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isotropic turbulent flows by coupling kinematic simulation with approximate
deconvolution method

Zhideng Zhou (J&7&%),12 Shizhao Wang (£ 1+:H),1'2 and Guodong Jin (& E)H2 )
U The State Key Laboratory of Nonlinear Mechanics, Institfite of Mechanics,

Chinese Academy of Sciences, Beijing 100190, China 3
2) School of Engineering Sciences, University of Chinése d
Beijing 100049, China ‘;\

emy of Sciences,

—
(Dated: 7 October 2018)

A kinematic simulation with an approximate detepvolution (KSAD) hybrid model is
proposed to predict the Lagrangian relativesdi p%ion of fluid particles in a large eddy
simulation (LES) of isotropic turbulent . “Tn the model, a physical connection
between the resolved and subgrid ?:@kestablished through the energy flux rate

at the filter width scale. Due tO%T\mOf subgrid-scale (SGS) turbulent structures
and SGS model errors, the L&n&o accurately predict the two- and multi-point
i

Lagrangian statistics of t}&ﬂg articles. To improve the predictive capability of
the LES, we use an app‘%} econvolution model (ADM) to improve the resolved
d

scales near the fil

er . width amnd a kinematic simulation (KS) to recover the missing
%eath the subgrid scales. To validate the proposed hybrid

velocity fluctuati

model, we c¢ompdre the Lagrangian statistics of two- and four-particle dispersion

with the/ esponding results from the direct numerical simulation (DNS) and the
conve, ti%o:}s. It is found that a significant improvement in the prediction of
th Lé;gr ian statistics of fluid particles is achieved through the KSAD hybrid
mo Furthermore, a parametric study regarding the wavenumbers and orientation

_

Wavevﬂictors is conducted to reduce the computational cost. Good results can be
o oi ined using a small number of wavenumber modes and orientation wavevectors.
us, we can improve the prediction of the Lagrangian dispersion of fluid particles in

T
w ““the LES by applying the KSAD hybrid model at an acceptable computational cost.

2) Corresponding author: gdjin@lnm.imech.ac.cn
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Publishihg INTRODUCTION

In recent years, numerical simulation methods have been applied to study particle-laden
turbulent flows, which occur frequently in environmental applications and industrial pro-
cesses. Direct numerical simulation (DNS) emerges as a powerf search tool which can
resolve all of the turbulent scales and accurately predict par@cs. Because the
instantaneous range of the space and time scales in turbulefif fl rapidly increases with
an increasing Reynolds number, it is too expensive for the N practical flows at high
Reynolds numbers'. As a compromise, large eddy simpulati .(TES) can resolve the turbu-
lent flow fields at a coarser grid resolution and directl comp%te the large, energy-containing
scales, while the effects of the subgrid scales 0]@16 large-scale ones need to be modeled
through a subgrid-scale (SGS) model. A varietyof c]@}re models have been developed for

the LES of different kinds of flows?'2. T. e\pifo; ance of eddy-viscosity models such as
QR, Wall-Adapting Local Eddy-viscosi @) , and the S3PQR models? is assessed us-
ing DNS data of Rayleigh-Benard ¢ t%\lt shows that these models can well describe
the effects of SGS motions on th%&i E@ales, but fail to exactly describe the SGS heat

flux and the enstrophy. The ténsor*diffugivity approach is proposed to model the SGS heat
flux3®. The SGS characteristic length i1t the eddy-viscosity models for LES is proposed based

on the representations 6f S@%ﬁtress tensor. The model can minimize the effects of mesh

anisotropies on the pésults of tiirbulence simulations on unstructured meshes®. A dynamic

model based on(SGS issipation is proposed based on the Germano identity?. The model
coefficients ar Med by minimizing the square error of the resolved dissipation rate.

The modelsc

e
dg,)ve more accurate results about the physical quantities than traditional

dynamic4uixed model®. Further, the scale-adaptive dynamic Smagorinsky-Lilly model and
mixed nonlineag’ model based on physical constraints are proposed by the same authors.
T e..r&dtl\né models can effectively incorporate the viscous effect near the wall and give
much bester results for the mean velocity profile, skin-friction coefficient, etc”. Compatible
Wﬂ constraints to construct new SGS model is proposed and a new model based on the
vortex stretching magnitude is built and is tested in LES of decaying isotropic turbulent
flow and turbulent plane-channel flow®. A dynamic regularized gradient model of subgrid
stress tensor is developed based on a priori tests to improve the accuracy of global SGS

dissipation”. A new mixed model that better accounts for the physics of the SGS stress and
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Publishith)g the backscatter is developed. The model provides significant backscatter and remains
stable!?. A subgrid scale velocity and scalar field with a uniform mean scalar gradient are
generated using the multi-scale turnover Lagrangian map. The statistics such as SGS energy
dissipation, scalar variance dissipation, and scalar variance from the synthetic method are
compared with those from the DNS with good accuracy!!. Owing ZA the low computational
cost, LES has become a truly attractive choice for practical t lent“flow simulations at

high Reynolds numbers. However, the strong influence of t\%“i\ng small-scale turbulent

motions on the relative dispersion of the particles repre tanding challenge in

along-
the LES of particle-laden turbulent flows. According to ?f&u& studies, the LES cannot
accurately predict the Lagrangian relative dispersion ;}\lui particles and inertial particles
in turbulent flows due to the lack of small—scal@otio nd SGS model errors'* 2. An
accurate description of the Lagrangian disperSipn of @d particles is essential for describ-
ing turbulent mixing and transport procesé&le“;; efore, the SGS model for an accurate

prediction of particle statistics is definitel e to compensate for small-scale velocity
fluctuations in the LES of isotropic ul&fat\ﬂows.

