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Abstract:  Azimuthal electromagnetic logging while drilling (LWD), which is capable of providing accurate position information ap-

proaching bed boundary, has been widely applied in real-time geosteering. For the inversion speed and precision of azimuthal electro-

magnetic LWD data, the key lies in the selection of proper inversion model and corresponding optimization algorithm. In this study, we 

first simplified the complex three-dimensional (3D) inversion of data into a series of one-dimensional (1D) inversion problems by using 

the dimensionality reduction scheme. Then, the feasibility and inversion performance of various 1D inversion models and different opti-

mization methods were investigated, and the best combination between the inversion model and inversion algorithm was also obtained. 

Numerical simulation results show that the selection of 1D inversion model is dominated by the thickness of targeted beds, whereas the 

determination of inversion algorithm relies on the total layers amount of the inversion model. For the formation with thickness larger than 

4.0 m, the single boundary inversion model and gradient optimization method are recommended. When the bed thickness is between 1.0 

m and 4.0 m, the two-boundary inversion model instead of the single-boundary one is needed to estimate upper and lower boundaries 

around the borehole. For the inversion of azimuthal electromagnetic LWD data of thin layers, the multiple- boundary inversion model and 

the Bayesian algorithm should be employed. 

Key words: logging-while-driling; azimuthal electromagnetic logging; electromagnetic logging; inversion model; inversion algo-

rithm; geosteering; bed boundary 

Introduction 

Real-time identification of approaching bed boundary, one 

of the key techniques in logging-while-drilling (LWD) geo-

steering, is of great importance for accurate drilling and 

maximizing oil/gas production[12]. Although the formation 

boundary position can be predicted qualitatively from the 

responses of LWD Azimuthal Electromagnetic Measurements 

(AEM), these tool responses are usually very complicated due 

to the effects of complex downhole environments[3]. As a re-

sult, inversions of the AEM data are mandatory to quantitative 

evaluation of the distance between borehole and bed bounda-

ries. 

Generally, processing of electrical logging data acquired 

from high angle and horizontal well (HA/HZ) is a complex 

three dimensional (3D) inverse problem, in which multiple 

parameters, such as relative dipping angle, formation anisot- 
ropy and invasion depth of mud filtrate, have to be consid-
ered[46]. If assuming the borehole and mud invasion are neg-
ligible and the formation property keeps invariant along one 
direction, the 3D data processing problem can be simplified 
into a two dimensional (2D) one[78]. To date, the 3D and 2D 
inversions are still impractical, since: (1) The amount and 
kind of measured electrical logging data are limited, which 
may result in some uncertainty in the inversed 3D and 2D 
outcomes; (2) There lacks of a fast 3D or 2.5D forward mod-
eling algorithm; (3) The inversion involves too many parame-
ters, so the computation load of Jacobian matrix is huge. To 
process the LWD electromagnetic (EM) data, the dimension-
ality reduction scheme with a sliding window technique is 
widely adopted in the industry. Yang et al. eliminated the ab-
normal apparent resistivity “horns” by ignoring the effect of 
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lateral heterogeneity of the formation and using a simplified 
three-layered inversion model[9]. With the same inversion 
method, Li and Zhou extracted the nearby bed boundaries in 
real time[10]. Therefore, the complexity of inversion algorithm 
and inversion model can be reduced largely by simplifying the 
3D inversion to a 1D question. 

Selection of proper simplified inversion model and corre-
sponding inversion method is critical to one dimensional (1D) 
processing of AEM data. Until now, the processing of AEM 
data is still limited to the dual-boundary model, whereas the 
suitability of dual-boundary model and feasibility of multi-
ple-boundary model remain to be investigated. Generally, the 
choice of inversion algorithm is highly dependent on the 
complexity of the inversion model. The gradient methods 
have been extensively used for real-time processing of AEM 
data due to their limited iterations and fast inversion speed etc. 
However, the accuracy of gradient methods is highly depend-
ent on the initial model. If an unsatisfactory initial model is 
used, incorrect inversion results may be obtained. Conse-
quently, inappropriate geosteering decision may be made[11]. 
Compared with the dual-boundary model, multiple-boundary 
inversion involves more local minima of the cost function, 
and lacks of enough prior information, therefore gradient 
method is no longer suitable for this kind of inversion. By 
contrast, the stochastic Bayesian inversion method has been 
increasingly applied to the inversion of electrical data due to 
its global search capability and derivative free property[12]. To 
date, there is no report on Bayesian inversion used in the pro-
cessing of AEM data. In addition, the convergence and speed 
of Bayesian inversion remain to be investigated. 

