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A structural subgrid-scale model for relative dispersion in large-eddy simulation of

isotropic turbulent flows by coupling kinematic simulation with approximate

deconvolution method

Zhideng Zhou (周志登),1, 2 Shizhao Wang (王士召),1, 2 and Guodong Jin (晋国栋)1, 2, a)

1)The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics,

Chinese Academy of Sciences, Beijing 100190, China

2)School of Engineering Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

(Dated: 7 October 2018)

A kinematic simulation with an approximate deconvolution (KSAD) hybrid model is

proposed to predict the Lagrangian relative dispersion of fluid particles in a large eddy

simulation (LES) of isotropic turbulent flows. In the model, a physical connection

between the resolved and subgrid scales is established through the energy flux rate

at the filter width scale. Due to the lack of subgrid-scale (SGS) turbulent structures

and SGS model errors, the LES cannot accurately predict the two- and multi-point

Lagrangian statistics of the fluid particles. To improve the predictive capability of

the LES, we use an approximate deconvolution model (ADM) to improve the resolved

scales near the filter width and a kinematic simulation (KS) to recover the missing

velocity fluctuations beneath the subgrid scales. To validate the proposed hybrid

model, we compare the Lagrangian statistics of two- and four-particle dispersion

with the corresponding results from the direct numerical simulation (DNS) and the

conventional LES. It is found that a significant improvement in the prediction of

the Lagrangian statistics of fluid particles is achieved through the KSAD hybrid

model. Furthermore, a parametric study regarding the wavenumbers and orientation

wavevectors is conducted to reduce the computational cost. Good results can be

obtained using a small number of wavenumber modes and orientation wavevectors.

Thus, we can improve the prediction of the Lagrangian dispersion of fluid particles in

the LES by applying the KSAD hybrid model at an acceptable computational cost.

a)Corresponding author: gdjin@lnm.imech.ac.cn
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I. INTRODUCTION

In recent years, numerical simulation methods have been applied to study particle-laden

turbulent flows, which occur frequently in environmental applications and industrial pro-

cesses. Direct numerical simulation (DNS) emerges as a powerful research tool which can

resolve all of the turbulent scales and accurately predict particle statistics. Because the

instantaneous range of the space and time scales in turbulent flows rapidly increases with

an increasing Reynolds number, it is too expensive for the DNS of practical flows at high

Reynolds numbers1. As a compromise, large eddy simulation (LES) can resolve the turbu-

lent flow fields at a coarser grid resolution and directly compute the large, energy-containing

scales, while the effects of the subgrid scales on the large-scale ones need to be modeled

through a subgrid-scale (SGS) model. A variety of closure models have been developed for

the LES of different kinds of flows2–12. The performance of eddy-viscosity models such as

QR, Wall-Adapting Local Eddy-viscosity (WALE)13, and the S3PQR models4 is assessed us-

ing DNS data of Rayleigh-Benard convection. It shows that these models can well describe

the effects of SGS motions on the resolved scales, but fail to exactly describe the SGS heat

flux and the enstrophy. The tensor-diffusivity approach is proposed to model the SGS heat

flux3. The SGS characteristic length in the eddy-viscosity models for LES is proposed based

on the representations of SGS stress tensor. The model can minimize the effects of mesh

anisotropies on the results of turbulence simulations on unstructured meshes5. A dynamic

model based on SGS dissipation is proposed based on the Germano identity2. The model

coefficients are determined by minimizing the square error of the resolved dissipation rate.

The model can give more accurate results about the physical quantities than traditional

dynamic mixed model6. Further, the scale-adaptive dynamic Smagorinsky-Lilly model and

mixed nonlinear model based on physical constraints are proposed by the same authors.

The resulting models can effectively incorporate the viscous effect near the wall and give

much better results for the mean velocity profile, skin-friction coefficient, etc7. Compatible

model constraints to construct new SGS model is proposed and a new model based on the

vortex stretching magnitude is built and is tested in LES of decaying isotropic turbulent

flow and turbulent plane-channel flow8. A dynamic regularized gradient model of subgrid

stress tensor is developed based on a priori tests to improve the accuracy of global SGS

dissipation9. A new mixed model that better accounts for the physics of the SGS stress and
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for the backscatter is developed. The model provides significant backscatter and remains

stable10. A subgrid scale velocity and scalar field with a uniform mean scalar gradient are

generated using the multi-scale turnover Lagrangian map. The statistics such as SGS energy

dissipation, scalar variance dissipation, and scalar variance from the synthetic method are

compared with those from the DNS with good accuracy11. Owing to the low computational

cost, LES has become a truly attractive choice for practical turbulent flow simulations at

high Reynolds numbers. However, the strong influence of the missing small-scale turbulent

motions on the relative dispersion of the particles represents a long-standing challenge in

the LES of particle-laden turbulent flows. According to previous studies, the LES cannot

accurately predict the Lagrangian relative dispersion of fluid particles and inertial particles

in turbulent flows due to the lack of small-scale motions and SGS model errors14–21. An

accurate description of the Lagrangian dispersion of fluid particles is essential for describ-

ing turbulent mixing and transport processes. Therefore, the SGS model for an accurate

prediction of particle statistics is definitely needed to compensate for small-scale velocity

fluctuations in the LES of isotropic turbulent flows.