There have been various attemipts a e?éloping SGS models for the effects of turbulent
flows on the prediction of the lsa, m spersion of fluid or inertial particles, including the
approximate deconvolution m]$§m\/[)2224 for the resolved scales, stochastic model?>26,
kinematic simulation ( S)ﬁ%del””, fractal interpolation method?’3? and spectrally op-
timized interpolatio m&qﬁl for the unresolved scales. Geurts?? constructed generalized
similarity models/ba; /on Ahe approximate polynomial inversion of the top-hat filter and

improved the

s
%Nrgy transfer to small scales in the LES. Stolz and Adams*® devel-
of LES, which could approximately deconvolve the dependent variables by

an approximatien of the unfiltered solution for the LES of different flows, such as turbulent

chamge 0\7\/}4’327 turbulent gas-solid flows'?, particle-laden homogeneous shear turbulent

833’3‘§and isotropic turbulent flows®>3¢. The structural ADM has been used in large-eddy
?ﬁ?ul\a ion of gas-solid flows described by two-fluid model, and the approach has excellent
performance in modeling the drag force and Reynolds-stress of the particle phase!?. Re-
cently, Park et al.>” proposed a dynamic model based on elliptical differential filters for the
LES of particle-laden turbulent flows to model the SGS velocity and describe the motion of

38,39

the small inertial particles®®*”. This model not limited into isotropic flows and is flexible
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Publishieghugh to be used in any type complex configurations and grids. However, the aforemen-
tioned ADM can only improve the resolved scales of the turbulence represented on the grid
of the LES but cannot contribute to the unresolved scales of the velocity fluctuations.

There are four types of SGS models developed to model the effects of the missing subgrid
scales of turbulence on the particle dispersion in the LES. The fitst type of SGS model

is the stochastic model. The lack of the unresolved scales of clocity fluctuations can

25,26 40-42

sources=*°, which depend on the Wiener processes poral evolution of the

be compensated by the solutions of the Langevin equatio%emented with random
e

b

drift. This stochastic model has been typically used to stﬁjjy the turbulent dispersion of

Lagrangian velocities generated by the stochastic mo e}_is ilarto Brownian motion with

404546 and four-pérticle* ™ “The second type of SGS model

single-particle*>**, two-particle
is the KS model. Kraichnan generated incom essib}i‘,)lsotropic turbulence using a set of

Fourier components®”. The KS was the &Q; enerate turbulent-like flow structures
t1s

and calculate the Eulerian or Lagran IK ics of the isotropic turbulent flows52.
Malik and Vassilicos®® formulated Mmparison between the statistical results of
the two-particle dispersion from h%mfor statistically stationary isotropic turbulent
flows and those from the KS. hg@ reement demonstrates that the KS is an accurate
Lagrangian model for fluid parti 1Spersion in isotropic turbulent flows. Afterwards, Flohr
and Vassilicos® coupled/the 'S to LES velocity fields and investigated the performance of
the KS on two-partiéle dl\elbon in isotropic turbulent flows. Ray and Collins'® applied
a modified KS base gbgp’(d model to predict the clustering of inertial particles in the
LES of homo neNd

sotropic turbulence. In the third type of SGS model, a fractal
interpolation oach was applied as a structural model for subgrid particle dispersion in
the LES €f tufbulént dispersed flows by Marchioli et al.?’. The fourth type of particle SGS
model is"a sp t(ally optimized interpolation method, which was proposed by Gobert and

nha el téaccount for the SGS velocity fluctuations in Lagrangian particle simulations.

To sir%)ultaneously model the effects of the resolved scales and subgrid scales of turbulent
Yhscigls on particle dispersion, a hybrid stochastic-deconvolution model was developed for
the particle motion in the LES of particle-laden turbulent channel flow®®. The objective of
this paper is to develop a kinematic simulation with an approximate deconvolution (KSAD)
SGS model for the Lagrangian relative dispersion of fluid particles in the LES of homoge-
neous and isotropic turbulence. For the resolved scales in the LES, the ADM is applied

4
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Publishifigapproximate the unfiltered solution of the flow field, especially the enstrophy, which is
crucial to improve the energy flux or energy dissipation rate used in the KS model. For
the subgrid scales, the KS is used to compensate for the missing velocity fluctuations. The
improvement of the hybrid model in the prediction of the Lagrangian relative dispersion of
fluid particles in the LES of isotropic turbulent flows is evaluated 1{ detail.

The structure of this paper is organized as follows: In Secti we ‘describe the details
of the numerical methods used to resolve the homogeneous and isettropic turbulent flow field
Mtlons of the ADM and

and track the fluid particle motion. In Section III, the i

KS are described in detail. Moreover, we show the recovered emergy spectra of isotropic
=
turbulent flows after implementing the models. Sectign IV discusses the performance of the
KS with different input parameters and shows th( predic of the Lagrangian statistics of
G

two- and four-particle dispersion by the KSA&m@L Section V gives the conclusions.

