Thin-Walled Structures 132 (2018) 549-557

. . 5 5 =
Contents lists available at ScienceDirect THINWALLED
STRUCTURES
Thin-Walled Structures
journal homepage: www.elsevier.com/locate/tws e e

Full length article

On similarity criteria of thin-walled cylinder subjected to complex

thermomechanical loads

a,b,:;:

Te Ma™™*, Xiaodong Xing®, Hongwei Song

Check for
updates

, Chenguang Huang™"

@ Key Laboratory for Mechanics in Fluid-Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

® School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

© Harbin Engineering University, Harbin 150000, China

ARTICLE INFO

Keywords:

Similarity criteria
Thin-walled cylinder
Thermomechanical loads
Thermal elastoplastic
Buckling

Dynamic rupture

1. Introduction

Thin-walled cylinders have been widely applied in many industrial
sectors. In-depth theoretical analysis, systematic experimental research,
and finite element analysis (FEA) have been conducted on various as-
pects of the cylindrical shell, such as the critical buckling load of the
cylindrical shell under axial compression [1-6], the influence of laser
irradiation on the critical buckling load of the axially compressed cy-
lindrical shell [7,8], the failure mode, the corresponding damage
threshold and the damage law of the internally pressurized cylindrical
shell under laser irradiation [9-16]. In the analysis process, many
factors have considerable influence on the thermomechanical damage
behaviors, including the material properties, the geometry of the cy-
lindrical shell, the initial geometric and loading imperfection, the in-
ternal pressure, and parameters of the laser beam. Comprehensive ex-
periments may be difficult to accomplish because experiments with the
prototype structure are time-consuming and costly. Only a few trials
can be used for identification experiments, and many scaled model tests
are used to validate numerical models and obtain laws of influencing
factors, which involve the problems of scaling laws and similarity cri-
teria. From an objective perspective, similarity criterion is a relatively
mature scientific research tool, which was finalized in the 1950s, and its
wide applications have led to great achievements in fluid mechanics,
aerodynamics, mechanics of explosion and other mechanical pro-
blems [17-19]. Liu et al. [20] studied the similarity criteria on the

thermal protection system (TPS) of a high-speed aircraft, which could
be designed according to the test type with a high degree of flexibility.
Stephen et al. [21] presented a set of four independent similarity cri-
teria that must be satisfied on the scaling solar sail systems. Torkamani
et al. [22] used the Donnell-type nonlinear strain-displacement rela-
tions along with the smearing theory and the similitude theories to
develop the necessary similarity conditions, or scaling law, for free
vibrations of orthogonally stiffened cylindrical shells. De Rosa et al.
[23] investigated the definition and applicability of distorted simili-
tudes and the related scaling laws for the analysis of the dynamic forced
response of rectangular composite plates. Asl et al. [24] demonstrated
the applicability of structural similitude theory in designing partially
similar composite structures. Yazdi et al. [25] investigated the flutter
pressure of delaminated composite beam-plate subjected to supersonic
flow by using similitude theory. Moreover, a procedure has been de-
veloped to demonstrate the use of these similarity criteria in designing a
model for ground testing. The similarity criterion also plays a sig-
nificant role in the study of failure mechanisms of laser irradiated cy-
lindrical shell with internal pressure. Huang et al. [26] derived a si-
milarity criterion based on dimensional analysis methods, and verified
it through numerical calculation.

In practical applications, the structural integrity of a cylindrical
shell is determined by coupling loads of laser irradiation, axial com-
pression and internal pressure. In this load-function situation, obtaining
a theoretical or analytical solution for the complex thermal elastoplastic
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damage behavior is difficult. Experimental results of the model ob-
tained by scaling the prototype structure and the similarity criteria are
used to estimate the true structural damage model, damage threshold,
or structural response, thereby providing effective data for cylindrical
shells in a preliminary design stage. However, the similarity criteria of
thin-walled cylinders under such complex coupling loads have not been
developed so far.