This paper is organized as follows. First, high dimensional 
inversion problem of complex formation structure is simpli-
fied using the dimensionality reduction scheme, followed by 
the review of regularized Gauss-Newton algorithm and 
Bayesian optimization method. Then, for the simplified 1D 
inverse problem, the feasibility of various inversion models, 
the suitability of different optimization methods and the accu-
racy of inverted results are discussed. Best combination be-
tween the inversion model and inversion algorithm is also 
obtained. Finally, field example is presented to showcase the 
applications of the proposed inversion combination.  

1.  Theory of AEM and the dimensionality  
reduction scheme 

1.1.  Theory of AEM 

Taking the commercial tool PeriScope tool for example, the 
theory of AEM is reviewed in this section. PeriScope delivers 
two types of measures, i.e. apparent resistivities and geo-sig-
nals. As shown in Fig. 1(a), the former is constructed by 
measuring the voltages 

1RV  and 
2RV at two coaxial receivers 

R1 and R2 irradiated by a coaxial transmitter. The attenuation 
(Att) and phase shift (PS) are then extracted from the two 
voltages using Eq.1. Finally, the apparent attenuation resistiv-
ity and apparent phase shift resistivity are readily obtained by  

 
Fig. 1.  Coil configuration of PeriScope. 

searching the resistivity values corresponding to the measured 
Att and PS from the pre-calculated convert chart. 
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The latter is acquired by a tilted coil which has a 45 with 
the tool axis. As the mandrel rotates, the voltages at different 
azimuthal angles are measured and the attenuation geosignal 
and phase shift geosignal are calculated using Eq.2.  
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1.2.  Dimensionality reduction and inversion model 

From the perspective of detection range of electrical log-
ging measurement, the formation property can be assumed to 
be invariant along one direction, and therefore inversion of 
EM logging data of complex geological structures (e.g. folds) 
can be reduced to 2D, as shown in Fig. 2(a). For instance, the 
formation properties are inhomogeneous along x and y direc-
tions, while they are invariant along z direction. The 2D in-
version problem can be further simplified to a combination of 
1D ones by using the sliding window technique. As a result, 
the inversion speed has been improved significantly, since (1) 
In each sliding window, the analytical solution is used for the 
real-time forward modeling of the 1D formation model[13], and 
only 10-4 to 10-3 second is required for each logging point. (2) 
There are few parameters of interests in the simplified 1D 
inversion model. (3) The memory cost of 1D inversion can be 
ignored. For the inversion of ARM data, the 1D inversion 
models include multi-boundary model (Fig. 2b, with total 
layer number of more than 3), dual-boundary model (Fig. 2c, 
with total layer number of 3) and single-boundary model (See 
Fig. 2d, with total layer number of 2).  

2.  Gradient inversion and stochastic inversion 

In this section, the commonly used gradient method, 
Gauss-Newton algorithm, is discussed, and the self-adaptive  
multiplicative regularization term is also introduced to the 
cost function. Then, stochastic Bayesian algorithm is adopted 
to obtain the global optimum solution of complex model. 
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Fig. 2.  Dimensionality reduction of inversion model. 

2.1.  Multiplicative regularized Gauss-Newton algorithm 

For the nonlinear inversion of ARM, the gradient method is 
used first. At kth iteration, the cost function  kC m  can be 
expressed as[14] 
      k kC F Rm m m   (3) 

where, m is the model vector of inverted parameters and 
 F m  is L2 norm between observed data obsd  and simu-

lated responses  S m  given a formation model m, 
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2
F S   m m d .  kR m is the self-adaptive regu- 

larization term given as: 
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where δ is a constant obtained from numerical experiments. 

pm is the reference model vector which is usually set to the 
value of m at previous iteration, 1p km m . 