There have been various attempts at developing SGS models for the effects of turbulent

flows on the prediction of the Lagrangian dispersion of fluid or inertial particles, including the

approximate deconvolution model (ADM)22–24 for the resolved scales, stochastic model25,26,

kinematic simulation (KS) model27–29, fractal interpolation method20,30 and spectrally op-

timized interpolation method31 for the unresolved scales. Geurts22 constructed generalized

similarity models based on the approximate polynomial inversion of the top-hat filter and

improved the kinetic energy transfer to small scales in the LES. Stolz and Adams23 devel-

oped an ADM for LES, which could approximately deconvolve the dependent variables by

a truncated series expansion of the inverse filter. Then, the ADM was applied to obtain

an approximation of the unfiltered solution for the LES of different flows, such as turbulent

channel flows24,32, turbulent gas-solid flows12, particle-laden homogeneous shear turbulent

flows33,34 and isotropic turbulent flows35,36. The structural ADM has been used in large-eddy

simulation of gas-solid flows described by two-fluid model, and the approach has excellent

performance in modeling the drag force and Reynolds-stress of the particle phase12. Re-

cently, Park et al.37 proposed a dynamic model based on elliptical differential filters for the

LES of particle-laden turbulent flows to model the SGS velocity and describe the motion of

the small inertial particles38,39. This model not limited into isotropic flows and is flexible
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enough to be used in any type complex configurations and grids. However, the aforemen-

tioned ADM can only improve the resolved scales of the turbulence represented on the grid

of the LES but cannot contribute to the unresolved scales of the velocity fluctuations.

There are four types of SGS models developed to model the effects of the missing subgrid

scales of turbulence on the particle dispersion in the LES. The first type of SGS model

is the stochastic model. The lack of the unresolved scales of the velocity fluctuations can

be compensated by the solutions of the Langevin equations supplemented with random

sources25,26, which depend on the Wiener processes40–42. The temporal evolution of the

Lagrangian velocities generated by the stochastic model is similar to Brownian motion with

drift. This stochastic model has been typically used to study the turbulent dispersion of

single-particle43,44, two-particle40,45,46 and four-particle47,48. The second type of SGS model

is the KS model. Kraichnan generated incompressible, isotropic turbulence using a set of

Fourier components27. The KS was then used to generate turbulent-like flow structures

and calculate the Eulerian or Lagrangian statistics of the isotropic turbulent flows49–52.

Malik and Vassilicos53 formulated a direct comparison between the statistical results of

the two-particle dispersion from the DNS54 for statistically stationary isotropic turbulent

flows and those from the KS. The good agreement demonstrates that the KS is an accurate

Lagrangian model for fluid particle dispersion in isotropic turbulent flows. Afterwards, Flohr

and Vassilicos55 coupled the KS to LES velocity fields and investigated the performance of

the KS on two-particle dispersion in isotropic turbulent flows. Ray and Collins18 applied

a modified KS based subgrid model to predict the clustering of inertial particles in the

LES of homogeneous and isotropic turbulence. In the third type of SGS model, a fractal

interpolation approach was applied as a structural model for subgrid particle dispersion in

the LES of turbulent dispersed flows by Marchioli et al.30. The fourth type of particle SGS

model is a spectrally optimized interpolation method, which was proposed by Gobert and

Manhart31 to account for the SGS velocity fluctuations in Lagrangian particle simulations.

To simultaneously model the effects of the resolved scales and subgrid scales of turbulent

motions on particle dispersion, a hybrid stochastic-deconvolution model was developed for

the particle motion in the LES of particle-laden turbulent channel flow56. The objective of

this paper is to develop a kinematic simulation with an approximate deconvolution (KSAD)

SGS model for the Lagrangian relative dispersion of fluid particles in the LES of homoge-

neous and isotropic turbulence. For the resolved scales in the LES, the ADM is applied

4
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to approximate the unfiltered solution of the flow field, especially the enstrophy, which is

crucial to improve the energy flux or energy dissipation rate used in the KS model. For

the subgrid scales, the KS is used to compensate for the missing velocity fluctuations. The

improvement of the hybrid model in the prediction of the Lagrangian relative dispersion of

fluid particles in the LES of isotropic turbulent flows is evaluated in detail.

The structure of this paper is organized as follows: In Section II, we describe the details

of the numerical methods used to resolve the homogeneous and isotropic turbulent flow field

and track the fluid particle motion. In Section III, the implementations of the ADM and

KS are described in detail. Moreover, we show the recovered energy spectra of isotropic

turbulent flows after implementing the models. Section IV discusses the performance of the

KS with different input parameters and shows the predictions of the Lagrangian statistics of

two- and four-particle dispersion by the KSAD SGS model. Section V gives the conclusions.

II. NUMERICAL METHODS

A. Direct numerical simulation

The Navier-Stokes equations for incompressible flows with constant physical properties

are

∂u

∂t
= u× ω −∇

(
p

ρ
+

1

2
u2

)
+ ν∇2u + f (x, t) , (1)

∇ · u = 0, (2)

where u denotes the velocity field, ω = ∇× u denotes the vorticity field, p is the pressure,

ρ is the fluid density, and ν is the kinematic viscosity. The turbulent flow was driven

by a deterministic forcing term f (x, t), which is non-zero for the Fourier modes with a

wavenumber magnitude less than or equal to 2. With this deterministic forcing method, a

stationary turbulence was generated by maintaining the constant total energy in each of the

first two wavenumber shells, and the energy ratio between the two shells was consistent with

the k−5/3 scaling57.