In this study, dimensionless processing is conducted in governing
equations, i.e., heat conduction equation, equilibrium equation and
thermal elastoplastic constitutive equation, and the similarity criteria
are obtained for cylindrical shells subjected to coupled thermo-
mechanical loads or an individual load. Finite element models and
systemic methods are established to simulate the coupled behavior of
the thermal response, dynamic rupture, and buckling response of the
cylindrical shell, and the numerical models are validated with experi-
ments. Finally, scaled numerical models are utilized to validate the si-
milarity criteria, and the error sources of the scaling law are analyzed.

2. Methodology
2.1. Governing equations

Heat conduction controls the heat transfer in the structure. In
Cartesian coordinates, the coupled heat conduction equations for iso-
tropic thermal elastoplastic material is expressed as follows:
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where p is the density; C is the specific heat capacity; T is the tem-
perature; t is the time; k is the thermal conductivity; y is the heat
generation rate of unit mass; — ET /(1 — 2v) is an additional term for
the internal heat source, which indicates heat generation when &y < 0
(compression) and heat absorption when ¢, > 0 (expansion); Qp is in-
elastic heating, which is the difference between the plastic power and
the change rate of the internal energy of cold work. Ignoring the cou-
pling term yields, we obtained
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where V? is the Laplace operator, (a% + 6—22 + %)() = V2(.

The thermal boundary condition in the laser irradiation region is
expressed as follows:

oT
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where y is the absorption coefficient; Q is the laser power density; h is
the convective heat transfer coefficient; T,, is the surface wall tem-
perature; T, is the environment temperature; € is the emissivity; o is the
Stefan-Boltzmann constant. In this study, the heat flux from the forced
convection and thermal radiation is negligible compared with that of
the laser source (typically 10* W/m? vs 10° W/m?). Therefore, the
boundary condition of the surface irradiated with laser is transformed
into

Xl
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The stress field can be described by the three-dimensional perfect
thermal elastoplastic equations.

Equilibrium equation: g;;; + f; = 0

(5)

. . 1 1
Geometric equation: g; = g;¢ + &P = E(Mif + u;¢) + E(ui’jp + u;,;P)

(6)
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Constitutive equation: g;; = A(T)ew 5y + 2G(T)(g; — &) — aTé;

1-2v
7)
where gj; is the stress; f is the body force; ¢ is the total strain; ¢; is the
elastic strain; zijp is the plastic strain; u;; is the deformation in the elastic
range; uj is the deformation in the plastic range; 4 and G is the Lame
constant; E is Young's modulus; v is Poisson's ratio; and « is the coef-
ficient of linear expansion.
The above equilibrium and geometric equations are introduced into
the constitutive equation, and the transformation form can be obtained
as shown in Eq. (8).
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The equation for the volume force of a cylindrical shell subjected to
axial compression and internal pressure is
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where F is the axial compression; V is the cylindrical shell volume; P is
the internal pressure; and A is the surface area of the shell wall.

2.2. Dimensionless transformation

Defining the dimensionless parameters: Ty = T/T'; t,=t/t’;
uo=ulu’; 6,=0/0% yw=vlv; f=rflf5 Q=Q/Q; F=F/F;
Py=P/P'; ko=k/k'; p,=plp'; Co=C/C'; x,=xlx's Eo=E/E';
vy = v/v’; ap = a/a’. And [, is the characteristic length of the model,

and it can be regarded as the intrinsic characteristic of the model. Thus,
Egs. (2), (4), (8), and (9) are transformed into dimensionless forms.
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The coefficients of each variable in the equations should be unified
to ensure the similarity of physical problems. Given that the problem
does not involve the phase change of the material, unifying the coef-
ficients in the dimensionless equation (Eq. (10)) and corresponding
equations (Egs. (2), (3), (7), and (8)), 6, and T, should be equal to 1.
Therefore, the strain and temperature fields for the two similar physical
problems remain unchanged. On the basis of these assumptions, the
other coefficients in Eq. (10) are derived and simplified. Table 1 pre-
sents the similarity criteria and physical explanations. These coeffi-
cients should remain unchanged to maintain the scaling law.