The Gauss-Newton method is used to solve Eq. 3. At the 
kth iteration, setting the derivative of cost function to m equal 
to zero, C 0k  m , we have: 
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2.2.  Bayesian inversion 

In Bayesian framework, the model vector can be regarded 
as a set of random variables which satisfy a specific probabil-
ity density function, namely posterior distribution. Assuming 
the prior probability density function  p m  and the likeli-
hood probability density function  obs |p d m  are uniform 
distribution and normal distribution, respectively, the posterior 
distribution  obs|p m d  can be written as follows, 

   obs obs| |p p m d d m  
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The Bayesian inversion problem then converts to construct 
an algorithm which samples efficiently from the distribution 
of likelihood function. For this purpose, the classical Markov 
Chain Monte Carlo (MCMC) algorithm was adopted in this 

study. The idea of MCMC is to construct a Markov chain 
which satisfies the detailed local balance. 
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where 1m  and 2m  can be arbitrary formation models and 

 1 2,q m m  denotes the transition kernel function. By intro-
ducing the acceptance probability function  1 2, m m  to Eq. 
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Detailed implementation of MCMC is presented as follows: 
(1) draw a new candidate 2m  based on the current model 
state 1m  and transition kernel function  1 2,q m m ; (2) com-
pare the calculated acceptance probability  1 2, m m  with a 
random number , if  1 2,  m m , return to the candi-
date 2m , otherwise return to 1m ; (3) repeat the aforementioned 
steps until the stopping condition is reached. 

3.  Comparison of inversion model and inversion 
algorithm 

In this section, the suitability and feasibility of commonly 
used dual-boundary model is discussed, and the inversion effects 
of Gauss-Newton and Bayesian algorithms are compared. Then, 
inversions with single-boundary and multi-boundaries models 
are performed and compared with dual-boundary inversion. 
Based on the inversion speed and precision, the best combina-
tion of model and inversion algorithm is recommended. 

3.1.  Inversion with dual-boundary model 

To validate the accuracy of dual-boundary model and in-
version algorithm, a laminated sand-shale model was built as 
shown in Fig. 3(a), in which the sand and shale resistivity are 
10.0 Ω·m and 1.0 Ω·m respectively. The upper most and lower 
most layers are 2.5 m thick each, while the layers in the mid-
dle are 2 m thick each. As the tool crossed beds at the relative 
dipping angle 89, the corresponding apparent resistivity and 
amplitude ratio, and geosignals are shown in Fig. 3(b)-3(d). 

Clearly, sharp response changes occurred when the tool 
crossed the bed boundaries (see the dotted lines in fig. 3). 
Using Gauss-Newton optimization, the inverted 2D resistivity 
curtain shown in Fig. 4(a) was obtained. In the figure, the 
color of each pixel represents the value of the formation resis-
tivity. Obviously, sudden resistivity changes took place when 
the tool passed the bed boundaries (see the dotted lines). In 
the resistivity curtain, the color of each point depicts the for-
mation resistivity. Comparing Fig. 3(a) with Fig. 4(a) shows 
the boundaries corresponding to abrupt resistivity change 
points in Fig. 4 (see the dotted lines) are basically consistent 
with to the boundaries of the true model, indicating the 
Gauss-Newton algorithm is accurate and the dual-boundary 
inversion model is feasible. Note that although the remote bed 
boundaries may be unavailable, application of AEM in 
geosteering wouldn’t be affected. The inverted 2D resistivity 
curtain provides not only the upper/lower boundaries of the 
formation near the tool but also intuitive display of the forma-
tion structure. Fig. 4(b) shows the results from Bayesian in-
version. Compared with Gauss-Newton inversion, Bayesian  
inversion is also capable of providing accurate boundary posi-
tions, for instance the dotted lines in Fig. 4(b). However, un-
desired resistivity perturbations occur at the bed boundary, 
indicating poorer stability of Bayesian inversion. 