II. NUMERICAL METHODS  —

A. Direct numerical simula@\

The Navier-Stokes equatiN ompressible flows with constant physical properties

@wv <1—;+%uz> + Vi +f (x,t), (1)
V.
N\

are

/ V-ou=0, (2)

where u deno Qwe velocity field, w = V x u denotes the vorticity field, p is the pressure,
p is the €luidfdensity, and v is the kinematic viscosity. The turbulent flow was driven
by a (letérmimn {c forcing term f (x,t), which is non-zero for the Fourier modes with a
wavenu ber&nagnitude less than or equal to 2. With this deterministic forcing method, a
S tionaﬁr turbulence was generated by maintaining the constant total energy in each of the
W‘nst t\wo wavenumber shells, and the energy ratio between the two shells was consistent with
the k~°/3 scaling””.

The DNS of homogeneous and isotropic turbulent flows was performed using a standard

pseudo-spectral method in a periodic cubic flow domain with each edge length L = 2,

which was discretized uniformly into N3 grids. In Fourier space, Egs. (1) and (2) can be

5
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Publishirg esented as (k < kpax)
(gt+1/I<:2)ﬁ(k,t):P(k)]-'(uxw)+f(k,t), (3)

where 1 (k,t) denotes the Fourier coefficient or the fluid velocity in Fourier space and F
denotes the Fourier transformation. The projection tensor P (k) = g/ ki/k*(i,j =1,2,3)
projects F (u X w) onto the plane normal to the wavenumber \?\e\nd eliminates the
pressure gradient term in Eq. (1). The wavenumber compon in Fourier space were
defined as k; = n; (2r/L), where n; = —N/2,...,—1,0, 14 E\W{ 1 for j =1,2,3. The
INas set in the DNS. The

maximum wavenumber was approximately N/3, and K
spatial resolution was monitored by the value of k%1, whére i is the Kolmogorov length
scale. The value of k.1 should be larger than 1.0 for the Imogorov scale of the flow to be
well resolved, and it was always larger than 1&§1L wlations. The Fourier coefficients
of the flow velocity were advanced in tim g a second-order Adams-Bashforth method
for the nonlinear term and an exact i % the linear viscous term. The time step

egra
was chosen to ensure that the Co :erchs Lewy (CFL) number is 0.5 or less for

numerical stability and accuracy\

B. Large eddy 51mulat10n

The LES of homogeén %} isotropic turbulent flows was performed at a much coarser
grid resolution 1181 sam seudo-spectral method and large-scale forcing scheme as the

above DNS. Th ernl equatlon for the LES is given by
—+y+yelc|k= ) k )ﬁ(kt) P(k)F(uxa)+f(kt), (4)

Where A’re the resolved velocity and vorticity in physical space, respectively. A

spectr edd?)\flscosrcy SGS model is used®?,

kS ve (klke) = v (klke) VE (ke) [ke, (5)

< v (k|k.) = C; % [0.441 + 152 exp (—3.03 ko /k)] . (6)

Here, v, (k |k.) denotes the spectral eddy-viscosity and k. denotes the cutoff wavenumber
in the LES. The quantity E (k.) is the value of energy spectrum at the cutoff wavenumber,

which is instantaneously evaluated from the LES, and C} = 2.0 was used in this work. The

6
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Publishixm}gc ve SGS model was constructed based on the turbulent energy budget equations, which
basically predicted the energy spectrum, especially at low wavenumbers. The hypothesis of
a k=3 energy spectrum up to k. was used to parameterize the SGS model. This hypothesis

is believed to be better fulfilled in turbulent flows with increasing Reynolds numbers.

C. Filtered direct numerical simulation 3\

The velocity field of the filtered direct numerical simulation(}*DNS) was obtained from

the DNS velocity field by truncating the Fourier coefficients larger than the cutoff wavenum-

-~
ke - 3

@ (x,t) = ik t)csk'x, (7)

ber k. with a sharp spectral filter

k|=ko e
where @ (x,t) is the filtered velocity inﬁiﬂﬁl ace and ky = 1 denotes the lowest

wavenumber in the DNS. The Euleria istics of flow fields from the DNS, FDNS and
LES are listed in Table I. In the isot%ur lent flows with zero mean velocity, the Taylor

Reynolds number Re) is deﬁnedx\ o

Rey = u'\/v, (8)

where v = y/(u;u;) /3is théyroot mean square (rms) of turbulent fluctuating velocity,

\ = (15uu’2/8)1/2 igthe Ta

are performed wz'&’ﬁ the osx(re of the eddy-viscosity model: the first uses 643 grid resolution

microscale. For the setting of DNS 5123, two cases of LES

and the seco ﬁses ¢ orid resolution. For the FDNS, the cutoff wavenumber is k. = 42.

D. Flu argple motion

-ﬁ
uié particle in isotropic turbulent flows, the equation of motion is

Eor
&3 w:vmtom:um(x@,to £).4], 9)
T

ere X (X, to|t) is the location of the fluid particle at time ¢, which was initially located
at xo and time to, and V (xXq,to|t) is the Lagrangian velocity of the fluid particle at time
t, which is equal to the Eulerian velocity u[X (xg,t0]|t),t] of the flow field at location
X (xq, to |t).


http://dx.doi.org/10.1063/1.5049731

AllP

Publishing

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

TABLE 1. Eulerian statistics of flow fields from different cases.