2.3. Scaling laws

On the basis of the dimensionless transformation and similarity
criteria obtained in Section 2.2, the geometric dimensions of the cy-
lindrical shell (including the laser spot size) are scaled by f times,
Table 2 shows the scaling ratio of the relative physical parameters.

The physical parameters can be divided approximately into ther-
momechanical loads and responses. The thermomechanical loads in-
clude laser irradiation time, laser power density, axial compression
force, and internal pressure. Meanwhile, the thermomechanical re-
sponse includes the temperature and strain fields. The thermo-
mechanical response (i.e., temperature and strain fields) must remain
unchanged when scaling the geometry of the cylindrical shell. As shown
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Table 1
Similarity criteria and guidelines.

No. Similarity Physical explanation
criteria

1 to/13 The simplification of the Fourier number : ag to / lo%,
where qg is thermal diffusivity, when the material phase
remains unchanged, the term is the ratio of the laser
irradiation time to the square of the geometric dimension
is unchanged

2 toYy The laser irradiation time is multiplied by the heat
generation rate of unit mass

3 1pQo The laser power density is multiplied by geometric size

4 uo/lo The deformation field is divided by the geometric
dimension

5 folo The body force is multiplied by the geometric dimension

6 Foll§ The compressive load is divided by the square of the
geometric dimension

7 Py The internal pressure is unchanged

in Table 2, when the dimension is scaled by f, the laser power density
and laser irradiation time should be scaled by 1/8 and 8%, respectively;
the compression load should be scaled by 2 and the internal pressure
remains unchanged.

3. Numerical models and experimental validations
3.1. Outline of the flowchart

The failure behavior of the cylindrical shell subjected to the com-
bined loads of axial compression and internal pressure under laser ir-
radiation is a coupling problem of thermal elastoplastic dynamics. The
numerical simulation of this problem involves a comprehensive pro-
cess, including heat conduction, thermal stress, elastoplastic buckling,
and dynamic rupture failure, with strong characteristics of geometric
and material nonlinearities. The specific flowchart is shown in Fig. 1.
The pink module is the heat conduction analysis, the green module is
the prestressed field calculation of the cylindrical shell subjected to the
combined loads of axial compression and internal pressure, and the
blue module is the coupling calculation and failure analysis. The
flowchart has two points that need to be addressed. First, the initial
geometric imperfection is an important factor for the analysis when the
cylindrical shell is subjected to axial compression. Second, the critical
value of the failure criterion is the main parameter for simulating the
dynamic expansion and rupture process of the internally pressurized
cylindrical shell under laser irradiation.

The following assessment schemes are presented to validate the
established approach and similarity criterion. Case 1 is concerned with
the temperature field, thermal stress, and thermal strain fields induced
by the laser. Case 2 is concerned with the axially compressed cylindrical
shell under laser irradiation. Case 3 is concerned with the internally
pressurized cylindrical shell under laser irradiation. Case 4 is concerned
with the cylindrical shell subjected to the combined loads of axial
compression and internal pressure under laser irradiation.

The scaling ratio of = 1/2 is adopted in the four cases when va-
lidating the similarity criterion. Therefore, in each case, two numerical
models are built, namely, Model-1 and -2. Model-1 is the prototype with
the dimensions of L; (length) = 1 m, D; (neutral surface diameter) =

Table 2
Scaling ratio of the cylindrical shells under multiple loads.
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0.54 m, and d; (thickness) = 0.005 m. Model-2 is the prediction model
with the dimensions of L= 0.5m, D, = 0.27 m, and d, = 0.0025 m.
The number of elements in the FEA model is 16600, and the element
type is S4R. Specific cases determined the boundary conditions.

