-lag model is developed to characterize the mechanical properties and 

their size effects for the staggered bio-structure materials. The analytical expressions 

of the overall effective modulus, interfacial strengths and deformations of the 

staggered bio-structure material have been obtained. The results illustrate that the 

overall effective modulus, interfacial strengths and interfacial deformations have the 

strong size effects. These effects can be described by a combination parameter, i.e. 

thickness of organic material layer over the material length scale parameter of strain 

gradient theory. The overall effective modulus and interfacial strength increase with 

the decrease of the combination parameter. However, the interfacial deformation 

considerably decreases with the decrease of the combination parameter value. When 

the combination parameter value is taken as very large, corresponding to the case of 

large organic matrix thickness, the results return to the classical ones. The predicted 

effective moduli of nacre are also compared with experimental results and are in good 

agreement with experimental results.  

 

Keywords: staggered bio-structure; trans-scale model; strain gradient theory; effective 

modulus; shear-lag model  
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1. Introduction 

Natural biomaterials such as nacre, bone, teeth etc. are nanocomposites 

composed of mineral and organic (Currey, 1977; Jackson et al., 1988; Landis, 1995; 

Marshall et al., 1997; Tesch et al., 2001; Weiner and Wagner, 1998). Mineral is stiff 

and brittle, organic is compliant and ductile. Their composites, natural biomaterials, 

however, exhibit a superior combination of stiffness and toughness compared to their 

constituents (Barthelat, 2007; Espinosa et al., 2009; Meyers et al., 2008). For example, 

nacre which is the inner layer of some shells, is composed of 95% vol. aragonite (a 

crystallographic form of CaCO3) and 5% vol. organic materials (proteins and 

polysaccharides) (Sun and Bhushan, 2012). Its Young’s modulus is about 50 GPa, 

comparable to that of mineral (50~100 GPa); its strength is 100~300 MPa, higher than 

that of mineral (30 MPa); and the fracture toughness is 3~7 MPa m1/2, which is far 

higher than that of mineral (<< 1 MPa m1/2) (Ji and Gao, 2004), and comparable to 

that of skin (Wegst and Ashby, 2004). Experiments show that fracture energy of nacre 

is 3000 times more than that of monolithic CaCO3 (Currey, 1977; Jackson et al., 

1988). These excellent properties have attracted interests for several decades. And 

their hierarchical microstructures have been identified as the key factor for the 

outstanding properties (Currey, 1977; Dunlop and Fratzl, 2010; Ji and Gao, 2004). 

The microstructure in biomaterials is hierarchy and spans several length scales 

(Dunlop and Fratzl, 2010). For example, there are 3 levels structure in shells from 

nanoscale to macroscale (Currey, 1977; Jackson et al., 1988; Menig et al., 2000). A 

shell generally consists of periostracum layer (composed of hardened protein), 

prismatic layer (composed of columnar calcite) and nacreous layer (Sun and Bhushan, 

2012), where nacre holds the majority of volume. The typical microstructure of nacre 

is a “brick and mortar” structure, in which bricks or mineral platelets are arranged in a 

staggered micro-array and “glued” together with organic materials (Sun and Bhushan, 

2012). The thickness of mineral platelets is 0.2~1 μm and that of “glued” organic 

layers is only 20~40 nm (Barthelat et al., 2007; Jackson et al., 1986; Wang et al., 

2001). The mineral platelets are also composites composed of aragonite nanocrystals 
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about 3-10 nm embedded in a continuous organic material (Zhang et al., 2016). Bone 

has more than 7 levels structure from nanoscale to macroscale (Dunlop and Fratzl, 

2010; Weiner and Wagner, 1998). Although these complicated structural geometries, 

the nanoscale elementary structure and the staggered bio-structure are involved in 

their basic building blocks (Ji and Gao, 2010), such as the mineralized collagen fibrils 

in bone (Weiner and Wagner, 1998) and teeth (Kinney et al., 2003). The study of the 

relation between these microstructures and the unique overall mechanical properties is 

helpful for the successful design of biomimetic materials. 

    Mechanical models for the relation between the microstructure and the overall 

properties have been studied for many years. According to the observed 

microstructure of nacre, Currey (1977) proposed a “brick and mortar” model to 

connect the microstructure and the overall mechanical properties of nacre. Based on 

the observed mineral bridges in red abalone (Song et al., 2003), which immersed in 

the organic interlaminations and connected two individual mineral platelets, Song et 

al. (2003) introduced them into the mechanical model. Similarly, the observed 

nanoasperities on the mineral platelets (Wang et al., 2001), the mineral platelet 

waviness (Barthelat et al., 2007), even the combinations of these microstructure 

features were also involved in mechanical models (Sun and Bhushan, 2012). All of 

the above mechanical models were established by including the actual observations of 

microstructure.  