The DNS of homogeneous and isotropic turbulent flows was performed using a standard

pseudo-spectral method in a periodic cubic flow domain with each edge length L = 2π,

which was discretized uniformly into N3 grids. In Fourier space, Eqs. (1) and (2) can be
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represented as (k ≤ kmax)(
∂

∂t
+ νk2

)
û (k, t) = P (k)F (u× ω) + f̂ (k, t) , (3)

where û (k, t) denotes the Fourier coefficient or the fluid velocity in Fourier space and F

denotes the Fourier transformation. The projection tensor P (k) = δij−kikj/k
2 (i, j = 1, 2, 3)

projects F (u× ω) onto the plane normal to the wavenumber vector k and eliminates the

pressure gradient term in Eq. (1). The wavenumber components in Fourier space were

defined as kj = nj (2π/L), where nj = −N/2, . . . ,−1, 0, 1, . . . , N/2 − 1 for j = 1, 2, 3. The

maximum wavenumber was approximately N/3, and N = 512 was set in the DNS. The

spatial resolution was monitored by the value of kmaxη, where η is the Kolmogorov length

scale. The value of kmaxη should be larger than 1.0 for the Kolmogorov scale of the flow to be

well resolved, and it was always larger than 1.3 in our simulations. The Fourier coefficients

of the flow velocity were advanced in time using a second-order Adams-Bashforth method

for the nonlinear term and an exact integration for the linear viscous term. The time step

was chosen to ensure that the Courant-Friedrichs-Lewy (CFL) number is 0.5 or less for

numerical stability and accuracy.

B. Large eddy simulation

The LES of homogeneous and isotropic turbulent flows was performed at a much coarser

grid resolution using the same pseudo-spectral method and large-scale forcing scheme as the

above DNS. The governing equation for the LES is given by(
∂

∂t
+ [ν + νe (k |kc )] k2

)
ˆ̄u (k, t) = P (k)F (ū× ω̄) + f̂ (k, t) , (4)

where ū and ω̄ are the resolved velocity and vorticity in physical space, respectively. A

spectral eddy-viscosity SGS model is used58,59,

νe (k |kc ) = ν+
e (k |kc )

√
E (kc) /kc, (5)

ν+
e (k |kc ) = C

−3/2
k [0.441 + 15.2 exp (−3.03 kc/k)] . (6)

Here, νe (k |kc ) denotes the spectral eddy-viscosity and kc denotes the cutoff wavenumber

in the LES. The quantity E (kc) is the value of energy spectrum at the cutoff wavenumber,

which is instantaneously evaluated from the LES, and Ck = 2.0 was used in this work. The
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above SGS model was constructed based on the turbulent energy budget equations, which

basically predicted the energy spectrum, especially at low wavenumbers. The hypothesis of

a k−5/3 energy spectrum up to kc was used to parameterize the SGS model. This hypothesis

is believed to be better fulfilled in turbulent flows with increasing Reynolds numbers.

C. Filtered direct numerical simulation

The velocity field of the filtered direct numerical simulation (FDNS) was obtained from

the DNS velocity field by truncating the Fourier coefficients larger than the cutoff wavenum-

ber kc with a sharp spectral filter

ũ (x, t) =
kc∑

|k|=k0

û (k, t) eik·x, (7)

where ũ (x, t) is the filtered velocity in physical space and k0 = 1 denotes the lowest

wavenumber in the DNS. The Eulerian statistics of flow fields from the DNS, FDNS and

LES are listed in Table I. In the isotropic turbulent flows with zero mean velocity, the Taylor

Reynolds number Reλ is defined as

Reλ = u′λ/ν, (8)

where u′ =
√
⟨uiui⟩ /3 is the root mean square (rms) of turbulent fluctuating velocity,

λ =
(
15νu′2/ε

)1/2
is the Taylor microscale. For the setting of DNS 5123, two cases of LES

are performed with the closure of the eddy-viscosity model: the first uses 643 grid resolution

and the second uses 323 grid resolution. For the FDNS, the cutoff wavenumber is kc = 42.

D. Fluid particle motion

For a fluid particle in isotropic turbulent flows, the equation of motion is

∂X (x0, t0 |t)
∂t

= V (x0, t0 |t) = u [X (x0, t0 |t) , t] , (9)

where X (x0, t0 |t) is the location of the fluid particle at time t, which was initially located

at x0 and time t0, and V (x0, t0 |t) is the Lagrangian velocity of the fluid particle at time

t, which is equal to the Eulerian velocity u [X (x0, t0 |t) , t] of the flow field at location

X (x0, t0 |t).

7

http://dx.doi.org/10.1063/1.5049731


TABLE I. Eulerian statistics of flow fields from different cases.

Case DNS FDNS LES LES

Grid Number N3 5123 — 643 323

Maximum wavenumber kmax (kc) 170 42 21 10

Grid length dx 0.012 — 0.098 0.196

Kinematic viscosity ν 0.0010 0.0010 0.0010 0.0010

Taylor Reynolds number Reλ 205.51 — — —

rms fluctuating velocity u′ 0.870 0.866 0.854 0.819

Dissipation rate ε 0.204 — — —

Spatial resolution kmaxη 1.432 — — —

Kolmogorov length scale η 0.00835 — — —

Kolmogorov time scale τη 0.06976 — — —

A three-dimensional sixth-order Lagrangian interpolation scheme was used to calculate

the Lagrangian velocity of the fluid particle from the Eulerian flow velocity field. Then, the

trajectory of the fluid particle was obtained by the explicit fourth-order Adams-Bashforth

scheme. To completely demonstrate the statistical properties of the fluid particles, we

tracked the motion of an ensemble of particle pairs and clusters of four particles and cal-

culated the various Lagrangian statistics. Initially, Np/4 particles are uniformly distributed

in the flow domain. The other 3Np/4 particles are located under the constraint that each

of the four particles form a tetrahedron with a prescribed edge size. Thus, the Np/4 reg-

ular tetrahedrons with initially prescribed edge sizes are randomly distributed, and each

tetrahedron consists of six particle pairs with a prescribed separation distance. The La-

grangian statistics were calculated from ensemble averaging, including space averaging and

time averaging. Here, the time averaging denotes the average of the independent samples of