Case DNS FDNS LES LES

Grid Number N? 5123 — 643 323

Maximum wavenumber k. (ke) 170 42 21 10
Grid length dz 0.012 — / \%30 0.196
Kinematic viscosity v 0.0010 0.0010 Q0.00l 0.0010

Taylor Reynolds number Re) 205.51 — — —
rms fluctuating velocity o/ 0.870 6‘@..._\ 0.854 0.819

Dissipation rate ¢ 0.204 —

Spatial resolution k;,q.n 1.432 ( - —3 — _

Kolmogorov length scale n 0.008

Kolmogorov time scale 7, 0.06976 — — —
L .
\\..
\\
\ h

A three-dimensiomal 5i>)der Lagrangian interpolation scheme was used to calculate

the Lagrangian velocity of t)fe fluid particle from the Fulerian flow velocity field. Then, the
trajectory of Mrtlcle was obtained by the explicit fourth-order Adams-Bashforth
scheme. letely demonstrate the statistical properties of the fluid particles, we
tracked nfotion“of an ensemble of particle pairs and clusters of four particles and cal-
culatdd the vatigus Lagrangian statistics. Initially, N,/4 particles are uniformly distributed

O

ingthe How d)main. The other 3N, /4 particles are located under the constraint that each
‘Kh\et&r particles form a tetrahedron with a prescribed edge size. Thus, the N,/4 reg-

E&r Le rahedrons with initially prescribed edge sizes are randomly distributed, and each
tétrahedron consists of six particle pairs with a prescribed separation distance. The La-
grangian statistics were calculated from ensemble averaging, including space averaging and
time averaging. Here, the time averaging denotes the average of the independent samples of

Lagrangian statistics from the different time segments.
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Publishiild. HYBRID MODEL
A. Approximate deconvolution model

There are two main reasons for the errors in the flow field in the LES compared to the
DNS. One reason is the filtering operation on the Navier-Stokes e \Z ns, which leads to the

loss of SGS velocity fluctuations. The other reason is the spect e y-vi 081ty SGS model

used in this paper, which has a strong hyperviscosity nea ff wavenumber. The
model causes over-dissipation of turbulent energy and 1er ductlon in the velocity
fluctuations at the resolved scales, especially at th seale the cutoff wavenumber. To
approximate the unfiltered solution of the flow ﬁeld eso d scales, we applied an ADM

to the filtered velocity field in the LES,

Q (10)

where 1 is the filtered velocity of LES, rox1mat10n of the unfiltered velocity, and

G is a filter function in spectral sp \

(11)

According to the st ‘?SSOIZ and Adams?®, N = 5 provides proper results for most of
the cases studled S tha);

~ 6 15G ) 4 20G2 (k) — 15G° (k) + 6G* (k) — G (k). (12)
The filtér G (k) must satisty )1 — ‘ < 1 and have an inversion. Substituting Eq. (12)
into Eq. ( Q{hyvelomty @* can be calculated by the repeated filtering of
&~ 6 158 + 205 — 155 4 65 — 5. (13)
\IHK%“? work, we chose a three-dimensional transfer function of Gaussian
N
G (k) = exp (—%), A =n/k,. (14)

For Gaussian transfer function, Eq. (14) and N = 5, the inverse of the transfer function

G~ (k) in LES 643 is shown in Fig. 1. It shows the approximate inverse function is always

9
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FIG. 1. The approximate inverse transfer functl of Gjuss,lan using Eq. (12) in LES 643,

greater than 1.0 and increases with the w Ve ber Thus the approximate inverse transfer

function can strength the motions at s ales
Fig. 2 shows the energy and dis tlon ectra obtained from the DNS, LES and LES

with the ADM. The ADM recﬁz
m

effergy and dissipation spectra near the cutoff

wavenumber in the LES. The s -Sealé velocities near the cutoff wavenumber are sig-

nificantly improved. Notably, m point in the dissipation spectrum is over-corrected
by the ADM, which ¢ 68\3111 the unphysical accumulation of energy near the cutoff
ic

wavenumber'?. Thefunph

£
dissipation spectzxfm. y.

N\

ic/simulation

accumulation in the energy spectrum is amplified in the

To gowmp ‘abg for the velocity fluctuations at the subgrid scales, we used a KS model to
calculate the&ubgrid velocity!'®. The standard form of the KS velocity field is

-

Ny M
th (x,t) = Z Z {am cos (Kpm + X + wpmt) + b sin (K - X + wpmt) } (15)
n=1 m=1
\

ere a,,, and b,,, are the vector coefficients of the Fourier cosine and sine modes of the
velocity, respectively, k,,, is the wavevector, x is the coordinate vector, w,,, is the frequency
and t is the time. The indices ‘nm’ are used in a spherical coordinate system, where ‘n’

denotes the magnitude of the wavenumber k, = |k,,,| and ‘m’ is the counter of randomly

10
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FIG. 2. (a) Energy and (b) dissipation spectra for the D@ S 643 and 323, and LES with

the ADM. (

oriented wavevectors of magnitude k,. To achieve thé-fastest convergence for fluid particle
statistics, we used a geometric distributiorﬁ@ mbers beyond the cutoff wavenumber®

(16)

Sk:c
K,m =k s%\@. s SN Oy SI0 Gy €OS O (17)

where n = 1,2,..., N, and ky.. 18 the largest wavenumber considered. The orientation
angles 0, and ¢,,, for\the wavevectors associated with each wavenumber were chosen

randomly to be uni rm}y distributed over the spherical shell of radius k,

V.
)\ cos Opm € [—1,1], Gnm € [0,27] . (18)

To enstire 91e ompressibility of the subgrid velocity uks (x,t), we define the coefficients
B, aRD s £

) a,, = A, x k. (19)