3.2. Case 1: thermal-structural model for laser irradiation

When the laser irradiates the metallic cylindrical shell, the laser
energy absorbed by the surface layer will diffuse in the cylindrical shell
in the form of heat conduction, and partially dissipate outward by ra-
diation and convection. The heat loss can be considered in the value of
the laser absorption coefficient. When the input laser power density is
considerably larger than the output heat flux due to radiation and
convection, the effects of radiation and convection can be negligible.
When temperature increases, the mechanical properties of materials,
such as elastic modulus and yield strength, become significantly lower
than those at room temperature. Thermal parameters, such as specific
heat, thermal expansion coefficient, and thermal conductivity, also
undergo changes. An uneven temperature increase can result in thermal
stress. Thermal stress analysis methods can be divided into two cate-
gories in FEA, this is, direct and sequential thermal mechanical cou-
pling. In the direct thermomechanical coupling analysis, the tempera-
ture field directly affects the structural stress field, and the structural
deformation influences the temperature field. In the sequential ther-
momechanical coupling analysis, the influence of deformation field on
the temperature field is ignored, and the analysis is divided into two
processes, that is, heat transfer and thermal stress analyses. According
to the analysis of heat conduction in Section 2.1, the temperature field
coupling term caused by the structural deformation is neglected, and
then simplified as the sequential thermal mechanical coupling. The
material used in the thin-walled cylindrical shell is an extra super
duralumin alloy, which is an ideal thermal elastoplastic material,
Table 3 lists the thermomechanical parameters of the material at dif-
ferent temperatures.

The maximum temperature, thermal stress, and thermal strain
produced by laser irradiation in Model-1 are consistent with those of
Model-2 only when the laser parameters satisfy the similarity criteria
Nos. 1, 2 and 3 mentioned in Table 1. The laser beam parameters of
Models-1 and -2 are respectively shown as follows: the laser power
densities are Q; = 38.2W/cm? and Q, = 76.4 W/cm?; the laser spot
radii are r; = 5cm and r, = 2.5 cm, and the laser irradiation times are
t; = 40sand t, = 10s. The initial temperature is T; = T, = 293K, and
the spatial distribution of the laser is uniform(Gauss).

3.3. Case 2: buckling model for the axial compression-induced damage

Two different imperfection techniques, namely, eigenmode-affine
method and single perturbation load approach (SPLA), are adopted in
the critical buckling load of the cylindrical shell with initial imperfec-
tion under axial compression in FEA. The eigenmode-affine method
generally provides conservative buckling load prediction. The critical
buckling loads predicted by the SPLA are in good agreement with the
published experimental data, thereby making it a popular algorithm for
the preliminary design of cylindrical shells in calculating critical
buckling loads [3]. However, the SPLA is not applicable when studying
the influence of laser irradiation on the buckling behavior of thin-

Thermomechanical responses

Thermomechanical loads

Deformation Temperature Strain field Irradiation time Laser power density Axial compression Internal pressure
Parameters Ho To 6o to Qo Fy Py
Scaling B 1 1 g2 1/8 B 1
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Fig. 1. Flowchart of numerical simulation.

Table 3
Thermomechanical parameters of the extra super duralumin alloy at different
temperatures.

T/K k/(Wm! C/U-kg? a /(107° E/GPa o /MPa
K K K

293 155 880 22 66 432

373 159 921 23.6 61 402

473 163 1005 25.2 50 235

573 163 1047 26.8 46 118

673 159 1089 28.4 43 69

walled cylindrical shells. Laser irradiation is a complex perturbation
load that reduces the strength of local materials which leads to the
thermal expansion of the cylindrical shell. This type of load conflicts
with SPLA. Therefore, the introduction of the initial imperfection
adopts the eigenmode-affine method in the present models, and its
feasibility is verified by corresponding experimental results.