Lagrangian statistics from the different time segments.
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III. HYBRID MODEL

A. Approximate deconvolution model

There are two main reasons for the errors in the flow field in the LES compared to the

DNS. One reason is the filtering operation on the Navier-Stokes equations, which leads to the

loss of SGS velocity fluctuations. The other reason is the spectral eddy-viscosity SGS model

used in this paper, which has a strong hyperviscosity near the cutoff wavenumber. The

model causes over-dissipation of turbulent energy and a further reduction in the velocity

fluctuations at the resolved scales, especially at the scale of the cutoff wavenumber. To

approximate the unfiltered solution of the flow field at resolved scales, we applied an ADM

to the filtered velocity field in the LES,

û∗ = Ĝ−1ˆ̄u, (10)

where ˆ̄u is the filtered velocity of LES, û∗ is an approximation of the unfiltered velocity, and

Ĝ is a filter function in spectral space, and

Ĝ−1 (k) ≈
N∑

n=0

(
1 − Ĝ (k)

)n

. (11)

According to the study of Stolz and Adams23, N = 5 provides proper results for most of

the cases studied, so that

Ĝ−1 (k) ≈ 6 − 15Ĝ (k) + 20Ĝ2 (k) − 15Ĝ3 (k) + 6Ĝ4 (k) − Ĝ5 (k) . (12)

The filter Ĝ (k) must satisfy
∣∣∣1 − Ĝ (k)

∣∣∣ < 1 and have an inversion. Substituting Eq. (12)

into Eq. (10), the velocity û∗ can be calculated by the repeated filtering of ˆ̄u

û∗ ≈ 6ˆ̄u− 15ˆ̄̄u + 20ˆ̄̄̄u− 15
ˆ̄̄̄
ū + 6

ˆ̄̄̄
¯̄u−

ˆ̄̄̄
¯̄̄u. (13)

In this work, we chose a three-dimensional transfer function of Gaussian

Ĝ (k) = exp

(
−|k2|∆2

24

)
, ∆ = π/kc. (14)

For Gaussian transfer function, Eq. (14) and N = 5, the inverse of the transfer function

Ĝ−1 (k) in LES 643 is shown in Fig. 1. It shows the approximate inverse function is always

9
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G
 -1

(k
)

〈

FIG. 1. The approximate inverse transfer function of Gaussian using Eq. (12) in LES 643.

greater than 1.0 and increases with the wavenumber. Thus the approximate inverse transfer

function can strength the motions at smaller scales.

Fig. 2 shows the energy and dissipation spectra obtained from the DNS, LES and LES

with the ADM. The ADM recovers the energy and dissipation spectra near the cutoff

wavenumber in the LES. The small-scale velocities near the cutoff wavenumber are sig-

nificantly improved. Notably, the last point in the dissipation spectrum is over-corrected

by the ADM, which comes from the unphysical accumulation of energy near the cutoff

wavenumber19. The unphysical accumulation in the energy spectrum is amplified in the

dissipation spectrum.

B. Kinematic simulation

To compensate for the velocity fluctuations at the subgrid scales, we used a KS model to

calculate the subgrid velocity18. The standard form of the KS velocity field is

uKS (x, t) =

Nk∑
n=1

M∑
m=1

{anm cos (knm · x + ωnmt) + bnm sin (knm · x + ωnmt)} , (15)

where anm and bnm are the vector coefficients of the Fourier cosine and sine modes of the

velocity, respectively, knm is the wavevector, x is the coordinate vector, ωnm is the frequency

and t is the time. The indices ‘nm’ are used in a spherical coordinate system, where ‘n’

denotes the magnitude of the wavenumber kn = |knm| and ‘m’ is the counter of randomly

10

http://dx.doi.org/10.1063/1.5049731


(a) (b)

FIG. 2. (a) Energy and (b) dissipation spectra for the DNS 5123, LES 643 and 323, and LES with

the ADM.

oriented wavevectors of magnitude kn. To achieve the fastest convergence for fluid particle

statistics, we used a geometric distribution of wavenumbers beyond the cutoff wavenumber55

kn = kc

(
kmax

kc

) n−1
Nk−1

, (16)

knm = kn (sin θnm cosϕnm, sin θnm sinϕnm, cos θnm) , (17)

where n = 1, 2, . . . , Nk and kmax is the largest wavenumber considered. The orientation

angles θnm and ϕnm for the M wavevectors associated with each wavenumber were chosen

randomly to be uniformly distributed over the spherical shell of radius kn

cos θnm ∈ [−1, 1] , ϕnm ∈ [0, 2π] . (18)

To ensure the incompressibility of the subgrid velocity uKS (x, t), we define the coefficients

anm and bnm as

anm = Anm × k̂nm, (19)

bnm = Bnm × k̂nm, (20)

where k̂nm = knm/kn is a unit vector aligned with the wavevector knm. Anm and Bnm are

random vectors with independent and normally distributed components, each with a mean

of zero and a variance of σ2
n

σ2
n =

1

M
E (kn) ∆kn, (21)

11
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where ∆kn = (kn+1 − kn−1)/2 for n ∈ [2, Nk − 1], ∆k1 = (k2 − k1)/2, and ∆kNk
=

(kNk
− kNk−1)/2. E (kn) denotes the subgrid energy spectrum at kn, which can be ap-

proximated by the DNS spectrum or a known model spectrum60

E (k) = Ckε
2/3 k−5/3 fη (kη) , (22)

fη (kη) = exp
{
−β

{[
(kη)4 + c4η

]1/4 − cη

}}
, (23)

where the dissipation rate ε =
kmax∫
0

2 (ν + νe) k
2E (k) dk and the Kolmogorov length scale

η = (ν3/ε)
1/4

can be calculated from the LES flow field after using the ADM. Additionally,

Ck = 2.0, β = 5.2, and cη ≈ 0.25.