Jäger & Fratzl (2000) developed a mechanical model with a staggered array of 

mineral platelets for collagen fibrils by considering tensile and shear deformations of 

the organic matrix. The results showed that when the thickness of organic layers 

decreased, the mechanical behavior started to be dominated by shear of organic layers. 

Dai et al. (2008) modified this model by including the deformation of mineral 

platelets. Based on the work of Jäger & Fratzl (2000), Gao et al.(2003) and Ji & Gao 

(2004) proposed a tension-shear-chain (TSC) model by considering tensile 

deformation in mineral platelets and uniform shear in organic matrix and they derived 

a compact formula of effective modulus. They pointed that the large aspect ratio and 

staggered structure were the important factors for the large stiffness of biomaterials. 
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Zhang et al. (2010) extended this model to randomly staggered platelets distribution. 

Zuo & Wei (2007) modified TSC model by considering non-uniform shear in organic 

matrix, which was called shear-lag model (SL). It was used to study the mechanical 

properties of bone-like hierarchical materials (Gao, 2006) and the results showed that 

when the number of hierarchy levels was large, the non-uniform of shear in organic 

matrix must be considered. Based on the shear-lag assumptions also, Bar-On and 

Wagner (2011) proposed a generic staggered structure mechanical model by 

considering the tensile and shear deformations of mineral platelets and organic matrix. 

Although all of the above models catch the main characteristics of staggered structure, 

they contain neither the microstructure features (mineral bridges, nanoasperities, etc.) 

nor the nanoscale characteristics. Their predicted results are suitable for a mineral 

platelet of aspect ratio larger than 30 (Ji and Gao, 2004) or depend on the accurate 

experimental measurements of the properties of organic matrix. For example, the used 

modulus of organic matrix in nacre in literature (Bar-On and Daniel Wagner, 2012) is 

3 GPa (Barthelat et al., 2007). When the experimental measured value is small, such 

as 20 MPa in literature (Katti et al., 2001) on nacre, the resulted effective modulus is 

20 GPa (Katti et al., 2001), which is lower than actual value. 

Therefore, in this paper, a trans-scale model will be developed to contain the effects 

of microstructure and nanoscale for a staggered bio-structure based on the following 

considerations: 

1). The staggered bio-structure spans several length scale from nanoscale to 

macroscale. The scale features play an important role so that they cannot be neglected. 

Thereby its overall properties should be characterized by the trans-scale mechanical 

theory to demonstrate the effects of scale.   

2). Because the organic layers in staggered bio-structure are very thin and there are 

mineral bridges, nanoasperities and waviness of platelets immersed in them, the 

organic layers are difficult to deform (Barthelat et al., 2007) so that the measured 

modulus of organic materials in interlaminations (e.g., 3 GPa (Barthelat et al., 2007)) 

are much higher than that of general organic materials, which is 50~100 MPa (Ji and 

Gao, 2004). When the thickness of organic layers increases, the effects of these 
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immersed microstructure features are decreased so that the organic layers will 

gradually soften to bulk cases. That is, if we regard the organic material and the 

immersed microstructure features as an effective medium, its modulus should be 

size-dependence. Therefore, the organic matrix can be characterized by scale theory, 

i.e., high order continuum theory, which incorporated the effects of microstructure and 

scale.  

3). The thinner the organic layers, the rapider the strain change in it, the stronger 

the strain gradient effect is.  

So, in this paper, the organic materials will be regarded as strain gradient 

continuum, then the Zuo & Wei’s shear-lag model (Zuo and Wei, 2007), which is 

called classical shear-lag model in the following, will be extended to characterize the 

effective modulus of staggered structure in biomaterials. The paper is arranged as 

follows, in Section 2, the trans-scale model is established. In Section 3, the theoretical 

model will be solved, and the results are presented to illustrate the characteristics of 

the proposed model and some conclusions are summarized finally. In the following, 

subscript “m” means the organic matrix, and “p” means the mineral platelet.   