Given the thermal boundary condition in the laser irradiation re-
gion, the cooling effects of convection and radiation will lead to the
thermal equilibrium of the temperature field when the laser power
density is low. Therefore, the buckling of the experiment scheme is as
follows. First, the cylindrical shell specimen is placed in the material
testing machine (MTS) fixture; The specimen is then subjected to laser
irradiation in the center of the cylindrical shell for 200s until the
thermal equilibrium is established. Finally, axial compression is applied
through MTS until the specimen is buckled. In the experiment, the di-
mensional scaling ratio § = 1/10 is adopted, that is, the diameter is
D= 54 mm and wall thickness is t = 0.5 mm. Each side of the specimen
wall is thickened to 1 mm with a section length of 12mm to avoid
accidental premature failure of the specimen. The axial compression
loading rate is controlled at 0.5 mm/min. On the basis of the experi-
mental conditions, the quasi-static analysis is conducted in the dynamic
explicit analysis module. Table 4 shows the comparison of the critical
buckling load obtained by the experiments and predicted by the nu-
merical model, and Fig. 2 shows the comparison of the compressive

Table 4
Critical buckling load obtained by the experiments and FEA.
Critical buckling load Critical buckling load with  F./E,
without incident laser F, incident laser F,; (kN)
(kN)
Experiment  24.1 12.8 0.53
FEA 27.6 14.1 0.51
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Fig. 2. Comparison of the buckling modes and compressive load versus end-
shortening curves obtained by the experiments and finite element simulation.

load versus end-shortening curves and buckling modes.

The error of the critical buckling load using the eigenmode-affine
method compared with the experimental result is 14.5% in the absence
of incident laser irradiation and 10.1% with laser irradiation, as shown
in Table 4. The error of the laser knockdown factor (F.;/E,) is 3.8%. The
above data indicate that the critical buckling load obtained by the ei-
genmode-affine method is conservative without perturbation load.
Conversely, the error is reduced when the perturbation load is imposed,
and the error of the laser impact factor is only 3.8%. As shown in Fig. 2,
the buckling mode obtained by the numerical calculation is basically
consistent with the experimental result. Wrinkling occurs locally in the
laser spot region in the experimental and numerical simulation results
when laser irradiation is employed. This finding explains the influence
of laser irradiation on the buckling behavior of the cylindrical shell.

The axial compression loading should satisfy the similarity criteria
Nos.5 and 6 in Table 1 to validate of damage behavior of axially
compressed cylindrical shell under laser irradiation. The total dis-
placement load and all parameters in the experiment are expanded to
Models-1 and -2 according to the scaling laws.

3.4. Case 3: dynamic rupture model for internal pressure-induced damage

The rupture damage behavior of laser-induced internally pressur-
ized cylindrical shell has been investigated in the literature. The diffi-
culty still lies in the FEA because no universally recognized criterion for
the thermal elastoplastic fracture under laser irradiation is available.
Therefore, simulating the dynamic rupture process of the internally
pressurized cylindrical shell is rather difficult. In the present study, the
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critical value of failure criterion is selected by comparing the ultimate
internal pressure obtained via theoretical calculation and the internal
pressure under the failure of the cylindrical shell obtained via numer-
ical simulation. The secondary development subroutine is used in op-
timizing the failure mode to simulate the leakage pressure of the cy-
lindrical shell. When the increment step reaches the corresponding
value of the damage, the pressure inside the shell is rapidly decreases to
zero.

For the thick-walled cylinder with internal pressure, the stress
equation is obtained by simultaneously solving the deformation geo-
metric condition, static equilibrium equation and physical equation, as
shown as follows:

)
Thr_g + 2
where o, is the radial stress; og is the hoop stress; P; is the internal
pressure; a is the inner wall radius; b is the outer wall radius, and r is
any radius of the wall thickness.

For the thin-walled cylindrical shell, the wall thickness d = b — a is
considerably smaller than radii a and b, and it can be reasonably ap-
proximated by b%/r?+ 1~ 2 and b?> - a?>= (b — a)(b + a) ~ dD, Eq.
(11) is then converted to

1D

P D
0'9271

2d 12)

The ultimate internal pressure F; of an ideal thin-walled cylindrical
shell can be obtained according to the Mises flow condition.

_ 2o

= p

13

The failure criterion of the maximum equivalent plastic strain is
then used in FEA, and the threshold of the failure criterion is explored
according to the ultimate internal pressure solved by Eq. (13). Ac-
cordingly, the critical failure value of each temperature field during
laser irradiation is obtained.