The frequency ωnm determines the unsteadiness associated with the wave mode n and is

usually chosen to be proportional to the eddy-turnover time of the wave mode n

ωnm = λ
√

k3
nmE (knm), (24)

where λ is a dimensionless constant of order 1. Previous studies have shown that the

temporal term ωnmt has little effect on the statistics of the fluid particle pairs53, which is

also validated in our simulations. Therefore, we set ωnm = 0 in the KS, so that the velocity

field was essentially frozen at all scales.

After constructing the incompressible subgrid velocity field uKS (x, t), the modeled veloc-

ity field at each particle position could be written as

uMODEL (x, t) = uLES/FDNS (x, t) + uKS (x, t) , (25)

where uLES/FDNS (x, t) is the particle velocity calculated from the LES or FDNS flow field.

By using the KS, we obtained the subgrid velocity at each location of the flow field

with 5123 grids, which was used to compensate for the FDNS velocity field. The cutoff

wavenumber is kc = 42, and the maximum wavenumber is kmax = 170. To minimize modeling

errors, we used the energy spectrum of DNS 5123 as the input parameters in the a priori

LES or FDNS

E (kc)|KS = E (kc)|FDNS. (26)

In the a posteriori LES, we used the corrected energy spectrum with the ADM

E (kc)|KS = E (kc)|LES+ADM. (27)
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Eqs. (26) and (27) establish the relationship between the SGS flow field and the LES flow

field.

The number of wavenumbers were varied from 50 (Nk = 50, M = 1) to 10000 (Nk = 200,

M = 50), and the comparisons of the energy spectra obtained from the DNS and the FDNS

plus KS with different Nk ×M are shown as Fig. 3. It is observed that the KS recovers the

missing subgrid energy spectrum at k ≥ kc quite accurately when Nk ≥ 150 and M ≥ 20.

Otherwise, the computed subgrid energy spectrum will fluctuate around the input DNS

energy spectrum.

×
×
×
×

k-5/3

(a)

kc=42

×
×
×
×

k-5/3

(b)

kc=42

FIG. 3. Comparison of the energy spectra obtained from the DNS 5123 and FDNS plus KS with

a cutoff wavenumber, kc = 42. The KS nearly recovers the subgrid energy spectrum beyond kc.

IV. RESULTS AND DISCUSSION

In this work, we set Np = 50000, and fluid particles were divided into five groups, in

which the initial separation distances were r = 1/4η, 1η, 8η, 32η, and 96η. After tracking

the trajectory of each fluid particle, we calculated the Lagrangian statistics of single-, two-

and four-particle dispersion in the DNS, LES and LES plus KSAD hybrid model. Then, we

compared the Lagrangian statistics calculated from the LES plus KSAD hybrid model with

the results from the DNS and LES and evaluated the availability of the model.

13
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A. Parametric study for KS

The total number of wavevectors in the KS is important for predicting the Lagrangian

dispersion of fluid particles because it determines both the modeling accuracy and compu-

tational cost. To investigate the effect of the number of wavevectors on the prediction of

the fluid particle statistics, we set Nk ×M as 20 × 1, 50 × 50 and 200 × 20. Here, we used

the DNS spectrum to approximate the input subgrid energy spectrum in Eq. (21).

For the particle pair shown as Fig. 4, the separation distance is defined as

R (r, t0 |τ ) =
√

R (r, t0 |τ ) ·R (r, t0 |τ ), (28)

R (r, t0 |τ ) = X (x0, t0 |t0 + τ ) −X (x0+r, t0 |t0 + τ ) , (29)

where R (r, t0 |τ ) denotes the separation vector between the particle pair, r is the initial

separation vector and τ is the time interval. The initial separation of the particle pair

shown in Fig. 4 is very small, and it seems like they collapse together. With increasing

time, the particles separate. Then, the mean and variance of the separation distance were

calculated

m2 (r, τ) = ⟨R (r, t0 |τ )⟩ , (30)

σ2
2 (r, τ) =

⟨
[R (r, t0 |τ ) − ⟨R (r, t0 |τ )⟩]2

⟩
= ⟨R (r, t0 |τ ) ·R (r, t0 |τ )⟩ −m2

2 (r, τ) , (31)

where ⟨ ⟩ denotes the ensemble average conditioned on the particle pairs, and r = |r| denotes

the initially prescribed separation distance. Then, the relative dispersion of the particle pair

is defined as ⟨δR (r, τ) · δR (r, τ)⟩, where δR (r, τ) = R (r, t0 |τ )− r is the separation vector

increment.

The one-time two-point Lagrangian velocity correlation function of the particle pair is

defined as

ρr (r, τ) = ⟨Vi (x0, t0 |t0 + τ )Vi (x0+r, t0 |t0 + τ )⟩/σ2
V . (32)

Fig. 5 shows the abovementioned Lagrangian statistics of the particle pairs obtained from

the LES 643 plus KS with different numbers of wavevectors. The parameter τη denotes the

Kolmogorov time scale. For clarity, we only plotted the results from the fluid particles with

initial separation distances r = 1/4η and 8η. We can observe that the Lagrangian statistics

from the LES 643 plus KS with 20× 1, 50× 50 and 200× 20 wavevectors coincide well with

each other, and all of them show impressive improvements compared with the results from
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FIG. 4. The schematic diagram of the Lagrangian dispersion of a fluid particle pair with a small

initial separation distance in the LES of isotropic turbulent flows. The arrows denote the directions

of particle motion.