 

2. The Model 

   The considered staggered bio-microstructure is shown in Fig.1. Inside an organic 

material matrix, mineral platelets with length L  and thickness h  are arranged 

periodically, the neighboring mineral platelets are staggered by overlapping a half of 

their length. The thickness between the two layers of mineral platelet, i.e. the organic 

layers, is d . The mineral platelets are considered still as elastic material which will 

undergo the very small deformation due to their very high stiffness compared with 

organic material. However the organic layers are regarded as strain gradient 

continuum because of their very small size in thickness and thickness 

size-dependence of mechanics properties. The fundamental assumptions for the 

establishments of tension-shear-chain model (Gao et al., 2003; Ji and Gao, 2004) and 

the classical shear-lag model (Zuo and Wei, 2007) are followed:  

   1). The modulus of mineral platelets is about 3 orders higher than that of organic 
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matrix so that the tensile stress is carried mainly by platelets and the shear stress is 

carried mainly by organic materials. Under a tensile load, the path of load transfer is 

shown in Fig.1 (b). 

2). The length of mineral platelet is one or two orders larger than its thickness so 

that the deformation is one dimensional, that is, depending only on x , Fig.1 (c), and 

the stress in mineral platelets can be regarded as unchanged across its thickness. 

   3). The gap between the ends of two mineral platelets is much smaller than the 

length of mineral platelets such that the mechanical load at this zone is ignored. 

Therefore, the volume fraction of mineral platelets   is defined by / ( )h d h   .  

4). The elastic strain gradient organic matrix layers are very long in x  direction 

and very thin in y  direction so that an additional condition is assumed: the shear 

stress in the organic matrix is non-uniform, and only the strain gradient effect in y  

direction is considered, and the strain gradient effect in x  direction is neglected.  

It is worth noting that for the present case of nacre, since the Young modulus of 

the mineral platelets is much bigger than that of the proteins, the modulus ratio of 

both layers is about 1000 times, and the deformation of the mineral platelets is much 

smaller than that of the protein layers, therefore, the strain gradient effect in mineral 

platelets can be neglected. Moreover, since the ratio of matrix layer thickness to its 

length (d/L) is very small, about 0.01, according to quantity level analysis, the 

derivative of any variable to coordinate x is much smaller than its derivative to 

coordinate y, so we can neglect the strain gradient effect in the x direction to be 

compared with its effect in the y direction. 

Considering the symmetry, a representative cell is taken into account, as shown 

in Fig.1 (c), which is a quarter of a repeat cell. Due to the effect of elastic strain 

gradient, the deflection angle of the organic matrix is no longer uniform with the 

value of y  under the tensile load in Fig.1 (c).   
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Fig.1 the schematic diagram of strain gradient shear-lag model 

In characterization of the elastic strain gradient effect, the simplified form of 

Wei-Hutchinson strain gradient theory (Song et al., 2014; Wei, 2006; Wei and 

Hutchinson, 1997) is used to describe the organic matrix materials. Its basic equations 

are written as:  

 , ,

1

2
ij i j j iu u       ,i j k k i j j i ku   u                    (2.1) 

, , 0ik i ijk ij                                               (2.2) 

2ij kk ij ij          
22i j k i j kEl                          (2.3) 

where iu  is the displacement vector, ij  and ijk  are the strain and strain gradient 

tensors, ij  and ijk  are the stress and high-order stress tensors, which are the work 

conjugate to the ij  and ijk  respectively. ,   are the Lame coefficients, E  is 

the Young’s modulus, ij  is Kronecker delta, l  is the material length scale 

parameter.  

The principle of virtual work is: 

  ( )ij ij ijk ijk i i i i i i
V V S S

dV f u dV t u dS r D u dS                    (2.4) 

21

221

( , )

( , )

x y

x y




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where dV  and dS  are the volume and surface area elements, if  is the body force 

per unit volume, it  is the surface traction and ir  is the double stress traction on the 

surface S . On the surface S , the gradient ,k ju  can be decomposed into a 

surface-gradient j kD u  and a normal gradient j kn Du , that is, ,k j j k j ku D u n Du  , 

where ( )j jk j k kD n n   and i iD n  , in  is the unit normal cosines on the surface 

S . The surface traction it  and the double-stress traction kr  are: 

     ( ) ( ) ( )k i i k j i j k j i i j k p p j i i j kt n n n D n D n        ,    k i j ijkr n n           (2.5) 

Then for the staggered structure and simplified model shown in Fig.1, the stress 

and high-order stress of the strain gradient organic matrix are: 

21 212 m
m m

u
G G

y
 


 


,  

2
2 2

221 221 2
2 2 m

m m

u
E l E l

y
 


 


            (2.6) 

where mu  is the displacement of the organic matrix in x  direction. mG  and mE  

are the shear and Young’s moduli of the organic matrix.  