To verify the above method, the numerical model of the parameters
consistent with the relevant experiment [27] is established. Fig. 3
shows the failure modes of the column shell predicted by the numerical
model and obtained by the experiment. The fractured crack propagates
along the axis, and then bifurcates in the near end due to geometrical
constraint conditions and stress concentration, and finally tears the
specimen apart. The predicted damage time is 1.1s, whereas the ex-
perimental measured damage time is 1.3s.

The similarity criterion shows that the stress and strain fields of the
structure under the same temperature are consistent when the laser
parameters and internal pressure conform to the similarity criteria
(Nos. 1, 2, 3 and 4). Therefore, the critical value of the failure criteria
introduced in Model-1 must be identical with that in Model-2. The

U (mm)

=11 s S
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specific parameters in the assessment scheme of the similarity criterion
are as follows. The internal pressure is P; = P, = 5MPa, and the
temperature field obtained in Sections 3.2 is applied in the models.

3.5. Case 4: model verification under complex thermomechanical loads

On the basis of the above analysis, the sequential coupling method is
adopted in the thermomechanical coupled analysis, which neglects the
coupling term of the temperature field caused by structural deforma-
tion. Therefore, the temperature field can be directly iterated into the
analysis step. The displacement and axial load will be in conflict with
the laser irradiation, and the direct loading will introduce the inertia
effect when axial compression and internal pressure must be applied in
the dynamic explicit analysis. Therefore, static analysis is conducted
through the implicit algorithm, and the result of the stress is considered
the prestress loaded into the cylindrical shell. The end of the cylinder is
loaded with the axial uniform force and internal pressure to prevent the
release of the prestress.

The stress and strain fields of Model-1 are consistent with those of
Model-2 under the same temperature field. The deformation field must
be consistent with the similarity criterion No. 5 when the axial com-
pression, internal pressure and laser parameters follow the similarity
criteria Nos. 1, 2, 3, 4, 6, and 7 in Case 4. The parameters in the scheme
are F;, = 1000kN, P; = 3MPa, F, = 250kN, and P, = 3MPa. The
temperature field is as obtained in Section 3.2.

4. Validation of scaling laws and discussions

In Case 1, the temperature field and the thermal stress and strain
results are obtained, as shown in Figs. 4 and 5, respectively. The si-
milarity criterion of the first five items listed in Table 2 is validated in
this case study.

To verify that the temperature field produced by the laser meets the
similarity criterion, the two points of the temperature increase curves
are shown in Fig. 4(a); one is the central point in the laser irradiation
zone, and the other is the point in the low-temperature zone. The
maximum temperature in the high-temperature zone of Model-1 is
852K after 40s of laser irradiation, whereas it is 851 K for Model-2
after 10s of irradiation, and the error is only 0.1%. The maximum
temperature in the low- temperature zone is 430 K for both models. The
temperature increase curves of the two points corrected by scaling law
are in good agreement with the two models. Fig. 4(b) and (c) reflect the
consistency of the temperature field.

Fig. 5 presents the distribution of thermal stress, thermal strain and
error analysis in the axial line and the circumferential curve through
the laser spot center at the end of laser irradiation. As shown in
Fig. 5(a), the maximum error in the thermal stress appears on the left-
side second valleys (x = 0.45 m); the thermal stresses of Model-1 and

Fig. 3. Comparison of the rupture modes for the internally pressurized cylindrical shell irradiated by laser. (a) Numerical result. (b) Restored specimen in the

experiment [27].
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diagrams of Model-1 and Model-2.

Model-2 are 53.1 MPa and 51.6 MPa, respectively, with an error of
2.9%. The maximum error of the thermal strain appears in the center
spot (x = 0.50 m); the thermal strain of Models-1 and -2 are 0.0156 and
0.0153, respectively, with an error of 1.9%. The maximum error of
thermal stress in Fig. 5(b) appears at two peaks around the spot center
(y = —0.07m and y = 0.07 m); the thermal stresses of Model-1 and
Model-2 are 154.5 MPa and 152.3 MPa, respectively, with an error of
1.4%. The maximum error of the thermal strain still appears in the spot
center of the laser, and the error is 1.9%. The locations where the
maximum error occurs are in the high-temperature zone (851-686 K)
and the middle temperature zone (686-432 K).