LES. In addition, a comparison of the Lagrangian statistics of the four-particle dispersion

calculated from the LES 643 plus KS with different numbers of wavevectors also exhibits

great consistency. These results indicate that a more accurate prediction of the Lagrangian

dispersion of fluid particles can be achieved by using the KS at a low computational cost.

B. Prediction of the particle-pair dispersion by the KSAD hybrid model

In most practical simulations, we do not have DNS data. Instead, we used the simple

model energy spectrum in Eq. (22) as the input energy spectrum and calculated the KS

velocity along with each fluid particle, which was then added to the particle velocity obtained

from the LES plus ADM. Here, notably, the ADM is very important for the estimation of ε

and η in Eq. (22).

To reduce the computational cost of the LES plus KSAD hybrid model, we chose Nk = 20,

M = 1 for the LES 643 and Nk = 40, M = 1 for the LES 323. The parameter settings

render the KS an economical model compared with the cost of performing an LES. Then,

we investigated the contribution of the KSAD hybrid model to the Lagrangian statistics of

fluid particles in isotropic turbulent flows as follows.
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FIG. 5. (a) The mean of the separation distances, (b) the variance of the separation distances, (c)

the relative dispersion and (d) the one-time two-point Lagrangian velocity correlation functions

of the particle pairs obtained from the LES 643 plus KS with different numbers of wavevectors

(Nk ×M): dash-dotted lines 50× 50, long-dashed lines 200× 20 and dash-dot-dotted lines 20× 1.

The symbols ‘�’ and ‘⃝’ denote the results of the initial separation distance r = 1/4η and 8η,

respectively.

Figs. 6 and 7 show the mean and variance of the separation distances of the particle pairs

with initial separation distances r/η = 1/4 and 8. The solid lines, dashed lines, dash-dotted

lines, long-dashed lines and dash-dot-dotted lines denote the results obtained from the DNS

5123, conventional LES and LES with the ADM, KS or KSAD hybrid model, respectively.

The LES significantly underpredicts the mean and variance of the separation distances

compared to the DNS due to the absence of the small-scale velocity fluctuations. After

using the KSAD hybrid model, the deviations of mean separation distances between the LES

and DNS are mostly recovered for the particle pairs with small initial separation distances.
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(c)
r = 1/4η
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FIG. 6. Temporal evolution of the mean separation distances of the particle pairs with different

initial separation distances: solid lines, DNS 5123; dashed lines, LES; dash-dotted lines, LES with

the ADM; long-dashed lines, LES with the KS; and dash-dot-dotted lines, LES with the KSAD

hybrid model.

When the initial separation distance becomes larger, the dispersion of particle pairs is mainly

controlled by the large-scale motion of the turbulent flows so that the mean separation

distances from the different simulations tend to coincide with each other. Moreover, the

results calculated from the LES plus KSAD hybrid model agree with those from the DNS

5123, as shown in Fig. 7, which demonstrate that the subgrid velocity fluctuations of isotropic

turbulent flows are successfully recovered.

If only the ADM or KS is applied, then all the Lagrangian statistics are not well predicted.

The ADM could both improve the velocity fluctuations at the resolved scales and help

construct a better KS at the subgrid scales. Without the ADM, a much smaller dissipation

ε and a larger Kolmogorov length scale η in Eq. (22) are calculated from the conventional
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FIG. 7. Temporal evolution of the variances in the separation distances of the particle pairs with

different initial separation distances: solid lines, DNS 5123; dashed lines, LES; dash-dotted lines,

LES with the ADM; long-dashed lines, LES with the KS; and dash-dot-dotted lines, LES with the

KSAD hybrid model. The left dashed straight line has a slope of 2 and the right top line has a

slope of 1.

LES flow field, which result in an underestimation of the model energy and dissipation

spectrum, as shown in Fig. 8. Therefore, the mean and variance of the separation distances

calculated from the LES plus KS are underpredicted compared with those from the LES

plus KSAD hybrid model shown in Figs. 6 and 7. Without the KS, there is only a slight

improvement on those Lagrangian statistics by the LES plus ADM for the lack of subgrid

velocity fluctuations.

Fig. 9 shows plots of the temporal evolutions of the relative dispersion of particle pairs

from the DNS 5123, LES and LES with the ADM, KS or KSAD hybrid model. One can

observe that the LES underpredicts the relative dispersion due to the missing fluctuating

18
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(a) (b)

(c) (d)

FIG. 8. The comparisons of (a), (b) the input model energy spectra and (c), (d) the input dissi-

pation spectra calculated by Eq. (22) for the LES and LES with the ADM. The dash-dot-dotted

lines with symbol ‘⃝’ and the dashed lines with symbol ‘▽’ denote the input results from the LES

with and without the ADM, respectively.

small-scale fluid motions and SGS model errors. The KSAD hybrid model reproduces the

well-defined SGS flow structures and improves the particle dispersion at the beginning. The

consistency between the results from the LES plus KSAD hybrid model and DNS show that

the hybrid model improves the prediction of the relative dispersion of the particle pairs.

Without the ADM, the relative dispersion of the particle pairs is obviously slower because

of the underestimation of the KS velocity.