5 Bum = Bum X Kum, (20)

eI? an = Ky /ky is a unit vector aligned with the wavevector k,,,,. A, and B,,, are
random vectors with independent and normally distributed components, each with a mean

of zero and a variance of o2

2 e —
07 = B (k) Ak, (21)
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Publishiwficre Ak, = (kny1 —kn1)/2 for no€ [2, N, — 1], Ak = (k2 —k1)/2, and Aky, =
(kn, — kn,—1)/2. E(k,) denotes the subgrid energy spectrum at k,, which can be ap-

proximated by the DNS spectrum or a known model spectrum®

E (k) = Cue?2 k3 £, (kn), (22)

o () = exp { = { [(km)* + e8] " — ¢ })\ (23)

kmax
where the dissipation rate ¢ = [ 2 (v + v.) k*E (k) dk nd%\ ogorov length scale
0
3

n= 5)1/ * can be calculated from the LES flow field a 15ing the ADM. Additionally,

iy
Cr=2.0,8=5.2, and ¢, =~ 0.25.
The frequency wy,,, determines the unsteadingss assoc with the wave mode n and is

usually chosen to be proportional to the eddy* me of the wave mode n

nm) (24)

Wnm = k nm

where )\ is a dimensionless constadb.of order 1. Previous studies have shown that the

temporal term w,,,t has little e&c;o e Statistics of the fluid particle pairs®®, which is

also validated in our simulatigns. \enﬁo e, we set Wy, = 0 in the KS, so that the velocity
field was essentially frozen at&\\g@&

After constructing t iﬁ%ﬁoressible subgrid velocity field uks (x, t), the modeled veloc-
i

could be written as

=

ity field at each partitle p

fou

/Y pEL (X, 1) = uLgs/Fons (X, ) + uks (X, 1), (25)
where upgg/r 7}(, t) is the particle velocity calculated from the LES or FDNS flow field.
By us% , we obtained the subgrid velocity at each location of the flow field
or

D
the

with QZ‘ which was used to compensate for the FDNS velocity field. The cutoff

wavenu er$s k. = 42, and the maximum wavenumber is k., = 170. To minimize modeling

errQrs, W}B used the energy spectrum of DNS 5123 as the input parameters in the a priori

}%SQ FDNS

E (kc)‘KS =L (kC)’FDNS‘ (26>

In the a posteriori LES, we used the corrected energy spectrum with the ADM

E (kC)’KS =L (kc)|LEs+ADM- (27)

12
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Publishingligs. (26) and (27) establish the relationship between the SGS flow field and the LES flow
field.

The number of wavenumbers were varied from 50 (V, = 50, M = 1) to 10000 (N = 200,
M = 50), and the comparisons of the energy spectra obtained from the DNS and the FDNS
plus KS with different N, x M are shown as Fig. 3. It is observed(( t the KS recovers the
missing subgrid energy spectrum at k > k. quite accurately when \50 and M > 20.

Otherwise, the computed subgrid energy spectrum will ﬂuﬁKaround the input DNS
energy spectrum. ‘)

@ —

10°F .
& 10°F - -&-- FDNS+KS_50%50 - - @8- - FDNS+KS_200x1 : 9

F - —&-.— FDNS+KS_100x50 ——-A-.—. FDNS+KS_200x10 I
[ ——©—— FDNS+KS_150x50 ——©—— FDNS+KS_200x20 ! ]
- FDNS+KS_200%50 —mymm FDNS+KS_200%50 | E
10k DNS 512° DNS 512° I 1
! |

]

| L | i -
10° 10'

FIG. 3. Comparison of tie energy spectra obtained from the DNS 5123 and FDNS plus KS with

a cutoff wavenumber e KS nearly recovers the subgrid energy spectrum beyond k..

@ s AND DISCUSSION

%ﬁlﬁ work, we set N, = 50000, and fluid particles were divided into five groups, in
h the initial separation distances were r = 1/4n, 1n, 8n, 32n, and 96n. After tracking

\trajectory of each fluid particle, we calculated the Lagrangian statistics of single-, two-
and four-particle dispersion in the DNS, LES and LES plus KSAD hybrid model. Then, we
compared the Lagrangian statistics calculated from the LES plus KSAD hybrid model with
the results from the DNS and LES and evaluated the availability of the model.

13
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PublishiAg Parametric study for KS

The total number of wavevectors in the KS is important for predicting the Lagrangian
dispersion of fluid particles because it determines both the modeling accuracy and compu-
tational cost. To investigate the effect of the number of wavevectots on the prediction of

a/l 20. Here, we used

alanI

ned as

the fluid particle statistics, we set N x M as 20 x 1, 50 x 50 a

the DNS spectrum to approximate the input subgrid energy s
For the particle pair shown as Fig. 4, the separation dztan

R to |T \/R to |7'

R (r,to|7) = X (%0, to |to + 7 )= (29)

where R (r, %o |7) denotes the separation vect bet\@l the particle pair, r is the initial
separation vector and 7 is the time intwh The} initial separation of the particle pair

shown in Fig. 4 is very small, and it eeamk'ke they collapse together. With increasing
time, the particles separate. Then, h‘%ne and variance of the separation distance were

=

calculated \}}\t
» r,to|7)), (30)
\

o2 (r,7) = <[R r,to|7) (r, |7 )] > = r,to|7) - R(r,to|7)) —mi(r,7), (31)

where () denotes the Ig‘% verage conditioned on the particle pairs, and r = |r| denotes
the initially prescrib sépar tion distance. Then, the relative dispersion of the particle pair
is defined as ( - , where R (r,7) = R (r, %o |7) — r is the separation vector

increment.

o—pomt Lagrangian velocity correlation function of the particle pair is

S o) = (Vi(xostolto + 7) Vi (o, to [to + 7)) 0% (32)

ig. 58shows the abovementioned Lagrangian statistics of the particle pairs obtained from