To demonstrate the applicability of dual-boundary inversion 
model in reservoirs with different thicknesses, a laminated 

 
Fig. 3.  Responses of PeriScope in sand-shale laminates of 2.0 m thick each. 
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Fig. 4. Dual-boundary inversion results of sand-shale laminates of 2.0 m thick each. 

sand/shale model was built. In this case, each bed is 1.0 m 
thick except for the upper most and lower most beds (2 m), 
and resistivities of sand and shale beds are 10.0 Ω·m and 1.0 
Ω·m, respectively, as shown in Fig. 5(a). By performing the 
aforementioned inversion processing, the 2D resistivity cur-
tains derived from Gauss-Newton and Bayesian inversion are 
shown in Fig. 5(b)-5(d). Obviously, the bed boundaries can be 
derived from both inversion methods, but the stability of in-
verted resistivity curtains reduces at the bed boundaries. To 
illustrate this, we circled the resistivity curtain near the bed 
boundaries where stronger perturbations are observed in the 
inversion result from Bayesian method. Comparing Fig. 4 and 
Fig. 5, we can conclude that: (1) dual-boundary inversion is 
applicable to formations more than 1.0 m thick, whereas the 
stability of inversion result reduces when the formation 
thickness is less than 1.0 m; (2) the result from Gauss-Newton 
inversion is slightly better than that from Bayesian inversion, 
and the precision of inverted parameters can be improved by 
increasing the iteration numbers.  

3.2.  Inversion with single-boundary model 

To verify the feasibility and accuracy of single-boundary in-
version model, a formation model with five laminated 
sand/shale beds was constructed. Fig. 6 shows the corre-
sponding estimated bed boundaries obtained from sin-
gle-boundary and dual-boundary inversion models. The red 

and blue points represent the bed boundaries simulated by 
dual-boundary model and single-boundary model, respectively. 
For formations more than 3.0 m thick, as shown in Fig. 6a, 
single-boundary inversion can provide accurate boundary 
positions when the distance between the tool and approaching 
boundary is less than 0.9 m. Whereas the estimated distance 
may be smaller than its true value when the distance between 
the tool and adjacent boundary is larger than 0.9 m as the 
azimuth information is affected by multiple boundaries. 
Meanwhile, the accuracy and stability of inverted results im-
prove with the increase of bed thickness. When the bed thick-
ness is larger than 4.0 m, the estimated bed boundaries ob-
tained from single-boundary and dual-boundary inversions are 
almost identical, as show in Fig. 6(b)-6(d). Generally, for beds 
more than 4.0 m thick, the single boundary inversion is able to 
provide accurate upper or lower boundaries less than 1.8 m 
away from the borehole, satisfying the needs of real-time 
geosteering. Note that inverted result of this section is ob-
tained using the gradient method associated with single- 
boundary inversion model, and similar result can also be 
achieved by using Bayesian optimization method. The repeti-
tive details are not given here. 

3.3.  Inversion with four-boundary model 

When the bed thickness is less than 1.0 m, there are multi-
ple boundaries within the detection scope of the tool as a  
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Fig. 5.  Dual-boundary inversion results of sand-shale laminates of 1.0 m thick each. 

 
Fig. 6.  Inversion results of estimated bed boundaries from single-boundary model and dual-boundary model.  

result, single-boundary or dual-boundary model may be over-
simplified. In these cases, much more complicated multi-boun-
dary model is needed to reveal the detailed distribution of 

formation structures around the borehole. Unfortunately, as 
the layers of inversion model increase, the inverted parame-
ters increase and the corresponding local minima of the cost  
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Fig. 7.  Four-boundary model and 2D resistivity curtains of Bayesian inversion. 