The velocity field in the LES is much more correlated than that in the DNS due to the

missing small-scale velocity fluctuations. Therefore, the relative dispersion of the particle

pairs in the LES is much slower than that in the DNS. Thus, the one-time two-point La-

grangian velocity correlation functions of the particle pairs in the LES (denoted by dashed
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FIG. 9. Temporal evolution of the relative dispersion of the particle pairs with different initial

separation distances: solid lines, DNS 5123; dashed lines, LES; dash-dotted lines, LES with the

ADM; long-dashed lines, LES with the KS; and dash-dot-dotted lines, LES with the KSAD hybrid

model. The slopes of the left and right dashed lines are equal to 2 and 3, respectively.

lines) decay much slower than those in the DNS 5123 (denoted by solid lines), as shown in

Fig. 10. However, the ADM could improve the kinetic energy near the cutoff wavenumber,

and the KS could recover the small-scale velocity fluctuations at unresolved scales. Both

models render a more uncorrelated flow field. Therefore, the LES plus KSAD hybrid model,

denoted by the long-dashed line, accurately predicts the one-time two-point Lagrangian ve-

locity correlation functions of the particle pairs. With an increase in the initial separation

distance, the KS is gradually of no consequence to the Lagrangian statistics of the particle

pairs since the large-scale motions of the turbulence dominate the dispersion of the particle

pairs.
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FIG. 10. The one-time two-point Lagrangian velocity correlation functions of the particle pairs

with different initial separation distances: solid lines, DNS 5123; dashed lines, LES; dash-dotted

lines, LES with the ADM; long-dashed lines, LES with the KS; and dash-dot-dotted lines, LES

with the KSAD hybrid model.

C. Prediction of the four-particle dispersion by the KSAD hybrid model

Multi-particle dispersion provides more information regarding the turbulent transport

processes than single- and two-particle dispersion. Here, we focus on the temporal evolution

of 2500 tetrahedrons, each formed by four fluid particles. Each edge size of the tetrahedrons

is initially set to be equal to the Kolmogorov length scale η. Then, the size and shape of

the tetrahedrons change due to the vortex stretching and the small-scale intermittency in

isotropic turbulent flows, as shown in Fig. 11. In this section, our purpose is to investigate

the effect of the KSAD hybrid model on the prediction of the Lagrangian statistics of four-

particle dispersion, including the mean surface area and volume of the tetrahedrons, and

their renormalized ratios.
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FIG. 11. The schematic diagram of a four-particle dispersion in the LES of isotropic turbulent

flows. The four fluid particles form a tetrahedron with a prescribed initial edge size. The size and

shape of the tetrahedron change with time. The arrow denotes the direction of the particle motion

with an increasing time.

For a regular tetrahedron, the first particle is randomly seeded at X
(1)
0 = (x0, y0, z0), and

the initial locations of other three particles are X
(2)
0 =

(
x0 −

√
3η/6, y0 − η/2, z0 −

√
6η/3

)
,

X
(3)
0 =

(
x0 −

√
3η/6, y0 + η/2, z0 −

√
6η/3

)
and X

(4)
0 =

(
x0+

√
3η/3, y0, z0 −

√
6η/3

)
. The

area of the triangle formed by the first three particles can be calculated by

S(123) =
1

2

{[(
y(2) − y(1)

) (
z(3) − z(1)

)
−
(
z(2) − z(1)

) (
y(3) − y(1)

)]2
+[(

z(2) − z(1)
) (

x(3) − x(1)
)
−
(
x(2) − x(1)

) (
z(3) − z(1)

)]2
+[(

x(2) − x(1)
) (

y(3) − y(1)
)
−
(
y(2) − y(1)

) (
x(3) − x(1)

)]2} 1
2
,

(33)

where the superscript ‘123’ denotes the serial numbers of the particles. The surface area of

the tetrahedron is S = S(123) + S(124) + S(134) + S(234), and the volume of the tetrahedron

can be calculated by

V =
1

6

∣∣∣∣∣∣∣∣∣
x(2) − x(1) x(3) − x(1) x(4) − x(1)

y(2) − y(1) y(3) − y(1) y(4) − y(1)

z(2) − z(1) z(3) − z(1) z(4) − z(1)

∣∣∣∣∣∣∣∣∣ . (34)
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FIG. 12. The mean surface areas of the tetrahedrons from the DNS, LES, and LES with the ADM,

KS or KSAD hybrid model.
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FIG. 13. The mean volumes of the tetrahedrons from the DNS, LES, and LES with the ADM, KS

or KSAD hybrid model.

Figs. 12 and 13 show the temporal evolution of the normalized mean surface areas and

volumes of the tetrahedrons from the DNS 5123, conventional LES, and LES with the ADM,

KS or KSAD hybrid model, which are denoted by solid lines, dashed lines, dash-dotted

lines, long-dashed lines and dash-dot-dotted lines, respectively. In the LES, the flow field is

resolved at a coarser grid resolution, and the dissipation by the eddy-viscosity SGS model

further reduces the velocity fluctuations. The four-particle dispersion is underpredicted

compared to the DNS. The KSAD hybrid model substantially improves the predictions

of the mean surface areas and volumes of the tetrahedrons, which is consistent with the

prediction of the particle-pair dispersion.
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To characterize the shape variation in the tetrahedron, we calculated the renormalized

volume and surface area ratios

λV = V/S3/2, λS = S/C2, (35)

where C is the perimeter of the tetrahedron. Another indicator of the shape variation in the

tetrahedron is the ratio of the intermediate eigenvalue of the inertia matrix I = ρρT , where

ρ =


ρ
(1)
x ρ

(2)
x ρ

(3)
x

ρ
(1)
y ρ

(2)
y ρ

(3)
y

ρ
(1)
z ρ

(2)
z ρ

(3)
z

 (36)

with ρ(i) =
(
ρ
(i)
x , ρ

(i)
y , ρ

(i)
z

)
, i = 1, 2, 3, and ρ(1) =

(
x(2) − x(1)

)
/
√

2, ρ(2) =
(
2x(3) − x(2) − x(1)

)
/
√

6,

ρ(3) =
(
3x(4) − x(3) − x(2) − x(1)

)
/
√

12. The three eigenvalues of the inertia matrix I are de-

noted as g1, g2 and g3 from large to small. Here, we evaluate the variation in the intermediate

ratio I2 = g2/(g1 + g2 + g3).