The errors are mainly caused by the temperature iteration error
during the sequential thermomechanical coupling analysis, wherein the
magnitude of the temperature increase rate is affected. Although the
error is small, it still leads to plastic flow differences in the structure,
thereby resulting in structural response deviation.

Figs. 6 and 7 show the results of similarity criteria in Case 2. The
final deformation fields of Model-1 and Model-2 under laser irradiation
are marked with the critical buckling load E,; (Fig. 6). The error is 0.1%
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after the correction of the scaling law.

Fig. 7 shows the stress and deformation fields of the cylindrical shell
subjected to buckling in the axial line and the circumferential curve
through the laser spot center, as well as the error analysis curve. As
shown in Fig. 7(a), the maximum error in the equivalent Mises stress
appears at the first trough on the right side (x = 0.62 m); the equivalent
Mises stresses of Model-1 and Model-2 are 37.7 MPa and 38.3 MPa,
respectively, with an error of 1.6%. The maximum deformation error
occurs at the edge of the cylindrical shell (x = 0.12m); the deforma-
tions of Model-1 and Model-2 are 0.273 mm and 0.269 mm, respec-
tively, with an error of 1.4%. The maximum error of the equivalent
Mises stress in Fig. 7(b) appears outside the temperature field
(y = —0.23m and y = 0.23m), with 392.7 MPa and 398.2 MPa for
Model-1 and Model-2, respectively, and a relative error of 1.4%. The
maximum error of deformation occurs at the edge (y = —0.27 m and
y = 0.27 m); the deformations are 4.571 mm and 4.612 mm for Model-
1 and Model-2, respectively, with an error of 0.9%. From the error
analysis curves, the maximum error of the equivalent stress and de-
formation do not appear in the high- temperature range; thus,
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Fig. 5. Thermal stress and thermal strain distributions passing through the centerline of the laser spot and error analysis. (a) Axial distribution. (b) Circumferential

distribution.
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Fig. 6. Deformation fields of the axially compressed cylindrical shell under laser irradiation. (a) Model-1. (b) Model-2.

temperature is not the main cause of the error in Case 2. The main
reason for the error may due to the inertia effect. Although the inertia
effect is small and negligible, it can still lead to the structural response
variance.

Figs. 8, 9 and 10 show the results of Case 3. Since this case is with
strong characteristics of geometric and material nonlinearities, it is
difficult to obtain an analytical result of laser irradiation. So the pres-
tress (hoop stress) of the internally pressurized cylindrical shell without
laser irradiation is given according to Eq. (12), in the FE models, as
shown in Fig. 8. According to Saint-Venant principle, the normal dis-
placement and bending internal force are both negligible when the
distance to the fixed end exceeds 2.5v/Rd in axisymmetric bending of
cylindrical shells. Therefore, the numerical solution in the effective area
is similar to the theoretical solution. Fig. 9 presents the failure mode of
the internally pressurized cylindrical shell under laser irradiation and
the failure time t4. The errors of deformation and failure time are 3.5%
and 1.4% according to the scaling law, respectively.

Fig. 10 shows the stress and the equivalent plastic strain (PEEQ)
fields in the axial line and the circumferential curve through the spot
center at the moment before rupture. The maximum error of the Mises
stress appears in the center of the laser irradiation, as shown in
Fig. 10(a). The Mises stresses of Model-1 and Model-2 are 47.8 MPa and
46.4 MPa, respectively, with an error of 2.9%. The maximum error of
PEEQ is 3.3%. The maximum error of the Mises stress and PEEQ also
appears around the laser spot (Fig. 10(b)). The main sources of error in
Case 3 are the temperature field iteration and inertia effect.

Figs. 11 and 12 show the results of Case 4 when the cylindrical shell
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Fig. 8. Hoop stress distribution of the internally pressurized cylindrical shell
without laser irradiation.