   The mineral platelets in the staggered bio-structure are considered as traditional 

linear elastic materials. So they satisfy the following equations: 

pi

i p i p

du
E E

dx
                                               (2.7) 

where piu  is the displacement of the platelet i ( 1,2i  ) in Fig.1, pE  is the Young’s 

modulus of mineral platelets.  

 

Fig.2. Forces analysis for cell 

 The forces analysis of the representative volume cell is shown in Fig.2. ,t r  are 

dx
dx

d 1
1


 

1

dx
dx

d 2
2


 

2

t tr r t tr r
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the surface traction and double-stress traction at the 0,y d  interfaces between the 

mineral platelets and the organic matrix, respectively. For convenience, the subscript 

“1” in 1 1,t r  has been omitted here since only the component in 1 direction is not 0.  

For the platelet 1 and 2, the moment is balanced by the surface traction and 

double-stress traction on the other half platelet. And the force equilibrium conditions 

give the following two balance equations: 

        

2

1

2

2

2

2

( )
0

2

( )
0

2

p p

p p

E h d u x
t

dx

E h d u x
t

dx


 





 

                                       (2.8) 

where  

3
2

21 2 221 3
2- m m

m m

u u
t G E l

y y
 

 
   

 
                            (2.9) 

is obtained by Eqs.(2.5), (2.6) and the gradient in x  direction is neglected.  

The boundary conditions are: 

at the boundary 1 2 00
0 : 0, 0,p xx

x u 


    

at the boundary 
2

2

1 2 max: 0, ,
2

L

L

x
x

L F
x

h
  




          (2.10) 

To solve this problem, a compatibility relation between 1 2( ), ( ), ( , )p p mu x u x u x y  is 

needed and it can be obtained from the interfaces continuous conditions. 

We assume that no work is done at the interfaces 0,y d  so that the displacement 

iu  and the normal gradient iDu  are continuous at the interfaces according to the 

virtual work principle (2.4) (Fleck and Hutchinson, 1993). That is: 

at interface 0y  :  10m py
u u


 , 

1

1 0
pm

m p

uu
Du Du

y y


   

 
 

at interface y d : 2m py d
u u


 , 

2

2 0
pm

m p

uu
Du Du

y y


   

 
      (2.11) 

  Using Eqs. (2.9), (2.11), we obtain: 
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1 2 1 2 1

2 1 2 1

(1 ) (1 )
( ) ( )

2(1 ) (1 ) 2(1 ) (1 )

1
( ) ( )

2(1 ) (1 ) 2(1 ) (1 )

Ad Ad

m p p p p pAd Ad Ad Ad

Ad
Ay Ay

p p p pAd Ad Ad Ad

e A e
u u u u u u y

e Ad e e Ad e

e
u u e u u e

e Ad e e Ad e



 
    

     

   
     

 

(2.12) 

and  

     
 2 1

2( 1)
[1 ]

( 1)

m
p pAd

Ad

G
t u u

e
d

Ad e

 





                                 (2.13) 

where 2

1

2 2 1 2 1

m

m m m

G
A

E l l d



 
  

 
, m  is the Poisson ratio of the organic 

matrix , and /d l   is a dimensionless length scale parameter for the effect of 

strain gradient. When / 0d l   , then 
2( 1)

1
( 1)

Ad

Ad

e

Ad e





, Eqn.(2.13) can be 

rewritten as  2 1 0p pu u  . It means that the strain gradient effect is so strong that it 

makes the strain gradient organic matrix too stiff to deform, which is the same effects 

as the immerged mineral bridges, nanoasperities. When /d l   , then 

2( 1)
0

( 1)

Ad

Ad

e

Ad e





, Eqn.(2.13) is reduced to the traditional relation of the shear-lag 

model for the staggered bio-structure (Zuo and Wei, 2007). It means when the 

thickness of the strain gradient organic matrix d  is far greater than the strain 

gradient characteristic length l , the strain gradient effect is so small that it can be 

neglected. It is exactly the feature of scale.  

   By Eqs.(2.8), (2.9), (2.10), (2.12), we can obtain the displacements of the mineral 

platelets and the surface traction: 

   

/ 2 / 2
/ /max

1 /2 /2 /2

1 1
( ) [ ]

2 1 1 1

x L x L

p

p

L e x e
u x e e

E e L e e

 
 

  

 




   

  
              (2.14) 

   

/ 2 / 2
/ /max

2 /2 /2 /2

1 1
( ) [ ]

2 1 1 1

x L x L

p

p

L e x e
u x e e

E e L e e

 
 

  

 




   

  
              (2.15) 
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/2
/ /max

/2 /2

1
( ) [ ]

4 1 1

x L x Le
t x e e

e e


 

 





 
 

                           (2.16) 

where  2( 1)
1

( 1)

c

Ad

Ad

e

Ad e


 






,    2
( 1 )

m
c

p

G

E


 





,    /L h  . 

