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Abstract
As a structure is scaled down, the ratio of surface to volume increases and the surface effects thus 
stand out, which may result in the different material properties from those of bulk. Therefore, 
some key parameters such as Young’s modulus and adhesion energy, which concern the per-
formance and reliability of the micro/nano-electro-mechanical systems (MEMS/NEMS), are 
unknown. Sometimes, the direct measurements of some parameters are extremely difficult if 
not impossible, for example, measuring the position of an adsorbate as small as a molecule or 
an atom. How to use the measured quantities such as resonant frequencies and deformation to 
determine those key parameters forms an inverse problem. Every inverse problem requires a 
particular approach. In this chapter, we present some effective approaches of solving the inverse 
problems in the MEMS/NEMS applications. The chapter consists of two major parts: the inverse 
problems in (1) micro/nano mechanical resonator and (2) the stiction test of MEMS/NEMS.
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7.1 Introduction

“Most mathematical problems in science, technology and medicine are inverse prob-
lems” [1]. For example, in geophysics and medicine, the inverse problem arises as the 
determination of properties of some inaccessible regions from the observations on the 
boundary of those regions [1]. In the applications of MEMS/NEMS, many physical 
parameters are not subject to direct measurements and the effects induced by these 
parameters are then the only measurable quantities.

Solving the inverse problems is to relate the (measured) effects with those (intrin-
sic) physical parameters. For practical applications, the interpretation of experimental 
findings is of fundamental importance and studying inverse problems is the only com-
plete way of analyzing experimental results [1]. Because the micro/nanomechanical 
sensor can provide a label-free, high-throughput, and rapid detection of biological and 
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chemical molecules [2,3], it has become increasingly important in detecting tiny force 
or mass [4–8]. Depending on the nature of the input stimuli, micromechanical sensor 
can be categorized as physical, chemical, or biological sensor [7].

The adsorbed analytes on a micromechanical sensor surface can cause the changes of 
mass, damping, stiffness changes and surface stress, etc. [7,8]. These changes can result 
in the deflection and resonant frequency shifts of a micromechanical sensor, which are 
also the mechanisms used for sensing. For example, the self-assembly of alkanethiols 
[5] and the ligand-receptor binding [6] on a microcantilever surface can induce surface 
stress, which bends the beam. The bending of beam can be related with the surface 
stress by the following Stoney formula:
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where E, u, and h are the microcantilever Young’s modulus, Poisson’s ratio, and thick-
ness, respectively. R = 2L2 / (3Δx) is the radius of curvature (L and Δx are the microcan-
tilever length and deflection at the free end as shown in Figure 7.1). Δs is the differential 
surface stress, which has the unit of Nm–1 rather than pascal. Here, Δx is the measured 
quantity, which determines the surface stress (Δs) by Eq. (7.1). The ligand-receptor 
binding is highly selectively [6,9], Δs can thus be used as an effective criterion to deter-
mine what a ligand material is in Fritz’s experiment [6].

In the earlier applications of micromechanical sensor using surface stress as the sens-
ing mechanism, surface stress Δs has the one-to-one relation with the measured quantity 
Δx. In general, such one-to-one relation does not hold in many micromechanical sensor 

Figure 7.1 Scheme illustrating the hybridization experiment. A different oligonucleotide base sequence 
(red or blue) is immobilized on one side of cantilever as the receptor materials. (a) The differential signal 
is set to zero. (b) After injection of the first complementary oligonucleotide (green) as the ligand material, 
hybridization (ligand-receptor binding) occurs on the cantilever that provides the matching sequence 
(red), increasing the differential signal of the cantilever free end displacement (Δx). Adapted from 
Ref. [6].
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applications. As mentioned earlier, the mass, damping, and stiffness of sensor change 
when adsorption occurs. The system resonant frequency changes as follows [4,7]:
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Where f  ′ is the resonant frequency after adsorption. K, M, and C are the effective 
spring stiffness, mass, and damping of a micromechanical sensor, respectively. ΔK, ΔM, 
and ΔC are those corresponding changes due to adsorption. In the real application, f  ′, 
K, and M are the (known) measured quantity. As the sensor motion is recorded in an 
experiment, C and ΔC can also be easily determined from the frequency response curve 
by the half-power method [10]. ΔK and ΔM are the unknowns to be determined. In 
the forward problem (or alternatively called the direct problem [1]) in which ΔK, ΔM, 
and ΔC are given, f  ′ is uniquely determined by Eq. (7.2). However, for a measured/
given f  ′, there are infinite combinations of ΔK and ΔM. The intrinsic material proper-
ties of adsorbate are embodied in ΔK and ΔM, which induce the effects of the resonant 
frequency changes. Therefore, a natural inverse problem arises in the application of the 
micromechanical resonator sensor: How to use the changes of the resonant frequencies 
to determine the changes of mass and stiffness induced by adsorbates? The effective mass 
(ΔM) changes due to two things: the mass of adsorbate and its position, which are the 
two convolving factors of determining the shifts of the resonant frequencies [11–13]. 
The stiffness change ΔK is mainly caused by two mechanisms: the stiffness of adsor-
bate [14,15] and surface stress [4–6,16,17]. When the adsorbate material vibrates with 
the micromechanical resonator as a whole, the system behaves as a composite struc-
ture [14,15] and the stiffness of adsorbate material always cause the system resonant 
frequencies to increase. As shown in the adsorption tests of Escherichia coli (E. coli) 
bacteria on a silicon resonator by Ramos et al. [14,15], the system resonant frequen-
cies increase due to the fact that the adsorbate stiffness effect outweighs its mass effect. 
As surface stress can be either compressive or tensile [4,16,17], it can either decrease 
or increase the system resonant frequencies. On the other hand, the mechanism for 
damping (C) for the micromechanical resonator, which indicates the energy dissipation 
of the system, is a complex one though it can be measured. Various mechanisms and 
models have been proposed [18]; a clear physics picture still remains elusive. 