functional soar. The gradient method is no longer applicable 
and therefore Bayesian optimization method is adopted in this 
section. To illustrate the advantage of multi-boundary inver-
sion, we built a formation model in which the middle layers 
were high resistivity beds of 0.6 m thick (the corresponding 
lateral distance varied from 135 m to 165 m along the well 
trajectory), as shown in Fig. 7(a). Fig. 7(b)-7(d) show the 2D 
resistivity curtains from single-boundary, dual boundary and 
four-boundary inversion models, respectively. From Fig. 7(b), 
we can see that the single-boundary inversion can only show 
the very top and bottom boundaries, but can’t show the thin 
beds since no sudden resistivity changes at lateral distance 
135 m to 165 m are observed. When the dual-boundary inver-
sion model is adopted, the nearest boundary can be deter-
mined when the tool is approaching or going away from the 
thin bed. Unfortunately, accurate upper and lower boundaries 
of the thin beds are still not identifiable when the tool lies in 
the thin beds. More specifically, sharp resistivity changes can 
be observed at 135 m and 165 m of the lateral distance, while 
the inverted resistivities at 135 and 165 m are not stable, as 
shown in Fig. 7(c). Fig. 7(d) shows the inverted resistivity 
curtain from four-boundary inversion. Similar to the dual- 
boundary inversion results, sharp resistivity changes are ob-
served at 135 m and 165 m of lateral distance, whereas the 
resistivity distribution is much more stable at lateral distance 
of 135 and 165 m. The four-boundary inversion not only pro-
vides the upper and lower boundaries of current layer where 
the tool locates, but also gives the bed boundaries of further 
layers. Taking lateral distance 135 m for instance, we can get 
three boundaries with Tvd of 1.0 m, 2.3 m and 2.9 m (dash 
lines in Fig. 7d). We can conclude that the four-boundary in-

version model can reconstruct the formation structure, so it 
can be used in fine evaluation of reservoir structure. 

3.4.  Selection criteria of inversion model and inversion 
algorithm 

Another concern in the selection of inversion model is the 
computation time. The inversion speed of Gauss-Newton 
method depends on the number of initial models and iterations, 
while the efficiency of Bayesian method is proportional to 
sampling number of MCMC. For single-boundary and dual- 
boundary inversion models, computation times of each meas-
uring point in Gauss-Newton inversion are 0.3 s and 3.0 s, 
whereas Bayesian inversion requires 15 s and 60 s when 5 000 
and 20 000 points are randomly sampled. By contrast, 500 s is 
needed for Bayesian algorithm with 100 000 sampling when  
the four-boundary inversion model is adopted. Considering 
the speed, precision and simplicity of inversion model, the 
selection criteria of inversion model and algorithm are showed 
in Table 1, where “A” and “N/A” depict “Applicable” and 
“Not-Applicable”, respectively. 

4.  Case study 

In this section, a horizontal well is presented to showcase  

Table 1.  Selection criteria of inversion model and inversion 

algorithm. 

Thickness 
of target 
layer H/m

Single-boun-
dary inver-
sion model

Dual-boun-
dary inver-
sion model 

Four-boun-
dary inver-
sion model 

Gauss-
Newton 

algorithm

Bayesian
Algo-
rithm

H>4.0 A N/A N/A A N/A 
1.0<H<4.0 N/A A N/A A N/A 

H<1.0 
Non-appli-
cab N/A e

N/A A N/A A 
 



WANG Lei et al. / Petroleum Exploration and Development, 2018, 45(5): 974–982 

 

  981 

 
Fig. 8.  Real-time interpretation of LWD AEM data acquired in a horizontal well. (Different colors represent different layers in Fig. 8e). 

the application of ARM in geosteering. As shown in Fig. 8, 
the horizontal well is divided into three sections. Section A 
corresponds to landing of the horizontal well. In section B, the 
well penetrated the lower boundary of target layer, then was 
adjusted and drilled back into the sand formation. In section C, 
the well trajectory was controlled in the payzone. 

If PS and Att geosignals are unavailable, the formation 
model is usually updated by correlating the horizontal well 
logs with an expected geological sequence defined by the 
offset well. Normally, resistivity and lithology curves are used 
in correlation. Using real-time well-correlation, relative posi-
tions between bed boundaries and well trajectory are readily 
obtained in section A and B. In section C (lateral distance: 
2 4552 535 m), abnormal declination, i.e. the interval be-
tween two blue dashed lines in Fig. 8(d), is observed in the 
apparent resistivity curves, indicating a conductive shoulder 
bed. However, due to the non-azimuthal property of apparent 
resistivity curves, it is difficult to accurately predict bed posi-
tions only using well correlation and the well could easily 
penetrate the target formation. By contrast, the amplitude of 
geosignal curve enlarges slightly in section C, indicating the 
tool is approaching the upper bed boundary. After inversion 
processing of AEM data, accurate positions of approaching 

boundaries can be derived. Thanks to the boundary informa-
tion, the trajectory can be kept within the target layer and the 
distribution of formation structure is obtained. 