T‘hﬁL

Imogorov time scale. For clarity, we only plotted the results from the fluid particles with

64% plus KS with different numbers of wavevectors. The parameter 7, denotes the

initial separation distances r = 1/4n and 87. We can observe that the Lagrangian statistics
from the LES 643 plus KS with 20 x 1, 50 x 50 and 200 x 20 wavevectors coincide well with

each other, and all of them show impressive improvements compared with the results from

14
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- s\

2
C
ersion of a fluid particle pair with a small

FIG. 4. The schematic diagram of the Lagran iaMSh
initial separation distance in the LES of isotr@ t flows. The arrows denote the directions
of particle motion. s

LES. In addition, a comparison ¢f the agr\ctngian statistics of the four-particle dispersion
calculated from the LES 64° % ith different numbers of wavevectors also exhibits
great consistency. These resu&ﬂ%: e that a more accurate prediction of the Lagrangian

dispersion of fluid part%be achieved by using the KS at a low computational cost.
£
ft

B. Predictio{,\ rticle-pair dispersion by the KSAD hybrid model

In mostpragtical simulations, we do not have DNS data. Instead, we used the simple

)

model efergydspectrum in Eq. (22) as the input energy spectrum and calculated the KS

velocify along with each fluid particle, which was then added to the particle velocity obtained

from .t ES plus ADM. Here, notably, the ADM is very important for the estimation of ¢

and n in'Eq. (22).

vo\re uce the computational cost of the LES plus KSAD hybrid model, we chose Ny = 20,
= 1 for the LES 64 and N, = 40, M = 1 for the LES 323. The parameter settings

render the KS an economical model compared with the cost of performing an LES. Then,

we investigated the contribution of the KSAD hybrid model to the Lagrangian statistics of

fluid particles in isotropic turbulent flows as follows.
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FIG. 5. (a) The mean of the se&ﬁkn\}anoes, (b) the variance of the separation distances, (c)
the o

the relative dispersion an ~time two-point Lagrangian velocity correlation functions

of the particle pairs obtained from the LES 643 plus KS with different numbers of wavevectors

(N x M): dash—dzt
The symbols ‘[1’4an

o

50, long-dashed lines 200 x 20 and dash-dot-dotted lines 20 x 1.
note the results of the initial separation distance r = 1/4n and 8,
respectively.

4

Fids. 6 and %Show the mean and variance of the separation distances of the particle pairs

’ﬂggxmnventional LES and LES with the ADM, KS or KSAD hybrid model, respectively.

e LES significantly underpredicts the mean and variance of the separation distances
compared to the DNS due to the absence of the small-scale velocity fluctuations. After
using the KSAD hybrid model, the deviations of mean separation distances between the LES

and DNS are mostly recovered for the particle pairs with small initial separation distances.
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FIG. 6. Temporal evolution of‘b%% separation distances of the particle pairs with different
initial separation distances:golid lines;DNS 5123; dashed lines, LES; dash-dotted lines, LES with
the ADM; long-dashed l@ with the KS; and dash-dot-dotted lines, LES with the KSAD
hybrid model. £ 4

A

~

When the initial séparation distance becomes larger, the dispersion of particle pairs is mainly

controlled by /the rge-scale motion of the turbulent flows so that the mean separation
distan€es.fro tl{e different simulations tend to coincide with each other. Moreover, the
result ’alcubuted from the LES plus KSAD hybrid model agree with those from the DNS
) 2;,\as hown in Fig. 7, which demonstrate that the subgrid velocity fluctuations of isotropic

Q%b flows are successfully recovered.
S

If only the ADM or KS is applied, then all the Lagrangian statistics are not well predicted.
The ADM could both improve the velocity fluctuations at the resolved scales and help
construct a better KS at the subgrid scales. Without the ADM, a much smaller dissipation

e and a larger Kolmogorov length scale n in Eq. (22) are calculated from the conventional
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FIG. 7. Temporal evolution of

different initial separation

LES with the ADM; long-

KSAD hybrid m(y.
slope of 1.

N

ich result in an underestimation of the model energy and dissipation

hé left, dashed straight line has a slope of 2 and the right top line has a

/4

LES flo ﬁel;i,
spectifimy as oén in Fig. 8. Therefore, the mean and variance of the separation distances
calculated frhm the LES plus KS are underpredicted compared with those from the LES
ﬁ
plus KS%D hybrid model shown in Figs. 6 and 7. Without the KS, there is only a slight
unpr ent on those Lagrangian statistics by the LES plus ADM for the lack of subgrid
% = .
ocity fluctuations.

Fig. 9 shows plots of the temporal evolutions of the relative dispersion of particle pairs
from the DNS 5123, LES and LES with the ADM, KS or KSAD hybrid model. One can

observe that the LES underpredicts the relative dispersion due to the missing fluctuating
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lines with symbol ‘C)’ e dashed lines with symbol ‘57’ denote the input results from the LES

with and Without(}, DI, ?s ectively.

small-scale '(ontions and SGS model errors. The KSAD hybrid model reproduces the
well-definéd S/GS w structures and improves the particle dispersion at the beginning. The
consistency WKQH the results from the LES plus KSAD hybrid model and DNS show that
the_}i id r&)del improves the prediction of the relative dispersion of the particle pairs.