Another inverse problem arises in the stiction test of MEMS structure. Stiction is a 
major failure mechanism for MEMS structures [19–25]. The competition between the 
adhesive force and the microstructure restoring force determines whether the stiction 
occurs and how the structure deforms [23]. The presence of residual stress changes 
the structure stiffness and thus leads to the change of the restoring force. The previous 
models of arc-shape [20,21] and S-shape [24,25] correspond to the zero residual stress 
case, which also prescribes the stiction shape. When the residual stress becomes large, 
arc-shape and S-shape significantly deviate from the actual stiction shape of a slen-
der beam. With the assumed stiction shape of arc and S, suspension length is the only 
parameter needed to characterize the stiction shape and suspension length can also be 
used to uniquely determine the adhesion energy. However, there are infinite combina-
tions of residual stress and adhesion energy which can result in the same suspension 
length. The residual stress and adhesion energy are the two key parameters concerning 
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the performance and reliability of the MEMS/NEMS devices and the stiction test is 
such an experiment designed to extract these two parameters. However, the residual 
stress and adhesion energy are the quantities which are extremely difficult to be mea-
sured directly. In a stiction test, the measured quantity is the structure deformation 
shape. Therefore, the inverse problem arises as follows: How to use the stiction shape of 
MEMS/NEMS devices to determine the residual stress and adhesion energy?

7.2  Inverse Problems in the Micro/Nanomechanical Resonators

7.2.1  Determining the Mass and Position of Adsorbate by Using the Shifts 
of Resonant Frequencies

For a micro/nanomechanical resonator, the resonance change due to adsorption as 
given in Eq. (7.2) is the sensing mechanism. The ultimate limit for a micro/nanome-
chanical resonator sensitivity is imposed by the thermodynamic fluctuation [26,27]. 
For the mass sensing, the theory proved that the limit is well below a Dalton (1 Dalton ≈ 
1.65 × 10–24 g is approximately the mass of a proton), which leaves enough room for the 
development of the micro/nanomechanical resonator. Based on the NEMS technology, 
Hanay et al. [11] developed the resonator sensor capable of detecting a single protein 
with the mass of approximately one mega-Dalton. Jensen et al. [12] developed a carbon 
nanotube (CNT)-based mechanical resonator sensor capable of detecting one single 
gold atom with the mass of approximately 197 Dalton. The sensitivity of the CNT-
based resonator has recently been pushed by Chaste et al. [13] to achieve the capa-
bility of detecting the mass of one Dalton. There are three major approaches to push 
the sensitivity of a micro/nanomechanical resonator sensor toward its ultimate limit. 
Because the resonant frequency is proportional to h L E/ /2 × r  (h and L are the reso-
nator thickness and length; E and r are the Young’s modulus and mass density) [28], 
the first approach is to scale down the resonator size, which is to make the factor h / L2 
large and at the same time fractional change due to a same adsorbate is also larger in a 
smaller resonator [29]. The second one is to use the materials with large E / r , such as 
silicon [11], silicon carbide [30], CNT [12,13], and graphene [31]. Both approaches are 
to increase the resonant frequencies. With very large resonant frequencies, a tiny frac-
tional change in the resonant frequencies is still absolutely large enough to be detected 
[29]. In 2003, a clamped–clamped beam fabricated by the NEMS-based technology 
achieved the fundamental resonant frequency of around 1 GHz (109 Hz), which is a 
breakthrough as the mechanical vibration frequency enters the microwave range [30]. 
The third one is to increase the quality factor of a micro/nanomechanical resonator. 
Quality factor (Q) indicates the sharpness of resonance, which is inversely proportional 
to damping and has the approximate relation as follows [28,32]:
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where fo is the resonant frequency (with no adsorbate) and Δf = f ′ − fo is its shift. For a 
given resonant frequency fo, larger Q means smaller Δf can be detected as clearly indi-
cated by Eq. (7.3). The in-plane tension has been shown to be effective on enhancing 
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quality factor by both simulation [33] and experiment [34]. At the same time, it is 
always effective to increase quality factor by setting the resonator in a vacuum environ-
ment, which reduces or even eliminates the damping due to ambient air [35].