5.  Conclusions 

In order to obtain the approaching bed boundaries in 
real-time, the complex 3D inversion of LWD AEM data is 
simplified into a series of 1D inversion problems using the 
dimensionality reduction scheme. For formations more than 
4.0 m thick, the nearest boundary can be obtained by using the 
single-boundary inversion model. But when the bed thickness 
is between 1.0 m and 4.0 m, dual-boundary model instead of 
single-boundary one is needed to accurately estimate upper 
and lower boundaries of the formation and resistivity infor-
mation of the formation. For the inversion of AEM data ac-
quired in thin layers, especially when the layers are less than 
1.0 m thick, the multi-boundary inversion model should be 
adopted. For single-boundary and dual-boundary inversion 
models, regularized Gauss-Newton method is good enough to 
extract formation boundaries in real time from AEM data, and 
the corresponding computation times of each recording point  
are 0.3 s and 3.0 s, respectively. For multi-boundary model,   
MCMC-based Bayesian algorithm can be used to interpret the 
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formation boundaries in detail, and inversion time for each 
recording point is 500 s. Inversion results of actual field data 
show that nearby bed boundaries can be accurately picked 
using the optimal combination of inversion model and inver-
sion algorithm. In addition, AEM has significantly reduced the 
uncertainty in the interpretation of conventional electromag-
netic log data of horizontal wells, and has improved the capa-
bility of geosteering while drilling.  
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Nomenclature 

Att—amplitude ratio, dB;  
Att —attenuation geosignal, dB;  
AttSAD1, AttSAD4—attenuation geosignals with 243.84 cm (96 in) 

spacing operated at 100 kHz and 400 kHz, dB;  
AttSAS4—attenuation geosignal with 86.36 cm (34 in) spacing op-

erated at 400 kHz, dB; 
    , CkC  m m —cost function and its derivative;  

obsd —observed data;  

 F m —L2 norm between observed data and simulated responses;  
H—thickness of target layer, m;  
Hup, Hdown—distances between record point and upper/lower bed 

boundaries, m;  
Imag—imaginary part of a complex number;  
J—Jacobian matrix;  
k—iteration number; 

  
m —model vector of interest;  

1m , 2m —arbitrary formation models; 
  

N—number of bed boundaries;  

 p m —priori probability density function;  

 obs |p d m —likelihood probability density function;  

 obs|p m d —posterior probability density function; 
  

PS—phase shift, ();  
PS —phase shift geosignal, ();  
PS SPD1, PS SPD4—phase shift geosignals with 243.84 cm (96 

in)spacing operated at 100 kHz and 400 kHz, ();  
PS SPS4—phase shift geosignals with 86.36 cm (34 in) spacing op-

erated at 400 kHz, ();  

 1 2,q m m —transition kernel function;  
Real—real part of a complex number;  
RA28H, RP28H—attenuation resistivity and phase shift resistivity 

with 2 MHz and 71.12 cm (28 in) spacing, Ω·m;  
RA40H, RP40H—attenuation resistivity and phase shift resistivity 

with 2 MHz and 101.60 cm (40 in) spacing, Ω·m;  

 kR m —adaptive regularization term;  
Rs1, Rs2—resistivities of shoulder beds in signal-boundary model, 

Ω·m;  
Rt—formation resistivity where the tool lies in, Ω·m;  
Rup, Rdown—equivalent resistivities of upper and lower adjacent 

beds in the dual-boundaries model, Ω·m; 
   S m —response from forward modeling m;  

T—Transpose of a vector or matrix; 
  

1RV ,
2RV —electric potentials of two coaxial receivers generated by 

coaxial transmitter, V;  

1
V ,

2
V —electric potentials of tilted receiver at azimuthal angles

 
1  and 2 , V;  

 1 2, m m —acceptance probability function;  
β—random number;  
β1, β2—azimuthal angle of the drill collar during rotation, (°);  
θ—relative angle between tool axis and formation, (°);  
δ—initial value obtained by experiment. 
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