The stress fields of the mineral platelets and the strain gradient organic matrix can 

be obtained by Eqs. (2.6), (2.7), which are listed in Appendix A.  

The effective Young’s modulus cE  of the staggered bio-structure is defined as the 

ratio of effective stress to effective strain of the representative cell. Then the analytical 

expression of the effective modulus of the staggered bio-structure is: 

      
/2

2( )

1 1 4

tanh( )
4

L

F
c ph d

p

E E
E



  





   
                          (2.17) 

where ,   are the effective strain and stress, maxF h ,   is the elongation of 

the half representative cell and 2 1( ) (0)
2

p p

L
u u   .  

When /d l   , c  , the Eqn.(2.17) is reduced to the expression of 

effective Young’s modulus derived by the classical shear-lag model (Zuo and Wei, 

2007).  

 

3. Results and analysis 

  In this section, we shall discuss the mechanical behavior and size effect for the 

staggered bio-structure materials based on the above fundamental displacement and 

stress solutions given by Eqns.(2.6)~(2.17). Since the strain gradient theory can be 

used to describe the mechanical behavior of materials at a hundred nanometer scale 

through length scale l (with magnitude about one micron), so by means of the present 

model we have analyzed the mechanical behavior of the bio structure at the nanoscale 

as β=d/l value is approaching about 0.04 (for the nacre case: volume fraction 95%, 

L~5 micron, h~1 micron, d~0.04l~40 nanometer). 
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3.1 Neglecting the mineral platelet deformation 

Since the modulus ratio of organic matrix to mineral platelet is very small, we first 

consider a simple case when the deformations of mineral platelets relative to those of 

organic matrix can be neglected. In this case, one can directly take as 1 0pu   and 

obtain a constant surface traction, /t F L . The displacement and stress solutions 

can be degenerated from fundamental solutions by setting pE  . Then the 

displacement of organic matrix can be given as:  

2

1 (1 )

(1 )

Ad Ad Ay Ad Ay

m p c Ad

e A e y e e e
u u

Ad e

    



                       (3.1) 

where 2p c

m

Fd
u

LG
  is the conventional displacement of platelet 2, which can be 

obtained by the classical shear-lag model with rigid mineral platelet case.  

Fig.3 shows the variation of the normalized displacement of the organic matrix 

2/m p cu u  along axis y  with different /d l   in the case of rigid mineral platelets. 

It can be seen that the smaller the   value, the smaller the 2/m p cu u value. It 

illustrates the size effect of organic layer deformation. On the other hand the solution 

shows that considering the strain gradient effect makes the organic matrix stiff and 

difficult to deform. When /d l   is large enough, the result tends to the classical 

one, i.e. 2/ /mc p cu u y d . Moreover, considering strain gradient effect, 2/m p cu u  is 

no longer linear along y axis.  
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Fig.3. Variation of 2/m p cu u  along y axis with different β in the case of rigid mineral platelets 

 

3.2 Considering the mineral platelet deformation 

   In order to investigate the overall properties of the staggered structure, consider 

that the mineral platelet is elastic material and its deformation is not neglected. The 

deformation mechanism of the staggered structure model is also referred to Fig.1. 

   The variations of the traction t  given in Eqn.(2.16) are examined firstly. In the 

following calculations, the Poisson’s ratio of the organic matrix is set as 0.3m   

since it has little influence on the solutions due to quasi one-dimension simplification 

of the proposed model.  

The variations of traction t  as a function of x ,  ,   with different /d l   

are illustrated in Figs.4 (a), (b), (c) and (d) respectively. From Fig.4 (a), the traction t  

increases at the two ends of the elastic mineral platelets with the decrease of d (l is 

material length scale, material constant, its value is about the order of 1 micron). The 

smaller the d value, the larger the traction value. On the other hand, when d is large 

enough, the result returns to the classical one. From Fig.4 (b), the stain gradient effect 

has large influences on the traction t  when the aspect ratio   is small and at
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0.04x L . It is to say that the traction t  has the big size effect when the aspect ratio 

  is small. And the value of t  decreases and tends to 0 with the increase of   at 

0.04x L  when 0.95= , / 0.001m pE E  . Fig.4 (c) demonstrates the effect of the 

volume fraction   on the surface traction t  with 5  , 0.04x L , / 0.001m pE E  . 

