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A dynamic-force extraction, based on the least-squares method, is proposed for micro-propulsion
testing. Having modeled the displacement oscillation of a micro-newton torsional pendulum, the time
evolution of the dynamic force may be calculated if the stand constants are well calibrated. According
to the linear characteristic of the motion equation, a reconstruction of the dynamic thrust reduces
to solving linear equations. The simulation analysis shows that the error is affected by the sensor
noise and the low-pass filter as well as the sampling rate. Validation experiments were performed
showing that this method reconstructs the dynamic force well up to 8 Hz with an error less than 15 µN.
The noise-induced error moreover varies little with frequency. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5037365

I. INTRODUCTION

Accurately controlling satellites at highly precise attitudes
and/or orbits is vital in space missions requiring gravitational-
wave or gravity-field measurements. To satisfy these require-
ments, micro-newton thrusters, such as cold gas engines and
electromagnetic thrusters, were studied. Directly measuring
such small thrusts is nearly impossible because the thrust is so
miniscule that the device is unable to response to the changes it
causes. Different kinds of thrust stands have been developed to
accurately measure their performance. These stands are based
on the torsion balance,1–4 vertical pendulum,5 indirect coun-
terbalanced pendulum,6 double pendulum balance,7 and even
the magnetically levitated balance.8 Thrust is deduced using
balance displacement. The tools often employed for these
measurements include laser interferometers,9 fiber optic linear
displacement system (LDS) sensors,3 heterodyne interferome-
ters,7 capacitive sensors,5 as well as linear variable differential
transformer (LVDT) sensors,1,2 all of which are susceptible to
electromagnetic interference and radio frequency (RF) interac-
tions when testing both laboratory DC and RF-powered plasma
thrusters.11

Most of these balance displacement systems have great
accuracy and resolution. For example, Jamison1 measured
thrusts as small as 86 nano-newtons and Soni3 developed a
stand with a resolution of 10 nN for steady force measure-
ments. Jarrige10 measured a cold gas thruster to a resolution
of 20 nN and a measurement bandwidth (MBW) of 0.1 Hz.
Increasing MBW decreases the resolution.

Nevertheless, the challenging performances demanded
of high-precision thrusters are thrust level, accuracy, thrust
noise, and dynamic response. For instance, micro-thrusters
with a high-frequency bandwidth and low noise are essential
for “drag-free” missions, such as LISA.7–9,11,12 The required

a)Author to whom correspondence should be addressed: lifei@imech.ac.cn

thrust range is between 0 and 3 mN with a resolution below
0.1 and 1 µN and a noise level of 0.1–1 µN/Hz1/2, in a fre-
quency bandwidth range of 2–10 Hz.12 To enlarge the MBW
of the thrust stand, many researchers sought new methods
to extract dynamic force. These methods may be divided
into two categories: increasing eigenfrequency and dynamic
modeling.

To increase the eigenfrequency of the stand, auxiliary
equipment or a new design in controlling the stand system
is required. Using two parallel metallic plates and a FP cavity,
Canuto12 developed a nano-balance with a 13.5-Hz resonance
frequency and sub-micro-newton resolution. A large natural
frequency made it suitable for dynamic measurements up to
2 Hz. Orieux13 used a feedback control loop to increase the
frequency of a pendulum balance up to 42 Hz despite its low
sensitivity of 25 µN. This method is widely used for measur-
ing thrust noise. Active control suppresses its resonance and
reduces the noise by more than one order of magnitude,7 which
is significant for long-term stability. Hagiwara14 developed
a proportional–integral–derivative controller to suppress the
displacement of the arm of the torsion balance during thrusts.
Masuda15 studied the sensitivity of the torsion pendulum. With
strong magnetic damping, a feedback control system was used
to achieve long torsional periods and high sensitivity for the
balance at low frequency (e.g., 1 mHz).

The second category is dynamic modeling. By analyzing
the equation of motion of the thrust stand, the time-dependent
force can be calculated using mathematical methods and the
displacement history of the balance. A typical method is based
on derivation. During this process, the first differential (speed)
and second differential (acceleration) of the displacement his-
tory, as well as the well-calibrated stand constants (e.g., iner-
tia and spring coefficient) are used.16,17 Displacement-sensor
samples of high frequency and high resolution are required.
Therefore, this method has an obvious drawback in that the
derivative may incur large errors arising from coupled noise
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in the displacement data. D’Souza19 used wavelet and Fourier
analyses to reduce noise and directly transformed the control
differential equation into a difference equation. Once the dis-
placement was measured, the corresponding force is obtained
using this control equation.