0.4
Distance (m

0.

is subjected to the combined loads of axial compression and internal
pressure under laser irradiation. The time to reach the buckling damage
tp and the time to reach perforation produced by internal pressure t, are
also presented in the diagram of failure modes in Fig. 11. According to
the scaling law, the errors of deformation and failure time are 3.4%,
0.6% and 2.1%, respectively.

Fig. 12 illustrates the equivalent Mises stress and deformation dis-
tribution passing through the centerline of the laser spot when the cy-
lindrical shell is subjected to the combined loads of axial compression
and internal pressure under laser irradiation. The maximum error in the
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Fig. 7. Equivalent Mises stress and deformation distribution passing through the centerline of the laser spot and error analysis, when the axially compressed
cylindrical shell under laser irradiation is buckled. (a) Axial distribution. (b) Circumferential distribution.
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Fig. 9. Failure modes of internally pressurized cylinder shell under laser irradiation. (a) Model-1. (b) Model-2.
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Fig. 10. Equivalent Mises stress and equivalent plastic strain distribution passing through the centerline of the laser spot and error analysis at the moment before

rupture. (a) Axial distribution. (b) Circumferential distribution.

equivalent Mises stress appears at the second trough on the right side
(x = 0.69 m); the stresses of Model-1 and Model-2 are 124.4 MPa and
130.7 MPa, respectively, with an error of 5.1%. The maximum error of
deformation field appears at the beginning of the bulge (x = 0.42 m);
the deformations of Model-1 and Model-2 are 0.512 mm and 0.488 mm,
respectively, with an error of 1.9% (Fig. 12(a)). The maximum errors of
the equivalent Mises stress and deformation field appear in the center of
the spot (Fig. 12(b)). The data for the two models are 45.1 MPa and
46.2 MPa, 16.810 mm and 16.680 mm, with errors of 2.4% and 0.8%,
respectively. The main sources of error in Case 4 are the combination
effects of the temperature field iteration and inertia effect, which

U (mm)

t,=31.05; t,=33.1's
(a)

U

indicates that the error increases when the thermomechanical loads
become highly complex.

5. Conclusions

This study presents similarity criteria for thin-walled cylinders
subjected to coupled thermomechanical loads or individual load.
Dimensionless variables and similarity criteria are derived from trans-
forming heat conduction equations and thermal elastoplastic con-
stitutive equations into dimensionless styles. To maintain the thermo-
mechanical response unchanged when scaling the geometric dimension

(mm)
15
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10

S W W

4=7.7s;t,=8.1s
(b)

Fig. 11. Failure mode of the cylindrical shell subjected to the combined loads of axial compression and internal pressure under laser irradiation. (a) Model-1. (b)

Model-2.
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Fig. 12. Equivalent Mises stress and deformation distribution of the cylindrical shell subjected to the combined loads of axial compression and internal pressure
under laser irradiation, and error analysis. (a) Axial distribution. (b) Circumferential distribution.

of the cylindrical shell by factor of , the laser power density and laser
irradiation time should be scaled by 1/8 and ? and the compression
load and internal pressure should be scaled by 2 and 1, respectively. In
these cases, the prototype and scaled models maintain the same tem-
perature, strain and stress fields. Applicable methods of FEA are es-
tablished according to the load situations and are verified by related
experiments. Four cases are utilized to validate the similarity criteria of
the laser-induced temperature, strain and stress fields; laser-induced
buckling of the axially compressed cylindrical shell; laser-induced
rupture of the internally pressurized cylindrical shell; and laser-induced
damage under the combined loads of axial compression and internal
pressure. The sources of error are also analyzed and discussed. The
calculation results show that the maximum error is 5.1% in the case of
stress state of the cylindrical shell under laser irradiation combined
with axial compression and internal pressure. Errors in other cases are
below 3.5%, indicating a reliable analysis of the similarity criterion
proposed in this study. The present work provides a low cost yet con-
venient way to verify the structural damage model and obtain the da-
mage threshold and structural response in the preliminary experimental
stage.
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