ithout¢the ADM, the relative dispersion of the particle pairs is obviously slower because

vogh derestimation of the KS velocity.
N
The velocity field in the LES is much more correlated than that in the DNS due to the

missing small-scale velocity fluctuations. Therefore, the relative dispersion of the particle
pairs in the LES is much slower than that in the DNS. Thus, the one-time two-point La-

grangian velocity correlation functions of the particle pairs in the LES (denoted by dashed

19


http://dx.doi.org/10.1063/1.5049731

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

P )
Publishing) (b) 10°F
10 i
Ol ]
(" = 10°F
o 10T o f
N—r N—r
0d x |
W 107 W 10
~ ~
= =
= 107 = 4
x DNS 512° o 0
= g LES 64° ) E. --©-- LES64
107k o --—-8-- LES64+ADM | E: / % -©—-- LES 64+ADM 7
=7 ——8—— LES64+KS 10k T, ) —%o—— LESG4+KS |
L-=7 —-=f== LES 64 +KSAD —=@== LES 64'+KSAD 3

—~~
o
~

BR(r,71)-3R(r,7)0]

-—-©--- LES32+ADM 3
——6—— LES324KS ]
-+=-©=-= LES 32’+KSAD }

Ll ] 1

10' 10

'l'/'[n

FIG. 9. Temporal evolution o&\g ive dispersion of the particle pairs with different initial
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right dashed lines are equal to 2 and 3, respectively.

lines) defay nfuch Slower than those in the DNS 512% (denoted by solid lines), as shown in
Fig. 0. Howevef, the ADM could improve the kinetic energy near the cutoff wavenumber,
a hewKS could recover the small-scale velocity fluctuations at unresolved scales. Both
maedels r§nder a more uncorrelated flow field. Therefore, the LES plus KSAD hybrid model,
\de?og y the long-dashed line, accurately predicts the one-time two-point Lagrangian ve-
logity correlation functions of the particle pairs. With an increase in the initial separation
distance, the KS is gradually of no consequence to the Lagrangian statistics of the particle
pairs since the large-scale motions of the turbulence dominate the dispersion of the particle

pairs.
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FIG. 10. The one-time two-po1 ngian velocity correlation functions of the particle pairs

4/

C. Predic O‘r)haq four-particle dispersion by the KSAD hybrid model

with different initial separation distanees: solid lines, DNS 5123; dashed lines, LES; dash-dotted
lines, LES with the @shed lines, LES with the KS; and dash-dot-dotted lines, LES

with the KSAD hy médel.

article dispersion provides more information regarding the turbulent transport
procefses than'single- and two-particle dispersion. Here, we focus on the temporal evolution
02500 trahedrons, each formed by four fluid particles. Each edge size of the tetrahedrons
is\ 1itia1§r set to be equal to the Kolmogorov length scale 1. Then, the size and shape of
\f‘hﬁ t&trahedrons change due to the vortex stretching and the small-scale intermittency in
isatropic turbulent flows, as shown in Fig. 11. In this section, our purpose is to investigate
the effect of the KSAD hybrid model on the prediction of the Lagrangian statistics of four-
particle dispersion, including the mean surface area and volume of the tetrahedrons, and

their renormalized ratios.
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FIG. 11. The schematic diagram of a four-p tiéﬁp&sion in the LES of isotropic turbulent
flows. The four fluid particles form a tetrahe M prescribed initial edge size. The size and
shape of the tetrahedron change with time. w denotes the direction of the particle motion

with an increasing time.

~
For a regular tetrahedron, h&\;&r icle is randomly seeded at Xél) = (29, Yo, 20), and

the initial locations of other threéwparticles are X(()Q) = (wo —V31/6,y0 — 1/2, 2 — \/677/3),
X5 = (w0 = v/3n/6. 50 n/2go — V6n/3) and XV = (20+v/30/3, o, 20 — V6n/3). The

area of the triangle rrr}e e first three particles can be calculated by

5(12/ L YO (20 = 20 = (2@ — 0 (4 — y0)]24
®(Z(2) C20) (@ — 2 (2@ — M) (20— 20))% (33)
£ 4 (2 — 2)

3

D=

& D) (y® =y ) — (y@ —y O (2 — x(l))f} 7
o

where'the superscript ‘123’ denotes the serial numbers of the particles. The surface area of

,ﬁ
th:irwhe ron is § = S(123) 4 5124 4 §(134) 1 9234 " and the volume of the tetrahedron
an

S lculated by
~

2@ 20 2O _ 40 g _ 40
V= % YD — g @ g0 @ |, (34)

L2 _ L) L) _ 1) @) _ )
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FIG. 13. The me?/VOIu es Q(the tetrahedrons from the DNS, LES, and LES with the ADM, KS
add 13 show the temporal evolution of the normalized mean surface areas and
volunfes of the¢trahedrons from the DNS 5122, conventional LES, and LES with the ADM,
wor KSAD hybrid model, which are denoted by solid lines, dashed lines, dash-dotted
S, lork—dashed lines and dash-dot-dotted lines, respectively. In the LES, the flow field is

Figs.

}@hf\e at a coarser grid resolution, and the dissipation by the eddy-viscosity SGS model
fugther reduces the velocity fluctuations. The four-particle dispersion is underpredicted
compared to the DNS. The KSAD hybrid model substantially improves the predictions
of the mean surface areas and volumes of the tetrahedrons, which is consistent with the

prediction of the particle-pair dispersion.
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PublishingTo characterize the shape variation in the tetrahedron, we calculated the renormalized

volume and surface area ratios
v =V/5%2 Ag = S/C?, (35)

where C' is the perimeter of the tetrahedron. Another indicator of B‘Q‘j variation in the

tetrahedron is the ratio of the intermediate eigenvalue of the idertiadmatrix I = pp’, where

pg) pi ) pé ) )

p=| A A o) 3
pM p? 3
with p@® = (pg),pg),pg» i=1,2,3, and p" /\/_ p? (2X(3) —x® _ x(l))/\/é,
pB) = (3xW —x® — x@ — xM) /\/12 T ree e envalues of the inertia matrix I are de-
noted as g1, go and g3 from large to sma We evaluate the variation in the intermediate

ratio I = g2/(g1 + g2 + g3).