In the current study, a method is proposed to reconstruct
the dynamic force from the displacement data. It uses the
property of superposition of the control equation solutions,
a basic functional idea, and a least-squares (LS) method. Veri-
fication experiments were performed to study the applicability
of this method as well as the relationship between error and
noise.

II. MICRO-THRUSTER BALANCE SYSTEM

As in former studies,1–4 the thrust stand used here is based
on a torsion pendulum (Fig. 1). The measurement range of this
stand is 1–3000 µN for steady-force measurements with an
accuracy of ∼1 µN under ambient noise.18

Its main components included a pendulum arm, calibra-
tion coil, damper, displacement sensor, and two flexural pivots
(Riverhawk, 6004-600). Each pivot has a torsional spring rate
of 1.92 × 10−4 Nm/deg. The displacement sensor is the most
important component of this balance system. A capacitive sen-
sor (Fogale, Mc900) having a range of 100 µm and an accuracy
of 2 nm was used. This pendulum holds an axial load of up
to 2 kg. The 50-cm length pendulum arm was used to balance
gravity and converts the thrust into a displacement. Similar
to reports in the literature,20,21 the electromagnetic calibra-
tion technique was used here. A coil was fixed on the base
plate opposite a magnet fixed to the arm. This coil is con-
nected with a high-precision current source making a magnet–
coil system supplying a known force from 2 to 10 000 µN.
A damper, comprising a circular permanent magnet and a
copper plate, operates based on Lenz’s law but also acts as a
counterweight.

FIG. 1. (a) Schematic diagram of the balance: (1) leveling bolt, (2) base plate,
(3) damping magnet, (4) counterweight and damping plate, (5) displacement
sensor, (6) pendulum arm, (7) pivot axis (a couple), (8) calibration system,
and (9) thruster mount and (b) photo of the balance.

Measurement and control systems and homemade soft-
ware were developed to record and analyze the sensor signal,
the on/off switching of the thruster, the change in distance
between arm and sensor, and the magnet–coil gap. The gap
ensures a reliable measurement of micro-thrusts in a vacuum
chamber.

III. PRINCIPLE AND METHOD
OF THE DYNAMIC-FORCE MEASUREMENT
A. Equation of motion of the pendulum

When the torsion pendulum undergoes small-angle
swings, the motion of the pendulum arm follows the simple
harmonic equation of forced vibration. The control equation
is22,23

I
dθ2

dt2
+ c

dθ
dt

+ kθ = f (t)L, (1)

where θ represents the angular position relative to the initial
position, L is the distance between pivot center and thrust
action point, I (kg m2) is the moment of inertia of the pen-
dulum, c (N s m) is the damping constant, and k (N m/rad) is
the spring constant. Setting

ζ =
c
2

√
1
Ik

, (2)

ωn =

√
k
I

, (3)

ωd =ωn

√
1 − ζ2, (4)

and substituting into Eq. (1) yields

dθ2

dt2
+ 2ζωn

dθ
dt

+ ωn
2θ = f (t)

L
I

, (5)

where ζ is the coefficient of damping, ωn is the natural fre-
quency, and ωd is the frequency of damped motion. For small
deflections in our cases, the small-angle approximation may be
used to deduce the angular deflection θ ≈ x/Ls, where x repre-
sents the displacement of the pendulum, and Ls represents the
distance between the pivot center and the displacement sensor.

From theory, the amplitude of the pendulum obeys the
amplitude-frequency function given by the magnification
factor,2,24

β(s)=
1√

(1 − s2)2 + (2ζs)2
, (6)

with relative frequency

s=
ω

ωn
. (7)

Setting the coefficient of damping to 0.1, Fig. 2 plots the
log-log relationship between the rate of amplitude amplifica-
tion and relative frequency. In Ref. 25, Saulson found a fre-
quency dependence to damping. Nevertheless, the coefficient
of damping is treated as constant, independent of frequency
as assumed in Refs. 16 and 19. For our situation, it is an
appropriate assumption that is validated by experiments.