The ultimate goal of any detection method is to achieve the level of resolving a single 
quantum of a measured entity [36]. For the micro/nanomechanical resonator sensor, 
the progresses toward this goal are clearly indicated by the improvement of the sensitiv-
ity. The resonator sensors with the capability of detecting the presence of a biomolecule 
[3], a protein [11], a cell [37], a virus [38], a gold atom [12], and a proton [13], have 
been developed. Although those achievements are very impressive, there is a funda-
mental problem remained in those mass resonators: all those frequency shift measure-
ments actually cannot give the mass of individual atom, molecule, or nanoparticle [11]. 
As demonstrated by Jensen et al. [12], their CNT-based mass resonator actually does 
not measure the mass of a gold atom, even though the resonator has the capability 
of detecting a smaller frequency shift induced by the adsorption of a gold atom. The 
atom/molecule/particle mass and its position are the two (major) convolving factors of 
determining the resonant frequency shift of a resonator. To know the position, there are 
three major experimental approaches: (1) measuring the trajectory of a sprayed particle 
[26], (2) occluding some portions of resonator so that the particle must land at a specific 
location [12], and (3) direct measurement of the position of an adsorbate [39]. These 
measurement approaches not only require extra experimental setup but also (some-
times) are extremely difficult if not impossible to be applied. For example, Dohn et al. 
determined the position of a particle with the size of a micron by using optical image 
[39]. However, in Burg’s resonator with an embedded microfluidic channel where the 
biomolecules are pumped in [3] as shown in Figure 7.2, the optical method cannot 
work because the smaller size of a biomolecule and small contrast between a biomol-
ecule and solution. The exact position of the biomolecule is thus a major uncertainty in 

Figure 7.2 Illustration of two mass measurement modes enabled by a fluid-filled microcantilever. (a) The 
microcantilever is the resonator, and a microfluidic is embedded in the microcantilever. The microchannel 
translates mass changes into changes in resonance frequency. Fluid continuously flows through the 
channel and delivers biomolecules, cells, or synthetic particles. (b) Because the biomolecules, cells, or 
synthetic particles have different mass densities with that of solution, the resonant frequency shown as the 
blue and red lines changes when biomolecules pass through the microchannel. Adapted from Ref. [3].
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Burg’s experiment [3]. Knobel [29] gave the following comment: before a practical mass 
spectrometer can be made, the most important problem to be solved is to determine the 
atom/molecule/particle position.

In the earlier experiments of mass sensing, an inverse problem is encountered: How 
to use the measured resonant frequencies to determine the adsorbate mass and position? 
The methods of using multiple resonant frequencies to determine the mass and posi-
tion of a single adsorbate have been developed [11, 40]. However, unlike the method 
of probability density function [11] or a minimizing procedure which requires at least 
four resonant frequencies to be measured [40], the author developed a straightforward 
method to tackle the problem for a circular membrane resonator made of graphene 
[28]. The inverse problem solved in Ref. [28] is based on the following two mechanisms: 
(1) the adsorbate mass and position have different impacts on the same resonant fre-
quency; (2) for a circular membrane which has infinite resonant frequencies, the same 
adsorbate mass and position have different impact on different resonant  frequencies 
[28,39].

7.2.2  Determining the Adsorption-Induced Surface Stress and Mass by 
Measuring the Shifts of Resonant Frequencies

As indicated by Eq. (7.2), the adsorption can induce (1) the mass addition, which 
results in ΔM and always reduces the resonant frequencies, and (2) surface stress, 
which results in ΔK and can either increases or decreases the resonant frequencies 
[4]. For a given/measured resonant frequency f ′, there are infinite possible combina-
tions of ΔM and ΔK. One strategy is to find out either ΔM or ΔK first by a different 
measurement method and then use the dynamic mode to find the other. For example, 
by measuring the concentration of adsorbed analyte (ΔM is thus found), ΔK can then 
be found from Eq. (7.2) [16]; or by localizing the adsorption areas at the terminal end 
of cantilever to minimize the surface stress effect on the spring stiffness, ΔK = 0 can 
be assumed [41,42], then ΔM can then be found by applying Eq. (7.2). Obviously, 
the drawback of this strategy is that extra efforts on device and design, which is not 
trivial at all, are needed. Another strategy is to use the static mode to measure sur-
face stress to find out ΔK first [e.g., by the Stoney formula of Eq. (7.1)] and then use 
the dynamic mode to find out ΔK [41,43]. While, the problem of this strategy is that 
adsorption is a dynamic process. The adsorption-induced mass and surface stress vary 
not only with time [41,44] but also with how they are measured [44]. In chemical sen-
sors, adsorption and desorption of gas molecules often occur at the same time [45]; in 
biological sensor, the receptor–ligand such as biotin–streptavidin and biotin–avidin 
also experiences a dynamic process of bonding–debonding due to the competition 
between the barrier of mechanical energy, dissociation kinetics, and effect of thermal 
activation [46]. One vivid example on the difference of the static and dynamic modes 
is that the adsorption of water on the microcantilever coating layer of polymethyl-
methacrylate (PMMA) saturates in the static mode, whereas no saturation is observed 
in the dynamic mode [44]. The reason is that in the dynamic mode, the diffusion of 
water within the polymer and the dissolution of the polymer occur simultaneously 
[44]. In other words, the static mode and dynamic mode may not measure the same 
 adsorption-induced mass and surface stress. Ref. [4] presents a general method of 
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using the shifts of two resonant frequencies to uniquely determine the mass and sur-
face stress induced by adsorption.