It is found that in the classical shear-lag model, the volume fraction   has small 

effect on the traction t , however when the strain gradient effect is involved, the 

volume fraction   has a very large effect on the traction t . Fig.4 (d) displays the 

overall stress-strain relations for 5  , 0.04x L , / 0.001m pE E   and for several 

/d l   values from 0.04 to 10. From Fig.4(d), both the effective strength and 

stiffness (slopes of stress-strain relations ) have the obvious size effects of the matrix 

thickness d for changing d/l values within region of 0.04~10. 

The strain gradient effects cause a large influence on the traction t  and 

consequently on the mineral platelet stress and deformation. These effects are 

displayed in Figs.5 (a) and (b). From Figure 5, we can also observe the big size effects 

of the displacement and stress existing in the mineral platelet 1.  
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Fig.4 Variations of traction t with x (a),  (b),  (c) for different β and overall stress- strain 

relations (d) for different β 
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(b)  

Fig.5. Distributions of displacement (a) and normal stress (b) along x axis in the mineral platelet 1  

 

3.3 The effective modulus  

 Predicted by Eqn.(2.17), the size effect of the effective Young’s modulus cE  of a 

staggered bio-structure will be examined in this subsection. The comparisons between 

the proposed model (abbreviated as SGSL) and some previously reported mechanical 

models will be carried out too. 

The normalized effective modulus /c pE E  as a function of the modulus ratio of 

the organic matrix to mineral platelet /m pE E , the aspect ratio   and the volume 

fraction   are shown in Fig.6 (a), (b) and (c) respectively. We find that the effective 

modulus /c pE E  increases with the increases of /m pE E ,  or  .The smaller the 

 value, the larger the /c pE E . Especially at small /m pE E  and small  , the 

modulus size effects are very big. That is to say, the smaller the thickness of the 

organic matrix corresponding to the smaller the value of  , the larger the effective 
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modulus of the staggered structure is. On the other hand, when   is large enough, 

the results should be degenerated into the classical ones.  
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Fig.6. Variations of the effective modulus with /m pE E  (a),   (b) and   (c) 

 

We also compare our results based on the strain gradient theory and shear-lag 

method (SGSL) with some previously reported results based on different models, such 

as Voigt’s upper bound, Reuss lower bound, the classical shear-lag model (abbreviated 

as SL) (Zuo and Wei, 2007), Ji & Gao’s tension-shear-chain model (abbreviated as 

TSC) (Ji and Gao, 2004), Bar-on & Wagner’s model (abbreviated as BW)(Bar-On and 

Daniel Wagner, 2012) and Dai’s model (abbreviated as Dai) (Dai et al., 2008), as 

shown in Fig.7. 

 The variation of effective modulus with modulus ratio /m pE E  is shown in Fig.7 

(a) for both 95= %  and 10= , which are the features of nacre. We can find that for 

the real modulus ratio of organic materials, / 0.001=m pE E , the present model can 

predict a more reasonable result than other models, which is closer to the modulus of 

mineral platelets. When the modulus ratio / 0.1m pE E  , all models exceed the Voigt 

upper bound (Dai and BW) or Reuss lower bound (TSC, SL, SGSL) due to their 

respective assumptions, about which a lot of researches are still needed to be carried 
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out. Fig.7 (b) shows the variations of the effective modulus with   for 95= % , 

/ 0.001=m pE E . It implies that the present model has the wider applicable region for 

the aspect ratio  than other model. For example, to obtain an exact effective 

modulus, such as 0.7c pE E , the present model needs to set 7   and other 

models need at least 40  (Dai model). It means that our model is more suitable for 

a staggered structure with lower and more reasonable aspect ratio, such as for the case 

of nacre. 

 The effects of volume fraction   of the mineral platelets on the effective 

modulus predicted by the above models are shown in Fig.7 (c) for / 0.001=m pE E , 

10= . The effective modulus increases gradually with   predicted by present model. 

However, other models predict very smaller cE  and are insensitive to the variation 

of   until 90%  , after which there are a drastic change of cE . Therefore, for 

the case of 90%  and small aspect ratio and small modulus ratio /m pE E , to use 

the present model can obtain the more reasonable predictions on the effective 

modulus of the staggered bio-structure than to use other models.   
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Fig.7. Comparisons of present model (SGSL) with other models for (a) /c pE E  vs. /m pE E  (b)

/c pE E  vs.   (c) /c pE E  vs.  