As can be seen, the amplitude ratio changes slightly at
low frequencies and increases rapidly to a maximum value at
the resonance frequency. At higher frequencies, the amplitude
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FIG. 2. Amplitude of the pendulum response versus relative frequency at
ζ = 0.1.

decreases rapidly; for example, it is 1% when the frequency is
10 times the natural frequency (Fig. 2).

B. Basic functional idea and the LS method

Based on the functional idea and the LS method, a new
method for dynamic-thrust measurements is proposed. The
unknown thrust can be reconstructed by solving Eq. (5).
The basic functional idea used is to assume a force function
expressed as {fτ}; here the curly braces signify a sequence of
numbers with fτ denoting any one of these numbers. That is,

fτ defines the function that ensures Eq. (5) is expressible in the-
ory and is here denoted by xτ . The expression for xτ contains
fτ , which means that xτ is represented by fτ . The theoretical
solution of the displacement expressed by fτ and the measured
experimental values are used in the variance formula to find
the function fτ that makes the variance a minimum. That fτ is
the force that generates the displacement. Thus, this method
seeks a functional solution for the force.

For a self-contained description of the method, the well-
known LS method is described briefly here. The variance R
of a function φj (e.g., the response of the balance to exci-
tation), from the known data yi (e.g., measured data of the
displacement sensor), is defined as

R=
m∑

i=0

(
n∑

j=0

ajϕj(ti − τi) − yi)
2, (8)

where aj are unknown coefficients (e.g., the dynamic force we
want to measure), m represents the number of samples (e.g.,
number of displacement data), and n represents the number of
aj. Then seeking the extremum of the multivariate function,
we have

∂R
∂aj
=

∂

∂aj
(

m∑
i=0

(
n∑

j=0

ajϕj(ti − τi) − yi)
2)= 0

j = 0, 1, 2 . . . n

, (9)

yielding



m∑
i=1

ϕ(ti − τ1)ϕ(ti − τ1) · · ·

m∑
i=1

ϕ(ti − τn)ϕ(ti − τ1)

...
. . .

...
m∑

i=1

ϕ(ti − τn)ϕ(ti − τ1) · · ·

m∑
i=1

ϕ(ti − τn)ϕ(ti − τn)





a1

...

aj

...

an



=



m∑
i=1

yiϕ(ti − τ1)

...
m∑

i=1

yiϕ(ti − τn)



. (10)

This set of linear equations for aj is in a typical form to
which the LS method applies. Measuring the dynamic force
is achieved by adding the pendulum control equation, Eq. (5),
and then applying the LS method, which is described next.

C. Dynamic-force extraction method

Figure 3 summarizes the basic process involved in recon-
structing the dynamic force. Being a linear equation, Eq. (5)
has the superposition property and has a theoretical solution
for each special case. If the pendulum response x(t) to the

FIG. 3. Steps in the extraction method. G.E governing equation, T.S theoret-
ical solution, and L.E linear equations.

unit step input is known [Eq. (12)], it can be put into the LS
method, Eq. (10), then used to replace the expression ϕj, and
obtain Eq. (15) by linear rearrangement. By solving this lin-
ear system of equations, the dynamic force may be finally
reconstructed.

In more detail, the method by which to extract the
dynamic-force is based on discretization of the equations
and the superposition of solutions of the governing equa-
tion. In Fig. 4, the continuous force can be assumed to be
a sequence of superimposed forms of quasi-impulse actions
f (t)=

∑
fτδ(t − τ), where fτ is the size of the impulse at t = τ

and δ(t − τ) is the unit impulse function.
Let the function x(τ) represent the theoretical solution at

time τ, the time the impulse acts. An arbitrary displacement
function takes the form

x(t)=
∑

xτδ(t − τ). (11)
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FIG. 4. Sketch illustrating the discretization of a contin-
uous function.

