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Abstract  The origin and propagation mechanism of failure waves poses a challenge to our conventional 
understanding of dynamic failure. In this paper, the failure wave is attributed to the catastrophic rupture in 
brittle materials and an elasto-statistical-brittle (ESB) model is developed to describe the catastrophic 
behavior. In the ESB model, the disordered heterogeneity of brittle solids at mesoscopic scale is 
characterized with statistical description of the shear strength of mesoscopic units. The evolution of 
microdamage is controlled by the shear strength and the shear stress applied, and eventually induces 
catastrophic rupture in brittle materials. Considering the failure wave as a propagating boundary of 
catastrophic failure, the propagation of the failure wave is predicated with wave theory. Several predicted 
speeds of failure waves are in good agreement with experimental observations. 
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1. Introduction 
 
Shock induced delayed failure (the so called failure wave) in brittle materials has attracted extensive 
research in recent years [1-11]. This feature was first noted by Razorenov et al [2] as a small reload 
signal superimposed on rear surface velocity trace, suggesting the interaction of the release from the 
rear surface of the target with a moving front behind which the material undergoes a reduction of 
shock impedance. Further experiments [3] prove that the failure wave can be generated in glasses or 
ceramics at a stress near or below the HEL and the speed of failure wave does not correspond to any 
elastic wave. In addition, behind this wave, the longitudinal stress changes little but the transverse 
stress increases, indicating a decrease in shear strength, and spall tensile strength falls to essentially 
zero [4-6]. 
 
Several models have been proposed to address the origin of failure waves. However, a satisfactory 
explanation and description for the failure wave is still lacking. Clifton [7] assumes the failure wave 
as a propagating phase boundary. In his model, the square of the failure wave speed is proportional 
to the ratio of the jump in stress over the jump in strain. However, the available stress measurements 
clearly show that the failure wave causes either no change or small deduction in the longitudinal 
stress, but a large jump in the longitudinal strain. Feng [8] suggests that the propagation mechanism 
of failure front is a diffusive process. In his model, the failure front is not a mechanical wave, and 
the failure front speed is controlled by the stress deviator and dilated volume. To some extent, his 
simulation agrees with experiments, but the failure wave speed is disordered during the failure wave 
propagating. Moreover, his model assumes no changes in the longitudinal strain, which conflicts 
with experimental observations [9]. Kanel [2], Partom [10] and Espinosa [11] suppose the failure 
wave as a damage evolution process originating from the shocked surface. Hence, the predicted 
failure evolution behind the initial shock wave is independent of location instead of having an 
increasing time delay with propagation distance as observed experimentally. As a result, the 
simulations of the failure wave phenomenon based on this type of material model require the use of 
a nonphysical ‘‘failure wave’’, e.g. switching on a failure process cell by cell at an assumed 
successive sequence. 
 
In this paper, we attribute the failure wave to a propagating catastrophe process in brittle materials. 
To describe catastrophic rupture in heterogeneous brittle materials, an elasto-statistical-brittle (ESB) 
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model is developed. Considering the failure wave as a propagating boundary of catastrophic failure, 
the critical condition to generate failure wave and the failure wave speed could be obtained from the 
law of conservation. 
 
The paper is organized as follows: Section 2 describes the details of ESB model and Section 3 is the 
modelling of failure wave phenomenon. Numerical simulation and comparison with the 
experimental data are presented in Section 4. A summary is given in Section 5. 
 