Figure 7.3(a) is a schematic of a cantilever with a uniform layer of adsorption on its 
upper surface. Figure 7.3(b) is a schematic of the concentrated load modeling, in which 
a concentrated load F and a concentrated moment Mb are applied at the cantilever free 
end. For brevity, the governing equation of the concentrated load modeling and the 
boundary conditions are given as follows [47–49]:
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where m is the beam mass per unit length, and Δm is the adsorption mass per unit 
length, which is assumed to have a uniform distribution all over the cantilever and 
is thus treated as a constant. In the applications of chemical and biological sensors, 
an adsorbed mass spanning the entire cantilever surface is preferred instead of an 
adsorbed at a selected area [50], which prevents the need for selective activation of 
surface and avoids unspecific binding. w is the beam deflection, and c is damping. E*I is 
the beam bending stiffness. The concentrated load F = sb (s is the adsorption induced 
surface stress, and b is the beam width) [47]. Clearly, in Eq. (7.4), one of the surface 
effects is modeled as an axial force (F), which can influence the resonant frequencies 
of the beam. The Stoney formula of Eq. (7.1) is to model the surface stress as a concen-
trated moment applied at the beam free end [47], which will not result in any resonant 
frequency change [4]. There are still some debates on how to model the surface stress. 
Besides the aforementioned Stoney formula and concentrated load modeling, there is 
following one called the distributed load modeling [4,47]: 

Figure 7.3 (a) Schematic of a cantilever with a uniform layer of adsorption on its upper surface. The 
cantilever is with the length L, width b, and thickness h. (b) The concentrated load modeling: s is 
the surface stress induced by the adsorption; F = sb and Mb = sbh / 2 are the concentrated load and 
moment exerted at the beam free end, respectively. (c) The distributed load modeling: s = F / L = 
sb / L and Mb = sbh / (2L) are the uniformly distributed load and moment along the length direction, 
respectively. Adapted from Ref. [4].
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where s = F / L = sb / L is the distributed load as shown in Figure 7.3(c), and L is the 
beam length. As the experiments show that the surface stress is directly related with the 
coverage density of adsorbate [5] or areal density of ligand–receptor binding [6], Zhang 
et al. [47] and Finot et al. [51] argued that surface stress should be viewed as the sum of 
two contributions: one is an axial force per unit length, and the other is a moment per 
unit cross section. In Ref. [4], the distributed load model of Eq. (7.5) is used. However, 
the inverse problem solving technique presented in Ref. [4] can also be applied to the 
concentrated load model of Eq. (7.4).

By introducing x = x / L, W = w / L, and t = E I mL t* /( )4 , Eq. (7.5) has the following 
dimensionless form [4]:

 
( ) ( )1 1 0

2

2

4

4

2

2+ ∂
∂

+ ∂
∂

+ ∂
∂

− − ∂
∂

+ ∂
∂

=a
t t x

x
x x

W C W W W WΛ Λ  (7.6)

where a s= = =Δ Λm
m

C c L
E I

bL
E I

,
m

,* *

4 2

. Clearly, a indicates the ratio of the 

 adsorption mass to the beam mass, and Λ indicates the ratios of the surface stress to 
the beam stiffness per unit width. C is the dimensionless damping. Again, in the real 
sensor application, a and Λ are unknown; the resonant frequencies are extracted from 
the beam frequency response curves [41]. Therefore, using the resonant frequencies 
(shifts) to determine a and Λ forms an inverse problem. For a given (a, Λ) = (10–3, 10–2), 
the first two resonant frequencies can be calculated from Eq. (7.6) as a direct problem 
as w1 = 3.516491 and w2 = 22.025444. Now, how to use these two (measured) resonant 
frequencies to determine a and Λ is presented in Figure 7.4.

Figure 7.4(a) plots the variation of the first eigenfrequency, w1, as a function of Λ 
and a, which is a titled plane. w1 increases monotonically with the increase of Λ and 
decreases monotonically with the increase of a. The level plane is the one with the fixed 
first eigenfrequency value of w1 = 3.516491. The intersection of these two planes is 
all the combinations of Λ and a, which result in the same first eigenfrequency of w1 = 
3.516491. The intersection is a line marked in Figure 7.4(a). This line also indicates that 
the combinations resulting in a same eigenfrequency are infinite. Figure 7.4(b) plots the 
second eigenfrequency of w2 as a function of Λ and a. The level plane is the one with 
the fixed value of w2= 22.025444. Again, the intersection line of the two planes indicates 
the combinations of Λ and a resulting in w2= 24.628. Clearly, for any given values of 
Λ and a, each eigenfrequency is uniquely determined by Eq. (7.6). As an inverse prob-
lem, there are infinite combinations of Λ and a for a given eigenfrequency. However, as 
shown in Figure 7.4(c), for two given eigenfrequencies, their combinations of Λ and a, 
which are two lines, intersect. Physically, this intersection is used to uniquely determine 
the combination of Λ and a. In Figure 7.4(c), the intersection of the combinations of Λ 
and a for w1= 3.516491 and w2 = 22.025444 is marked as a circle, which happens to be 
exactly (a, Λ) = (10–3, 10–2). Physically, that the inverse problem can be solved is due to 
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the fact that surface stress and mass have different impacts on the resonant frequencies, 
which is also reflected mathematically in Eq. (7.6). Here, the inverse problem is solved 
by using the first two resonant frequencies. As a higher resonant frequency has a higher 
sensitivity, the method can be easily extended to this application scenario by choosing 
to calculate two other different resonant frequencies in Eq. (7.6).