In practice, instead of the impulse function, a narrow rectangu-
lar impulse is used, having the benefit of overcoming interval
limitations. In a damped balance system, the effect of the quasi-
impulse is equivalent to a pair of time-inverted step functions.
At time zero, the unit step function effect x(t) is24

x(t)=




0 t ≤ 0−,

1
ωn

2



1 − e−ζωn (cos(ωd t)+
ζ√

1 − ζ2
sin(ωd t))


t ≥ 0+,

(12)

where ζ , ωn, and ωd are the coefficient of damping, the
natural frequency, and the frequency of damped vibration,

respectively. The quasi impulse becomes

δ = x(t) − x(t − τ). (13)

Substituting Eq. (13) into Eq. (11) gives

x(t)=
m∑
1

fτ(x(t) − x(t − τ)), (14)

where x(t) is the displacement, fτ is the force at time τ, m
is the number of points between the initial and final times.
Substituting Eq. (14) into Eq. (10) gives



m∑
i=1

(x1(ti) − x1(ti − τ)(x1(ti) − x1(ti − τ)) · · ·
m∑

i=1

(x1(ti) − x1(ti − τ)(xn(ti) − xn(ti − τ))

...
. . .

...
m∑

i=1
(xn(ti) − xn(ti − τ)(x1(ti) − x1(ti − τ)) · · ·

m∑
i=1

(x1(ti) − x1(ti − τ)(xn(ti) − xn(ti − τ))





f1
...

fj
...

fn



=



m∑
1

(x1(ti) − x1(ti − τ))

...
m∑
1

(xn(ti) − xn(ti − τ))



,

(15)

where xi is the displacement function caused by the unit
impulse at time ti with τ its time of duration. Here fi denotes the
size of the impulse, i.e., the dynamic force; our target, which
can be more positive or negative.

IV. EXPERIMENTAL
A. Experimental setup

To validate the dynamic-force extraction method, exper-
iments were performed using the torsion balance (Fig. 1).
During these experiments, the key issue is how to exert a known
force on the balance for reference in comparison with the
reconstructed forces. An electromagnetic calibration device
[Fig. 5; labeled (8) in Fig. 1] was used to generate the exter-
nal excitation. It has two components, a permanent magnet
and a coil. The flat cylindrical magnet, made of rubidium
nickel alloy, has a high magnetic energy density. Its superficial
magnetic field intensity is about 4000 G. The circular hole in
the core of the magnet makes it easier to fix on the side of

the pendulum arm. A special copper coil of radius 12.5 mm is
placed facing parallel to the magnet (Fig. 5); its position and
angle of pitch are precisely controlled using a 5-axis kinematic
mount. Its center is coincident with the axis of symmetry of the
magnet. A distance of 230 µm is maintained between magnet
and coil.

With a resistance of about 0.6 Ω, this coil is connected
in series with a 50-Ω resistance. A current-source-type signal
generator is used to generate the different kinds of waveforms,
corresponding to different dynamic forces. To avoid electric
heating, the current is kept below 200 mA at an accuracy of
better than 0.1 mA. After careful calibration, an oscilloscope
is used to monitor the voltage/current of the coil for the known
force.

The current-force coefficient can be measured using a
high precision weighing balance. By placing the permanent
magnet horizontally, the electromagnetic force between
coil and permanent magnet can be measured by weigh-
ing the balance when the current changes. The rate of
change between sensor output and force was deduced to be
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FIG. 5. Diagram of the electromagnetic calibration
device.

202.15 µN/V in our experiments with an accuracy of about
1 µN.

Aided by this electromagnetic force generator, validation
experiments were conducted with an arbitrary dynamic force.
Three excitation waveforms were used to generate known
dynamic forces, including square, sinusoidal, and sawtooth
waveforms. The frequency range of these waveforms was from
0.05 to 10 Hz in intervals of 0.5 Hz and the amplitudes ranged
from 120 to 300 µN. The sampling rate of the displacement
sensor was set at 100 Hz.

B. Parameters calibration

One needs to know all the parameters including ζ ,ωd , and
ωn before Eq. (15) can be solved. To calibrate these param-
eters, modeling and measuring the vibration of the torsional
pendulum is a feasible scheme. If f (t) = 0, Eq. (5) becomes
a homogeneous differential equation. The measured displace-
ment of the free vibration may be compared to its theoretical
solution,

x =Ae−ζ t cos(ωd t + ϕ), (16)

where A and ϕ are determined by the initial conditions. The
solution can be factored into an attenuation x = e−ζ t and an
oscillation x = cos(ωd t + ϕ). The frequencyωd is obtained eas-
ily from the vibration period. The decay rate ζ can be deduced
by taking the logarithm of the attenuation, ln(x) = −ζ t,

ζ =
1

t2 − t1
ln(

x1

x2
). (17)

Hence, ζ is found using two or more points, with maximum
displacements normally in different periods. In our experimen-
tal conditions, the values of these parameters were ζ = 0.69,
ωn = 10.59 rad/s, and ωd = 7.66 rad/s.