In Fig. 14, the temporal evolution of the mean renormalized volume and surface area

ratios are shown for the tetrahedrons with an initially regular edge size η. The results from

the LES with the KSAD hybrid model show better agreement with the results from the

DNS than with the conventional LES. Fig. 15 depicts plots of the temporal evolution of the

ratio ⟨I2⟩ from the DNS, LES, and LES with the ADM, KS or KSAD hybrid model. The

deviations of ⟨I2⟩ between LES and DNS are only partly recovered. Notably, the KSAD

hybrid model renders the evolution of the ratio ⟨I2⟩ from the LES consistent with the result

from the DNS.

Finally, we compared the computational costs of the different methods, and further

showed the advantage of the hybrid model. Our numerical calculations were performed

on the Tianhe-I at the National SuperComputer Center in Tianjin, China. The model of

the Central Processing Unit (CPU) is Intel Xeon X5670. Table II shows the number of

CPUs and computing time for the different cases. The results indicate that the DNS is

very expensive to perform, and the LES is much cheaper. Above all, it takes slightly more

computing time to perform the LES plus KSAD hybrid model than the conventional LES.

Therefore, the prediction of the Lagrangian dispersion of the fluid particles in the LES is

improved by applying the KSAD hybrid model at an acceptable computational cost.
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FIG. 14. Temporal evolution of the mean renormalized (a), (c) surface area ratio and (b), (d)

volume ratio from the DNS, LES, and LES with the ADM, KS or KSAD hybrid model.
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FIG. 15. Temporal evolution of the ratio ⟨I2⟩ from the DNS, LES, and LES with the ADM, KS or

KSAD hybrid model.
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TABLE II. The number of CPUs used and the computing time for the different cases. Here, we

set Np = 50000. The time intervals from the start of the simulations to the end for all cases are

set to 180τη, where τη denotes the Kolmogorov time scale.

Case DNS 5123 LES 643 LES 643+KSAD LES 323 LES 323+KSAD

Number of CPUs 128 16 16 16 16

Computing time (min) 481.675 4.563 7.142 2.207 4.586

V. CONCLUSION AND PROSPECTIVE

In this work, a KSAD SGS model is developed for predicting the Lagrangian relative

dispersion of the fluid particles in the LES of homogeneous and isotropic turbulent flows.

Owing to the lack of small-scale motions and SGS model errors, the LES cannot accurately

predict the Lagrangian statistics of fluid particles. To improve the predictive capability

of the LES, we couple the ADM and KS. After using the ADM, the kinetic energy of the

resolved scales in the LES is mostly recovered. Using the KS, the missing SGS velocity

fluctuations in the LES are mostly compensated. Then, the Lagrangian statistics of the

fluid particles calculated from the LES plus KSAD hybrid model are compared with the

corresponding results from the DNS 5123 and LES. The KSAD hybrid model basically

recovers the deviations in the particle pair statistics between the LES and DNS, including

the mean and variance of the separation distances, the relative dispersion and one-time two-

point Lagrangian velocity correlation functions of the particle pairs. For the four-particle

dispersion, the mean surface area and volume of the tetrahedrons, and their renormalized

ratios are recovered. In addition, the KSAD hybrid model renders the evolution of ⟨λV ⟩, ⟨λS⟩

and ⟨I2⟩ calculated from the LES consistent with the results from the DNS, which means that

the size and topological shape variations in the tetrahedrons are more accurately predicted.

Using the KSAD hybrid model, a significant improvement in the prediction of the La-

grangian dispersion of fluid particles can be achieved for both the LES 643 and LES 323,

in which the grid ratios of the DNS to LES are very large. Moreover, a parametric study

is conducted regarding the wavenumbers and orientation wavevectors, and the predictions

of particle statistics calculated from the KS formed by different parameters show good

agreement with each other. In summary, we can improve the prediction of the Lagrangian

26

http://dx.doi.org/10.1063/1.5049731


dispersion of fluid particles in the LES of isotropic turbulent flows with a highly coarse

grid resolution by only applying a simple KSAD hybrid model at an acceptable additional

computational cost.

We shall extend the idea of the KSAD model to flows in more complex geometry in future

study. The extension includes three aspects of modifications compared to the isotropic

turbulent flows: (I) A more general eddy-viscosity model such as dynamic Smagorinsky

model2, WALE13, Vreman’s model61, Sigma model62 or the recent proposed S3PQR model4

will be used to consider the effects of walls and get the nonhomogeneous turbulent flows

at large scales. (II) The approximate deconvolution method based on elliptical differential

filters is used for solid boundary conditions38,39. Park et al.37 used a dynamic model based on

elliptical differential filters as the approximate deconvolution method for the LES of particle-

laden turbulent flows to model the subgrid-scale velocity and describe the motion of the

small inertial particles. This model is flexible to be used in any type of flow configurations.

(III) The Gabor transform can be used to the conventional Fourier modes to localize the

Fourier modes. To account for inhomogeneities at large-scale in wall-bounded flows, we can

assume the local homogeneity in a small region and the Gabor transform can be used to

the conventional Fourier modes to localize the Fourier modes. Ghate and Lele63 used the

Fourier-Gabor mode to recover the subgrid-scale turbulent flows in the planetary boundary

layer (PBL) and a finite Reynolds number channel flow.
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