2. Elasto-statistical-brittle (ESB) MODEL 
 
Generally speaking, the catastrophic failure of heterogeneous brittle materials under impact loading 
is resulted from the initiation, growth, and coalescence of microdamage, which is obviously 
controlled by the interactions of stress pulse with local material properties and microstructure. 
Hence, in the ESB model, we consider a macroscopic representative volume element (RVE) 
comprised of a great number of heterogeneous mesoscopic units. The heterogeneity of the 
mesoscopic units can be characterized by their shear strength. For instance, we assume their shear 
strength cτ  follows a statistiacal distribution ( )ch τ . The Weibull distribution is often used in the 
field of failure analysis due to its flexibility. That is,   

1( ) ( ) exp( ( ) )m mc c
c

mh τ ττ
η η η

−= −                          (1) 

where η  and m  are the scale parameter and shape parameter of Weibull distribution, respectively. 
The scale parameter η  is proportional to the mean strength of mesoscopic units and the shape 
parameter m  reflects the degree of material heterogeneity. Physically, a larger m  implies a more 
homogeneous material. Fig. 1 shows the distribution of material shear strength with different 
heterogeneity index m . 
 

 
Figure 1. The distribution of material shear strength with different shape parameter m  

 
If the applied shear stress on the mesoscopic unit mesoτ  reaches its shear strength cτ , the unit fails. 
Denote macroscopic damage of the RVE as D , which can be expressed as: 

0
( ) 1 exp( ( ) )meso m

c c mesoD h d
τ

τ τ τ η= = − −∫                     (2) 

 
We further assume that compared with intact unit, the breaking mesoscopic units can sustain less 
hydrostatic stress but no shear stress. This assumption physically means that the macroscopic 
damage causes reductions in both shear modulus and volumetric modulus of the material, and the 
latter degrades less than the former. That is,  
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where 1ζ < , 0K  and 0G  are the volumetric modulus and shear modulus of intact material, 
respectively.  
 
The material behavior at the macroscopic level can be written as 

0 0
1[1 exp( ( ) )] 2 exp( ( ) )( )
3

m m
ij meso ij meso ij ijK Gσ ζ ζ τ η θδ τ η ε θδ= − + − + − −       (4) 

 
where ijε  is the strain tensor, ijσ   the stress tensor, θ   the volumetric strain. Provided small 
damage and mean field approximation, γ  is the maximum shear strain of the macroscopic element. 
Hence,  

0meso Gτ γ= .                                   (5) 
 
Specifically, in uniaxial strain state( 0xε γ= ≠ , 0y zε ε= = ), the constitutive relation can be 
simplified as 
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In order to show the response of material under impact, we normalize the constitutive relation and 
get the dimensionless constitutive relation as 
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          (7) 

 
where ν  is the Possion’s ratio of the intact material, ii iiσ σ η= , 0ii iiGε ε η= . Fig.2 plots the 
normalized stress-strain relationship with different parameters. 

 
Figure 2. The simplified stress-strain relationship in uniaxial strain state 
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As Fig.2 shows, there exists a saddle point in the x xε σ−  curve. Actually, the saddle point implies 
a catastrophic transition happening. As illustrated in Fig.3, when the longitudinal stress reaches Eσ , 
solids can not sustain any further compression, all of the meso-elements fail suddenly and the state 
directly jump from the unstable state A to the corresponding state B. In this process, the energy 
provided is used in fragmenting, thus, the longitudinal stress does not change. 
 

 
Figure 3. The catastrophic transition in ESB model 

 
3. MODELLING OF THE FAILURE WAVE 
 
In this section, we will analyze the origin of failure waves in a target plate described with a 
simplified ESB model. 
 
Fig. 4 is the x t−  diagram of flyer plate and target plate. In the flyer plate, region 1 is in the initial 
state and region 4 in the final state. In the target plate, region 2 is the shocked region behind the 
elastic wave and region 3 is failed zone behind the failure wave. As the flyer plate and target plate 
do not split up, region 3 and region 4 have the same longitudinal stress and particle velocity. 
 