V. RESULTANT ANALYSIS
A. Typical reconstruction results

To verify the dynamic-force extraction method, three dif-
ferent waveforms for the coil current (corresponding to force)
were applied to the torsional pendulum (Fig. 6). The ini-
tial phase of the input force is non-zero for better univer-
sality. The frequency of these input force waveforms was
0.1 Hz; the amplitude was 120 µN. The original displace-
ment data and the reconstruction results (Fig. 7) show the
responses of the damped pendulum to the various forces. In
particular, in Fig. 7(b), damped oscillations had continued
for more than 5 s. Hence, only the steady force lasting for
about 10 s can be extracted using the conventional method.
The time-dependence of the reconstructed force was found to
coincide basically with the sawtooth input force [Fig. 7(c)],
indicating that this method is feasible for dynamic-force
extraction.

B. Influence of noise and sampling rate
on dynamic-force measurements
1. System noise analysis

Apparently, noise in the displacement data has impacted
on the reconstruction accuracy of the dynamic force. The
inherent system noise, including balance and sensor, must
be studied. A static experiment with no force loading was
recorded for system-noise analysis. A fast Fourier transform
(FFT) (Fig. 8) shows that the amplitude of noise varies with
frequency. The downward sloping line is the linear fitting of the
noise at low frequency (below 1 Hz) extrapolating the expected
1/f noise. At low frequency, the noise spectral density is mainly
composed of signals from seismic motion.16 At frequencies
larger than the natural frequency (about 1.1 Hz), the noise
is suppressed by the pendulum response (Fig. 2). In Fig. 8,

FIG. 6. Diagram of the experimental setup.
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FIG. 7. Displacement and reconstructed forces for the 0.1-Hz sinusoidal (a),
square (b), and sawtooth (c) waveforms.

there is a clear peak around 10.5 Hz corresponding to the
filter of the digital-to-analog converter for the displacement
sensor.

2. Effect of noise and frequency

To study the effect of noise on the reconstructed force, a
simulation analysis was performed in which noise was added to
the theoretical displacement. The specific steps are as follows:
First, a theoretical motion is simulated using Eq. (14) given
the balance was excited by a sinusoidal force at a specific
frequency. Then random white noise is added at the desired
energy level to this theoretical motion and used as input data
for the reconstruction program. Finally, the reconstructed force

FIG. 8. FFT analysis of the system noise. Note that a low-pass filter
(f c = 9.71 Hz) was used in the reconstruction process to reduce the displace-
ment noise at high frequencies. More details and analysis concerning the filter
is given in the Appendix.

is compared with the initial sinusoidal force to analyze the
accuracy.

A frequency range from 0.1 to 10 Hz for the sinusoidal
driving force was used and the amplitude for the random
noise was varied from 0 to 30 mV (0%–3%). Similar to the
experimental data, artificial noisy data used to reconstruct
dynamic force and measurement error may be calculated using
the known sinusoidal forces. Figure 9 plots the relationship
between reconstruct error (standard deviation) and noise level.
The first feature to note is that error increases as noise levels
rise for frequencies less than 8 Hz. At zero noise, the recon-
structed force error is about 2 µN, whereas it is about 7.5 µN
for 10 mV noise and 14.5 µN for 20 mV noise. The error devi-
ation also increases as noise strengthens. It tends to zero in
the absence of noise and less than 15 µN for a 20-mV noise
level. The second feature of the error-noise relationship is that
error increases notably when the frequency exceeds 8 Hz for
all noise levels. This is caused by the low pass filter mentioned
above. Here, the cutoff-frequency of the filter used is 9.71 Hz.
It attenuates the input displacement signal with frequencies
above 8 Hz (Fig. 12). Within the range of 8 Hz, the error
remains nearly stable while the deviation in error increases
slightly with frequency.

FIG. 9. Reconstructed error versus frequency at different noise levels.
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FIG. 10. Reconstructed error for different cut-off frequencies at fixed noise
level of 17.5 mV.