7.2.3  Determining the Surface Elasticity and Surface Stress by Measuring 
the Shifts of Resonant Frequencies

One of the motivations to solve the inverse problem of using the shifts of resonant fre-
quency to determine surface elasticity and surface stress is ascribed to a debate in 1970s 

Figure 7.4 (a) Variation of the first resonance frequency (w1 ) as a function of α and Λ. The level plane is 
the one with a fixed resonance frequency of w1 = 3.516491. The intersection of the two planes is marked 
with a solid line. (b) Variation of the second resonance frequency (w2 ) as a function of α and Λ. The level 
plane is the one with a fixed resonance frequency of w2 = 22.025444. The intersection of the two planes is 
marked with a solid line. (c) The combinations of α and Λ for the resonant frequencies of w1 = 3.516491 
and w2 = 22.025444, which are two lines marked in Figures 7.3 and 7.4. The intersection is marked with a 
circle, which corresponds to (α, Λ)= (10–3, 10–2). Adapted from Ref. [4]
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[17]. In 1975, Lagowski et al. [52] found that the resonant frequencies of a microcan-
tilever deviate significantly from those predicated by the axial load-free beam theory; 
they proposed that surface stress is the mechanism causing the resonant frequencies 
shifts. Subsequently, Gurtin et al. [53] disputed Lagowski’s explanation; they argued 
that the resonant frequency is independent of surface stress and surface elasticity is 
the only mechanism responsible for the resonant frequency shifts. Lagowski’s essential 
argument is that surface stress behaves as residual stress, which has the axial load effect 
and thus changes the resonant frequencies [52]; Gurtin’s argument is that as the surface 
stress is induced inside a surface layer, there will be a corresponding force generated 
inside bulk due to constraint [53]. According to Newton’s third law, the force inside the 
bulk has the same magnitude but opposite direction as the product of surface stress 
and the thickness of surface layer. Therefore, the total amount of the axial load inside a 
micro/nanostructure is zero, and the resonant frequencies are independent of surface 
stress, which is the same scenario of the bending of a bimetallic beam due to tempera-
ture studied by Timoshenko [54]. The application of ansatz that nanostructure=bulk + 
surface [55] in continuum mechanics leads to the so-called core–shell model [56–58], 
in which the core is bulk and the shell is surface layer. In a surface layer, the total surface 
stress (t) is given as follows [56–58]:

 t s e= + Cs  (7.7)

where e is the dimensionless strain, and Cs is the surface modulus. Here, t is the result 
of charge redistribution as the electrons response to the effects of terminating a solid 
at a surface [59]. By the thermodynamics definition, t is a tensor associated with the 
reversible work to elastically stretch a pre-existing surface [60]. We find that t consists 
of two parts: s and Cse; s, which is strain independent, is often referred to as surface 
stress [52]; Cse, which is strain dependent, is often referred to as surface elasticity [53]. 
Surface elasticity is due to the formation of surface layer which has a different elastic 
property from that of a bulk [58,61]. Surface relaxation [61] and sometimes surface 
reconstruction [59] are the two profound mechanisms responsible for the formation of 
a surface layer. Both s and Cs have the unit of force per unit length (Nm–1) compared 
with that of force per unit area (Nm–2) for the bulk stress and modulus. Here, s and Cs 
can be either positive or negative [55], which can thus either stiffen or soften a micro/
nanostructure. In dynamics, the effect of the structure stiffness change (either stiffening 
or softening) is embodied in the shifts of the structure resonant frequencies.

Lagowski et al. [52] and McFarland et al. [62] found surface stress by measuring 
the shifts of one resonant frequency and by assuming zero surface elasticity. Similarly, 
Gurtin et al. [53] found surface elasticity by proving that surface stress has no impact 
on the resonant frequency. Gavan et al. [63] are the first to use the two resonant fre-
quencies of a microcantilever to determine the effects of surface elasticity and surface 
stress. Again, Gavan et al. [63] extracted the fitting value of surface stress/surface elas-
ticity by assuming that of surface elasticity/surface stress to be zero, which excludes the 
general case that both surface elasticity and surface stress are non-zero [55]. Recently, 
many theoretical investigations [64–66] show that both surface elasticity and surface 
stress have the impact on the structure stiffness; however, the effect of surface elasticity 
is too small to explain the experimental observations for a slender structure. The reason 
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is geometrical, as shown in Ref. [17], the surface stress effect is amplified by a factor of 
(L / D)2 (L and D are the length and diameter of a cylinder-like nanowire, respectively). 
For slender structure, because this (L / D)2 factor is large, the surface stress effect is 
dominant if s and Cs have the same order of magnitude [17]. However, for chunky 
structure or some materials whose Cs is significantly larger than s, the surface elastic-
ity effect must be considered [17]. Atomistic simulation is often used to obtain s and 
Cs, which are determined by the underlying lattice structure and interatomic potential 
[55,67,68]. It is noted that s and Cs  calculated by atomistic simulation can be signifi-
cantly different for the same material depending on what kind of interatomic potential 
is taken during the computation [17]. According to Song et al. [69], there is no experi-
mental method that can determine both non-zero surface elasticity and surface stress 
at the same time. The goal of Ref. [17] is twofold: by solving the inverse problem, it pro-
vides (1) a viable experimental scheme to determine both non-zero surface elasticity 
and surface stress by measuring two (arbitrary) resonant frequencies; (2) an alternative 
method/theory other than atomistic simulation. 