 

3.4 Comparisons with experiments and simulation 

Effective Young’s modulus predicted by Eqn.(2.17) are compared with some 

experimental results (Barthelat et al., 2007; Fan, 2015; Jackson et al., 1988, 1986; 

Wang et al., 2001) and simulation (Katti et al., 2001) for nacre. The characteristic 

length of the strain gradient organic matrix is an essential parameter in the proposed 

model. For metal, this characteristic length is in the order of micron, however for 

organic material (nacre), its value is also in the order of micron through comparing 

simulation results with experimental results for nanoindentation test (Song et al., 

2015). So, in the following calculations, we will use the values of characteristic length 

for the organic matrix. 

Fan (2015) focused on Hyriopsis cumingii in his master thesis. He found that the 

length and thickness of the mineral platelets were about 4.6L m and 0.93h m

respectively, the thickness of the organic matrix was 20d nm . The volume fraction 
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of the organic matrix was 14%. But there was only 2.1% ( / ( )d d h  ) in the 

interlaminations, the rest 11.9% was in the mineral platelets, which divided the 

mineral platelet to many aragonite nanograins (Zhang et al., 2016). So we derived the 

modulus of the mineral platelet is 94GPapE   computed simply by the Voigt 

model (see Appendix C). The nanoidentation test was carried out on the nacre layer of 

Hyriopsis cumingii. The measured Young’s modulus was 87.0 3.9GPa  and the 

hardness showed a strong size effect. By a trans-scale mechanics theory (Song et al., 

2014; Wu et al., 2012), which considered both strain gradient effect and the 

surface/interface effect, Song et al. (2015) simulated this size effect of hardness and 

gave the characteristic length of the strain gradient of the nacre as 0.9l m  or 

2.3l m . So the two characteristic lengths will be used as the characteristic length 

of the strain gradient organic matrix approximately in the calculation for Hyriopsis 

cumingii. According to Eqn.(2.17), the effective modulus of nacre in Hyriopsis 

cumingii is 91.4GPa ( 0.9 )l m  or 91.9GPa ( 2.3 )l m . It is coincided well with 

the experimental result of 87.0 3.9GPa . And therefore, 0.9l m  will be used 

approximately as the characteristic length of organic matrix in the following 

calculations.  

As mentioned above, the organic materials and the immersed mineral bridges, 

nanoasperities, etc. in the organic interlaminations can be regarded as an effective 

medium and its properties are size-dependence. This size effect is relevant to the size 

of mineral bridges or nanoasperities and the thickness of the organic layers.  

The geometry parameters used in each calculation are selected from the 

corresponding experiments and simulation and they are listed in Table 1. The Young’s 

moduli of the mineral platelets and organic matrix are set to be 94GPapE   and 

0.1GPamE   for the cases in which these material parameters are not given 

explicitly. With the help of Table 1 and Eqn.(2.17), the effective moduli of nacreous 

layer in different shells with characteristic lengths of 0.9l m  are evaluated and 

listed in Table 2, as well as the results evaluated by TSC model (Ji and Gao, 2004), 
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SL model (Zuo and Wei, 2007), BW model (Bar-On and Daniel Wagner, 2012) and 

Dai model (Dai et al., 2008). We can conclude that our present model gives the best 

predictions for the effective modulus of nacre compared to the experimental and 

simulation results.  

Table 1 the material parameters selected from experiments and simulation on nacre.  

 Shell 

L

(μm) 

h

(μm) 

d

(nm) 

pE

(GPa) 

mE

(GPa) 

L

h
   

h

d h
 


 

Fan(2015) 
Hyriopsis 

cumingii 
4.6 0.93 20 94 \ 5 97.9% 

Barthelat 

( 2007) 

 Red 

abalone 
8 0.4 20 \ \ 20 95% 

Katti (2001)  

(simulation) 
\ 5.6 0.5 30 99.5 0.02 11 94% 

Wang (2001) Red abalone 6.5 0.55 20 \ \ 12 96% 

Jackson(1988, 

1986) 
Pinctada 4 0.4 15 \ \ 10 96% 

 

Table 2. The effective Young’s modulus (GPa) for nacre.  

 Fan(2015)  
Barthelat 

(2007) 

Katti (2001) 

(simulation) 
Wang( 2001) 

Jackson 

(1988, 1986) 

Experim

ents 

87.0 3.9  90  20-25 69 ± 7 70±11 

Present 

model 

91.4( 0.9l m ) 89( 0.9l m ) 91.5( 0.9l m ) 89.8( 0.9l m ) 89.9( 0.9l m ) 

TSC 10.26 40.1 3.31 23.9 18 

SL 9.89 35.4 3.26 22.1 17 

BW 9.3 36.4 3.6 23.5 18.2 

Dai 17.1 44.9 5.5 31.3 25.8 
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It is worth noting that according to studies of Gao et al.(2003), Ji and Gao (2004) 

et al., the cases of the bone and teeth are mainly different from nacre in their aspect 

ratio of the mineral platelets (ratio of the length to thickness). The aspect ratios of the 

bone and teeth are about 30~60, however the aspect ratio of the nacre is about 5~20. 