The red stars in Fig. 9 mark the experimental results as
for the results from the sinusoidal waveform [Fig. 7(a)]. Its
trend with frequency coincides with the simulation results.
For frequencies below 8 Hz, the error of the measured dynamic
force is about 10–14 µN and insensitive to frequency.

3. Effect of cut-off frequency fc

Figure 9 shows that for a given noise level, the extracted-
force error almost remains constant from 0.1 to 8 Hz at fixed
fc of 9.71 Hz. For different fc, this error changes. As shown
in Fig. 10, for noise of 17.5-mV (approximate experimental
noise), the force errors are about 8.5 µN and 19 µN for fc of
8.0 and 11.2 Hz, respectively. The reconstructed force error
increases rapidly as fc increases.

4. Effect of sampling rate

The sampling rate of the displacement sensor may also
influence the reconstruction accuracy. Subject to the same level
of noise (10 mV, 1%), four sampling rates (100, 200, 500,
and 1000 s−1) were used in a simulation analysis to obtain the
response (Fig. 11). The reconstruction results became better as
the sampling rate increased. This is because at a high sampling
rate, more displacement elements are used for the summation
in Eq. (9), thereby reducing the equivalent noise. Neverthe-
less, the computation time of the reconstruction increased

FIG. 11. Reconstruction result at different sampling rates.

significantly with the higher sampling rates. Therefore, it is
best to reduce the sensor noise and choose an appropriate
sampling rate.

VI. CONCLUSION

A mathematical method was proposed to extract the time-
dependent force for micro-propulsion. A functional idea and
LS method were used to reduce the measurements needed to
solve the system of linear equations. Its main characteristic
is that no auxiliary equipment is required. The MBW of the
conventional torsion balance is improved significantly.

The dynamic-force extraction method and calibration of
the stand parameters (i.e., ζ , ωd , and ωn) were studied. Vali-
dation experiments were performed using an electromagnetic
device. The dynamic force was found to be well extracted from
the oscillation of the balance with the reconstructed force coin-
ciding with the known input force. Further simulation analysis
shows that the reconstructed error increases as sensor noise or
fc increases. Moreover, the reconstruction results become bet-
ter as sampling rates increase but at the expense of computation
times. For the low-pass filter ( f c = 9.71 Hz) used, the MBW
is up to 8 Hz and the error for the measured dynamic force is
about 10–14 µN at a sampling rate of 100 Hz.
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APPENDIX: THE IMPACT ANALYSIS OF THE FILTER
PARAMETERS TO THE NOISE OF RECONSTRUCTION
FORCE

A low-pass filter was used during reconstruction to reduce
the displacement noise at high frequencies. A Butterworth-
type filter was chosen because it has the smoothest passband
attenuation. Five parameters were used in designing the filter,
namely, passband frequency (PF), stopband frequency (SF),
maximum attenuation of passband (MAP), minimum attenua-
tion of the stopband (MAS), and frequency of sampling (FS).
With the chosen parameter settings, the cut-off frequency ( fc)
was estimated to have a 3-dB attenuation.

The amplitude-frequency function β (Fig. 2) determines
the amplitude response of the pendulum under the dynamic
force at different frequencies. The indication is that the
displacement noise for different frequencies has different
contributions to the error of the reconstructed dynamic force.

In analyzing the effect of the filter, a Fourier analysis
of the displacement signal (with random white noise) pro-
vided the amplitude of the displacement noise at different
frequencies. Divided by β, it represents a contribution to the
error of the extracted force. From Fig. 12, a low-pass filter
can remove the displacement noise of high frequencies and
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FIG. 12. Contribution of 17.5-mV white noise to the reconstructed force
with/without filter.

decrease considerably the error of the reconstructed force. A
lower fc corresponds to a lower force error as also confirmed
by Fig. 10. Nevertheless, a lower fc loses dynamic informa-
tion of the force. Therefore, fc must be optimized to reach a
compromise between dynamic-force accuracy and bandwidth.
The filter parameter values chosen were PF = 40 rad, SF = 100
rad, MAP = 0.05 dB, MAS = 30 dB, and FS = 100 s−1 corre-
sponding to fc = 9.71 Hz. Hence, noise for frequencies above
8 Hz was removed (Fig. 12).
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