Actually, solving the inverse problem is very similar to the one of using the shifts of 
two resonant frequencies to determine the mass and surface stress [4] as presented in 
the last section. Here, we outline the procedures. The dimensionless governing equa-
tion is given as follows:
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where dimensionless parameters Δ and N indicate the effect s of surface elasticity and 
surface stress, respectively. Eq. (7.8) is similar to Eq. (7.6). The same inverse problem 
solving technique is applied: finding the all possible combinations of Δ and N for two 
given resonant frequencies and then find the intersection of these two infinite combina-
tions, which uniquely determine Δ and N [17]. Again, this technique works. The physi-
cal reason is that surface elasticity and surface stress have different impacts on different 
resonant frequency [17].

Finally, we give our comment on the debate between Lagowski et al. [52] and 
Gurtin et al. [53] on whether surface stress can induce the stiffness/resonant frequency 
change. We are prone to the opinion that surface stress should be viewed as residual 
stress [70,71]. The experiment by Chen et al. [72] shows that an adsorbate can sig-
nificantly increase the resonant frequencies of a monolayer graphene resonator. For 
a monolayer graphene, there is no room to form a surface layer which has a different 
mechanical property. Chen et al. [72] ascribed the increase of resonant frequencies as 
the  adsorption-induced tension, which in essence is also surface stress. The atomistic 
simulations [73,74] also show that adsorption can induce electronic and mechanical 
distortion of a graphene structure. The adsorption-induced distortion, which is respon-
sible for the presence of surface stress, is similar to the doping in semiconductor mate-
rials. The doped impurities inside a semiconductor material distort its lattice structure, 
which makes residual stress prevalent in many MEMS devices [75,76]. For the argu-
ment of the Newton third law to apply for a bi-material composite case, the ideal inter-
face condition is (implicitly) assumed. In an ideal interface, the interface has no zero 
thickness, and displacement/strain is continuous across the interface [54]. However, 
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in reality, the interface is non-ideal or say, flawed, which has finite thickness and slips. 
The interfacial slip causes the discontinuity of displacement/strain at the interface and 
this non-ideal interface effect amplifies with the decreasing dimension of a structure 
[77–79]. Here, the essential idea is that for a micro/nano bi-material composite struc-
ture, Newton’s third law does not apply for the two layers, which means that the force 
inside one layer does not has the same magnitude but the opposite direction as that of 
the other layer. In a micro/nano “bi-material” composite structure, the correct model-
ing should be three layers, i.e., layer 1–interface–layer 2 [77,79]. Of course, we have no 
intention to challenge Newton’s third law; it still applies between layer 1 and interface, 
and between layer 2 and interface [77,79], but NOT between layer 1 and layer 2. Quite 
often, defects such as dislocation, twin and cavity are localized and accumulate at an 
interface [77,80], which makes the stress around the interface very high. The stressed 
state of a micro/nanostructure is balanced externally as a whole through boundaries, 
which equivalently adds the axial load or bending moment on the micro/nanostructure 
[75,76]. And, the axial load is responsible for the structural stiffness change [4,17].

7.2.4  Determining the Stiffness and Mass of Biochemical Adsorbates by a 
Resonator Sensor

Surface stress is an effective sensing mechanism for many receptor-based sensors [5,6]. 
However, the receptor–ligand binding is highly selective for identifying an adsor-
bate/ligand; the challenges for developing robust and stable recognition methods 
through functionalized coatings (i.e., the receptor materials) and even interpreting the 
responses of receptor-based sensor still remain [9]. The development for the receptor-
less or receptor-free sensors, which bypass the chemistry of receptor–ligand binding 
and capitalize on the intrinsic material properties of adsorbate, has been called for 
[9]. The mass density (related with mass) and Young’s modulus (related with stiffness) 
are the intrinsic material properties, which can be used to identify the material of an 
adsorbate. Solving the inverse problem of using resonant frequencies to determine the 
stiffness and mass of adsorbates can provide an alternative method of mass identifica-
tion. The mass information only is insufficient to provide fundamental insights into 
the  resonator-based molecular detection [81]. In general, the appropriate properties 
of a detected material including its mechanical properties as well as the mass must be 
considered when interpreting the resonator data [82]. The adsorption tests of E. coli 
bacteria on a silicon resonator by Ramos et al. [14,15] show that the system resonant 
frequencies increase. According to Eq. (7.2), the mass addition due to adsorption can 
only decrease the resonant frequency. At same time, the surface of resonator is not 
functionalized and surface stress is thus very small because of the high selectivity as 
discussed earlier [14,15]. The increase of resonant frequency can only mean that the 
stiffness of the bacteria plays a more important or even a dominant role [14,15]. 