Additionally, the thicknesses of the mineral platelets for bone and teeth are about 

several to tens nanometers, while the thickness of the nacre is about one micron. So in 

the present paper we presented the model based on the strain gradient theory to 

analyze the mechanical behave for the nacre. Theoretically, the model is applicable to 

the broad cases, such as bone and teeth. Ji and Gao (2004) stressed that the predicted 

results based on the tension-shear chain model are suitable for a mineral platelet of 

aspect ratio larger than 30. We shall use the model to describe a broad case in our 

future studies. 

 

4. Conclusions 

   Based on the strain gradient theory, a trans-scale shear-lag model is developed to 

characterize the mechanical properties of staggered bio-structure. In the proposed 

model, the organic materials in the interlaminations are considered as elastic strain 

gradient continuum and the mineral platelets are still classical elastic materials, then 

the classical shear-lag model is extended to strain gradient continuum case. The 

fundamental elastic fields and the analytical expression of the effective modulus of 

the staggered bio-structure are obtained. The results show that the mechanical 

behavior of the staggered bio-structure materials has the strong size effects. A 

parameter 
d

l
   is proposed to characterize the size effects. The results show that 

the thinner the organic matrix layer, corresponding to the smaller  value, the greater 

the size effect of mechanical behavior. When the thickness of the organic matrix layer 

is large enough or   is large enough, the size effect is small enough to be neglected, 

and then the proposed model returns to the classical shear-lag model. The model 

incorporates the effects of microstructure and scale, and thus it is more suitable for the 
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staggered bio-structure with small aspect ratio and small modulus ratio of organic 

matrix to mineral platelets. The predicted effective moduli of nacreous layer in 

different shells are consistent well with the corresponding experimental results.  
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Appendices:  

A. the expressions of stress fields in the staggered structure 

The normal stress in the mineral platelets: 
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the shear stress and the high order stress in the strain gradient organic matrix 
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B. The effective modulus expressions for a staggered structure of TSC, SL, Dai 

and BW models 

   The sizes of the mineral platelets and the organic matrix are defined the same as 

section 2 and the gap between the ends of two mineral platelets is defined as a   

additionally. For TSC, SL and our SGSL models, the gap a  is assumed small enough 

to be neglected such that the volume fraction of mineral platelets is 1

h

h d
 


. But 

for Dai and BW models, the gap a  is considered so that the definition of volume 

fraction is 2
( )( )

L h

a L d h





 
. pE  is the Young’s modulus of mineral platelets and 

,m mE G  are the Young’s and shear moduli of organic matrix respectively. The aspect 

ratio of the mineral platelets is /L h  .   

The effective modulus expressions are: 

1) Tension-shear-chain (TSC) model (Gao et al., 2003; Ji and Gao, 2004) 
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2) Shear-lag (SL) model (Zuo and Wei, 2007) 
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 is the same as that in TSC model.  

3) Dai’s model (Dai et al., 2008) 
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where 
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where   is the out-of-plane thickness of the staggered structure.   

4) BW model (Bar-On and Daniel Wagner, 2012) 
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To compare with our model, the gap a  is set to be 0.01a L  for Dai and BW 

models in calculations. For calculating their curves presented in Fig.10, L h  , 

2
( )( )

L h

a L d h





 
 are used to derive the relations between the effective modulus 

and the aspect ratio and volume fraction of mineral platelets. For calculating their data 

presented in Table 2, the measured L, h, d listed in Table 1 are used.  

 

C. The effective modulus of the mineral platelets of Hyriopsis cumingii based on 

the experiment performed by Fan(2015) 

   In the nacreous layer of Hyriopsis cumingii, Fan (2015) found that the volume 

fraction of the organic matrix was 14%. But there was only 2.1% (
d

d h



) in the 

interlaminations, the rest 11.9% was in the mineral platelets. So the effective modulus 

of the mineral platelet can be computed simply by Voigt model. That is, 

(1 )p aragonite nanograin nanograin mE E f f E                               (C.1) 
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where 

 
86%

87.8%
86% 11.9%

nanograinf  


, 107GPaaragoniteE  (Fan, 2015), 100MPamE  . 

Then 94GPapE  .  
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