In Fig. 14, the temporal evo tlon Hé mean renormalized volume and surface area
ratios are shown for the tetra ed&i t an initially regular edge size 1. The results from
the LES with the KSAD hybrl 1 show better agreement with the results from the
DNS than with the conyéntional LES. Fig. 15 depicts plots of the temporal evolution of the
ratio (I) from the %;Sand LES with the ADM, KS or KSAD hybrid model. The
deviations of (I)fbe /;n JES and DNS are only partly recovered. Notably, the KSAD

ared the computational costs of the different methods, and further

showdd the adwantage of the hybrid model. Our numerical calculations were performed
onrthe anl>e I at the National SuperComputer Center in Tianjin, China. The model of
Cen%al Processing Unit (CPU) is Intel Xeon X5670. Table II shows the number of
E'SU{ and computing time for the different cases. The results indicate that the DNS is
very expensive to perform, and the LES is much cheaper. Above all, it takes slightly more
computing time to perform the LES plus KSAD hybrid model than the conventional LES.
Therefore, the prediction of the Lagrangian dispersion of the fluid particles in the LES is
improved by applying the KSAD hybrid model at an acceptable computational cost.
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PUbIISh”ﬂg' 3LE II. The number of CPUs used and the computing time for the different cases. Here, we
set N, = 50000. The time intervals from the start of the simulations to the end for all cases are

set to 1807;,, where 7,, denotes the Kolmogorov time scale.

Case DNS 5123 LES 64 LES 643+KSAD LE%Q?’ LES 323+KSAD
Number of CPUs 128 16 16 16

N
Computing time (min) 481.675 4.563 7.142 &Qﬂ 4.586
t\(\
o
_.‘

V. CONCLUSION AND PROSPECTIVE

In this work, a KSAD SGS model is developed for icting the Lagrangian relative
dispersion of the fluid particles in the LES o omo%e;laous and isotropic turbulent flows.
Owing to the lack of small-scale motions odel errors, the LES cannot accurately

predict the Lagrangian statistics of fluid pawticles. To improve the predictive capability
of the LES, we couple the ADM a Mer using the ADM, the kinetic energy of the
resolved scales in the LES is mostly vered. Using the KS, the missing SGS velocity
fluctuations in the LES are 0;\\\{1 ensated. Then, the Lagrangian statistics of the
fluid particles calculated from \ES plus KSAD hybrid model are compared with the
corresponding results f m"GSaDN 5123 and LES. The KSAD hybrid model basically

recovers the deviatiods in“the particle pair statistics between the LES and DNS, including

the mean and varidn o’f thy separation distances, the relative dispersion and one-time two-
point Lagrangia& city ‘correlation functions of the particle pairs. For the four-particle
dispersion, t Qan surface area and volume of the tetrahedrons, and their renormalized
ratios are{Tecoveredy, In addition, the KSAD hybrid model renders the evolution of (Ay), (As)
and ([5) ealc té from the LES consistent with the results from the DNS, which means that

the -SiZ and h)pological shape variations in the tetrahedrons are more accurately predicted.

UsingSthe KSAD hybrid model, a significant improvement in the prediction of the La-
}yl&ian dispersion of fluid particles can be achieved for both the LES 64% and LES 323,
itwhich the grid ratios of the DNS to LES are very large. Moreover, a parametric study
is conducted regarding the wavenumbers and orientation wavevectors, and the predictions
of particle statistics calculated from the KS formed by different parameters show good

agreement with each other. In summary, we can improve the prediction of the Lagrangian
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Publishi'riig1 ersion of fluid particles in the LES of isotropic turbulent flows with a highly coarse
grid resolution by only applying a simple KSAD hybrid model at an acceptable additional

computational cost.

We shall extend the idea of the KSAD model to flows in more complex geometry in future
study. The extension includes three aspects of modifications ¢ ared to the isotropic
turbulent flows: (I) A more general eddy-viscosity model squy ic Smagorinsky
model?, WALE", Vreman’s model®!, Sigma model®? or the ré¢centiproposed S3PQR model*
will be used to consider the effects of walls and get th n‘Oj}otheneous turbulent flows

at large scales. (II) The approximate deconvolution eth based on elliptical differential

filters is used for solid boundary conditions®**3°. Park & al.3731$ed a dynamic model based on

elliptical differential filters as the approximate defonvolution method for the LES of particle-

laden turbulent flows to model the subgridsés*]@cy and describe the motion of the

small inertial particles. This model is ﬂex&o be used in any type of flow configurations.
t

(III) The Gabor transform can be usKtl\\Conventional Fourier modes to localize the

Fourier modes. To account for inho eneitics at large-scale in wall-bounded flows, we can
assume the local homogeneity infa SQSI
the conventional Fourier mo srml
Fourier-Gabor mode to recover Nbgrid—soale turbulent flows in the planetary boundary
layer (PBL) and a finit RE?‘RSldS number channel flow.

region and the Gabor transform can be used to

the Fourier modes. Ghate and Lele% used the

y.
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