In the experiment [14,15], the shifts of resonant frequencies are recorded. To solve 
the inverse problem, Ramos et al. [14] counted the total E. coli bacteria number (about 
4200) and calculated the mass; the bacteria stiffness was then obtained by curve-fitting, 
which is a laborious work. They changed the adsorption location to try to “uncouple” 
the effects of stiffness and mass of the bacteria [14]. Our study [83] shows that the 
methods including shifting adsorption location, multiple resonant frequencies, and 
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changing the adsorption length cannot be used to solve the inverse problem. By varying 
the adsorbate thickness and utilizing a geometric approximation, a solution method to 
the inverse problem can be presented [83]. Here, we have a brief discussion on why the 
multiple resonant frequencies method, which solves the two inverse problems [4,17] 
as presented above, cannot work for this inverse problem. When the resonator sur-
face is fully covered by an adsorbate layer, the (circular) resonant frequency is given as 
follows [83]: 

 
w a

b
wi i

o= +
+

1
1  

(7.9)

where wi is the ith resonant frequency with the presence of an adsorbate layer, and wi
o is 

the ith resonant frequency with no adsorbate layer. The dimensionless parameters a and 
b indicate the effects of the stiffness and mass of an adsorbate layer, respectively [83]. It 
is worth pointing out that Eq. (7.9) applies to all resonant frequencies, which is some-
what surprising and this is also the exact reason why the multiple resonant frequencies 
method cannot work. According to Eq. (7.9) for the full coverage scenario, no matter 
how many wi are measured, they all lead to the same one equation of Eq. (7.9) and 
mathematically, two unknown variables (a and b) cannot be solved by one equation. 
By varying the thickness of adsorbate layer, two independent equations can be derived 
from Eq. (7.9), from which a and b can be solved. Therefore, the inverse problem-
solving method [83] requires to measure the thickness of adsorbate layer. However, the 
thickness measurement is much easier than that of stiffness (Young’s modulus) or mass. 
For example, the adsorbate layer thickness of alkanethiol [5] and DNA [6] was mea-
sured by ellipsometry; the thickness of a membrane protein (FhuA) [84] and gold film 
[85] was measured by atomic force microscope (AFM). It can be even much simpler 
in a well-controlled inkjetting deposition procedure, in which the volume and spread-
ing shape/area are precisely controlled/monitored [86] and the thickness can thus be 
easily calculated. Once a and b are solved, the mass density and Young’s modulus of an 
adsorbate layer can be readily found out by a simple relation [83], which can be used to 
identify the material of adsorbate.

7.3 Inverse Problems in the MEMS Stiction Test

Suspended micromechanical structures are extensively used in varieties of micro-
sensors and microactuators. In general, it is desirable to make sensors and actuators 
that have a minimum gap distance and a large surface area [87]. Smaller gap distance 
requires smaller actuation voltage, less power consumption, and less amount of energy 
stored in the system. If the stored energy is large, the discharge current densities dur-
ing the contact of suspended structure and substrate can be so large to ablate the active 
element or damage the electrode, which is the so-called burn-out phenomenon [88]. A 
straightforward solution to burn out is the smaller gap distance. However, such solution 
comes at the expense of favoring the stiction failure mode. Use of dimples or cavities 
[87] to reduce contact area, or hydrophobic surface coating to reduce surface energy 
[88], or to operate the device in dry or vacuum environment to reduce capillary force, 
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can not completely prevent stiction from occurring because of the presence of van der 
Waals (vdW) force [89].