              
     Figure 4. the x t−  diagram for waves         Figure 5. the u σ−  plane of plates system 

 
Fig. 5 is the u σ−  plane of plates system. In the u σ−  plane, ( 2u , Eσ ) stands for region 2, and 
( 3u , Eσ ) stands for region 3 and 4. L1 is the trajectory of states in flyer plate, and L2 is the 
trajectory of states of target subjected to low-velocity impact. When the impact loading is lower 
than the stress threshold Eσ , the catastrophic transition couldn’t happen and there is no failure 
wave. However, if the stress state of target could exceed the stress threshold Eσ , as expressed by 
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L3 and L1, the catastrophic rupture happens and failure wave comes out. 
 
Considering the law of conservation of mass, the failure wave speed can be obtained as, 

     23 2

3 2 3 2

f f fE t
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                        (8) 

 
4. NUMBERICAL SIMULATION 
 
In order to validate our theory, we simulate normal impact experiments on soda-lime glass 
specimens by copper plates. The properties of copper and soda-lime glass are summarized in Table 
1. 
 

Table 1  The properties of flyer plate materials [3] 
Material 1/LC km s−⋅  3/ kg mρ −⋅  ν  

copper 4.560 8930 0.33 

soda-lime glass 5.840 2490 0.23 
 
Bourne et al. [3, 12] studied failure waves in soda-lime glass impacted with copper flyer. The 
results prove that the threshold stress to generate failure wave in soda-lime glass is 4.0 GPa. 
Therefore, in the simulation, we assume the threshold stress Eσ  to be 4.0 GPa. In addition, since 
soda-lime glass is less heterogeneous, the shape parameter m  is set as 10 and ζ  as 0.4. The 
stress-strain relationship of soda-lime glass is presented in Fig. 6. As Fig. 6 shows, for soda-lime 
glass, the strain at the threshold stress is 0.0471 prior to the catastrophic rupture ( Eε ) and 0.1330 
after the catastrophic rupture ( Kε ).With these parameters, we can calculate the speed of failure 
waves from Eq. (8). 
 

        
    Figure 6. The response of soda-lime glass     Figure 7. The relationship between fu and fwC  

 
From Eq. (8), we obtain the relationship of failure wave speed vs. the impact velocity, as shown in 
Fig.7. It is obvious that, according to the ESB model, the speed of failure wave is linear with the 
impact velocity. In addition, Fig.7 demonstrates that the lowest impact velocity to generate the 
failure wave is 373.3 m/s, which approximately coincides with experimental observations [3, 12]. 
Table 2 quantitatively compares the speed of failure waves calculated with the ESB model with 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

experimental ones. Apparently, the model can basically replicate the experiments and the error is 
acceptable. 
 

Table 2. Summary of Experimental data and the simulation results [3, 12] 
Shot no. Impactor Target Impact velocity fu fwC (experimental) fwC (simulated)

98-01 copper soda lime glass 494 m/s  1916± 300 m/s  1405 m/s 
98-02 copper soda lime glass 541 m/s  1989± 300 m/s  1952 m/s 
98-03 copper soda lime glass 553 m/s  2080± 300 m/s  2092 m/s 
98-04 copper soda lime glass 565 m/s  2275± 300 m/s  2232 m/s 

 
5. SUMMARY 
 
The origin and propagation of failure waves in brittle materials under impact loading have been 
investigated for many years. However, till now, failure waves cannot be well illustrated by any 
constitutive models. In this paper, the failure wave is attributed to the catastrophic rupture in brittle 
materials under impact loading. To describe the catastrophe behavior, an elasto-statistical-brittle 
(ESB) model is developed. In the ESB model, the shear strength of mesoscopic units follows a 
Weibull distribution, which reflects the heterogeneity of brittle solids. The evolution of 
microdamage is controlled by the shear strength and the shear stress applied, and induces reductions 
in shear modulus and volumetric modulus. Catastrophic rupture occurs when stress cannot be hold 
by the damaged material. 
 
With the ESB model and wave theory, we predicted the failure waves in soda-lime glass impacted 
with copper plates. The critical impact velocity to generate the failure wave approximately 
coincides with experimental data. In addition, several predicted speeds of failure waves are in good 
agreement with experimental observations.  
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