Stiction is a major failure mechanism for the MEMS structures, and extensive stud-
ies have been done on this topic. Stiction is the competition result of the microstructure 
elastic energy and microstructure–substrate interfacial energy, i.e., the work of adhe-
sion or say, adhesion energy [19–23]. The presence of residual stress and its gradients 
in a microstructure, which in essence changes the stiffness and elastic energy of the 
microstructure [75,76], is a common phenomenon. As a direct outgrowth of silicon-
based microelectronics, the manufacturing technique of using successively patterned 
deposition of thin-film polysilicon and sacrificial oxide layers is applied to fabricate 
those MEMS structures [24]. Polysilicon is prone to have residual stress/gradients, 
which is strongly dependent on the deposition process and heating cycles, including 
doping or annealing [90]. For a clamped–clamped microstructure [19–23], the axial 
thermoelastic stress due to the temperature variation also has the impact on the micro-
structure stiction [90]. Even for a cantilever, when the stiction occurs with the S-shape 
configuration, which in essence is also a clamped–clamped configuration [20,22,24], 
thermoelastic stress is also shown to have an influence on the microstructure stiction 
[91]. Residual stress can be the dominant factor in the microstructure deflection and 
stiction [92]. The previous studies on the stiction of a microstructure either assume 
the zero residual stress [19–24,93], or the residual/thermoelastic stress is known as 
a measured quantity [91,92], or a control parameter [94]. However, residual stress/
gradients and thermoelastic stress in general are not known a priori. Thermoelastic 
stress is obtained by measuring the material coefficient of thermal expansion (CTE) 
and the temperature variation [90,91]. When the residual stress gradients are asym-
metric along the microstructure thickness, which generates bending moment and thus 
deflection, the residual stress and its gradients can be characterized as a function of 
the microstructure dimensions [75,76]. By any standard, measuring the residual stress 
and its gradients or thermoelastic stress inside a microstructure is not a trivial thing. 
Extra experimental setup to monitor the temperature variation and heating devices 
are often needed in the thermoelastic stress measurement [91]. Multiple special spec-
imens are needed; the extraction of residual stress and its gradients often involves 
complex numerical simulation [75,76]. Besides the residual stress/gradients and ther-
moelastic stress, the nominal adhesion energy is another unknown material property 
in a stiction test. The nominal adhesion energy is found by minimizing the system 
total energy with respect to the suspension length [19–24,87,90,93]. The total energy 
is the sum of the elastic energy and surface energy. The residual stress and thermoelas-
tic stress generate axial force; the residual stress gradients generate bending moment. 
They all result in the change of the microstructure elastic energy. When the residual 
stress/gradients and thermoelastic stress are (assumed) zero or measured, the elastic 
energy can be calculated and the total energy minimization gives the relation of adhe-
sion energy and detachment length. Such relation is given as follows for a cantilever 
beam with zero axial stress:
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where gs is the nominal adhesion energy, E and t are the beam Young’s modulus and 
thickness, respectively. H is the gap distance; S is called the suspension length or the 
detachment length. C is a constant, C = 3/8 for the arc-shaped stiction [21] and C = 
3/2 for the S-shaped stiction [24]. Clearly, Eq. (7.10) presents a one-to-one relationship 
of adhesion energy and suspension length: once the suspension length is measured, 
the adhesion energy is uniquely determined. Similarly, if the non-zero residual axial 
stress/strain is measured, the adhesion energy can also be uniquely determined by the 
suspension length [90]. When the axial stress is unknown, as shown in this study, the 
one-to-one relationship can no longer hold: there are infinite combinations of the axial 
stress and adhesion energy which can result in the same suspension length. Here, the 
inverse problem is encountered as: How to use the stiction shape to determine the axial 
stress and adhesion energy?

The arc- and S-shapes of stiction are shown in Figure 7.5. Eq. (7.10) actually does not 
tell us how to choose between these two shapes and only the following vague rule applies: 
generally speaking, slender beam forms an S-shape, and its unstuck/suspension length 
is appreciably shorter than the beam length; chunky beam forms an arc-shape, and its 
unstuck/suspension length is approximately equal to the beam length. The arc- and 
S-shapes are the assumed deflection shapes [22,23,95]. The contact mechanics model 
[22,95] shows that when axial load is zero, S-shape indeed is a very good approximation 
shape for the stiction shape of a slender beam; arc-shape is an idealized one which devi-
ates significantly from that of a chunky beam. The contact mechanics model [22,95] 
also shows that Eq. (7.10) can result in the significant error on the evaluation of adhe-
sion energy. As listed in Ref. [22], the difference of the measured adhesion energy for 
polysilicon in the stiction tests using Eq. (7.10) is more than one thousand times. Hariri 
et al. [96] commented that “the inconsistency and unreliability of the experimental 
data” are the main deficiencies of those experiments; some of data are even observed to 
be in contradiction with one another. More explicitly, van Spengen et al. [97] concluded 
that “the surface interaction energy measurement using stuck beams needs consider-
able research before we can conclude anything definite about the precise magnitude of 
the measured surface interaction energy”. Adhesion energy can be measured other than 

Figure 7.5 Schematics of arc-shape and S-shape stiction. For arc-shape, the boundary conditions are the 
clamped–hinged ones; for S-shape, the boundary conditions are the clamped–clamped ones. Adapted 
from Refs. [22,23]. 
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the stiction test, for example, the measurement of the pull-off force [98,99]. However, it 
is extremely difficult to exert a pull-off force on a suspended MEMS device. The goal of 
the contact mechanics model [22,95] is to improve the evaluation on adhesion energy 
on the modeling aspect. Ref. [23] adopts the contact mechanics model [22,95] to solve 
the inverse problem. Furthermore, the axial load effect can be easily implemented in the 
contact mechanics model [23]. In contrast, arc- and S-shapes are for the zero axial load 
scenario, and they deviate significantly when axial load is large [23]. In stiction test, the 
mature measurement technique of Michelson interferometer is often used [22,24, 100], 
and the out-of-plane deflection of a stuck microstructure can be measured with the 
high accuracy of nanometer scale [100]. The deflection profile of a stuck microbeam 
is used to identify the structural nonidealties such as the compliance of support post 
[89,100]. Ref. [23] is to use the deflection profile to determine the axial stress and adhe-
sion energy. To be more specific, two parameters are taken from the deflection profile, 
which are the suspension length and rise above substrate (at a given location) [23]. The 
axial stress and adhesion energy determine the stiction shape. For a given suspension 
length or rise, there are infinite combinations of the axial stress and adhesion energy. 
However, when the suspension length and rise are both given, the axial stress and adhe-
sion energy are uniquely determined.
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