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A B S T R A C T

Homogeneous models are typically used to analyze the results of pulse-decay tests for low permeability cores.
However, this poses a problem because some samples are dual-porosity media with microcracks/macropores and
micropores. In this study, numerical simulations were conducted and the results showed that the pulse decay
curves of the dual-porosity models are different from those for the homogeneous model. The results indicated
that the volumes of the upstream and downstream vessels play an important role in identifying dual-porosity
media and the early time and late time are mainly influenced by the storativity ratio and interporosity flow
coefficient, respectively. A pressure derivative method was proposed in this work in order to identify dual-
porosity media at the early time and distinguish the interporosity flow models. This method is applicable for
vessel volumes within one-tenth to ten times the pore volume. The proposed method was verified against the
experimental data of other researchers.

1. Introduction

Steady and transient methods are typically used to determine the
permeability of rock cores. For low permeability rocks, the pulse decay
method (which is a transient method) has become the mainstream
method to determine the permeability of rock cores because it is much
faster compared with the steady-state method. This method was pro-
posed by Brace et al. (1968) to test the permeability of granite. The
method was established based on the assumption that the elastic stor-
ativity of the core is negligible compared to those of the vessels. Since
then, the pulse decay method has garnered much attention from other
researchers because of its superior capability. Many analytical solutions
were developed for various simplified conditions (Bourbie and Walls,
1982; Walder and Nur, 1986; Kwan et al., 1988). Hsieh et al. proposed a
general analytical solution using a type curve matching method (Hsieh
et al., 1981; Neuzil et al., 1981). Asymptotic solutions of pressures at
early and late times were developed based on these analytical solutions
and a number of linear fitting methods were proposed using these so-
lutions. The effects of vessel volume, pressure, and core parameters
have also been investigated and various methods were proposed to
optimize the equipment parameters, accelerate test speed, and improve
measurement accuracy (Chen and Stagg, 1984; Jones, 1997). All of
these analysis methods are based on the homogeneous model.

Because shale gas reservoir with ultra-low permeability has become
a popular research area in petroleum engineering, much effort has been

carried out in this area in recent years. The pulse decay method have
been also widely used to test the permeability of shale cores (Heller
et al., 2014; Metwally and Sondergeld, 2011; Alnoaimi and Kovscek,
2013). Several new methods of analysis were proposed while experi-
mental techniques were improved based on the characteristics of shale
(Cui et al., 2009; Civan et al., 2011, 2012; Lorinczi et al., 2014; Pan
et al., 2015). However, a few experimental studies have shown that the
homogeneous model is not always applicable to analyze the perme-
ability of rock cores, particularly shale cores (Clarkson and Bustin,
1999; Yuan et al., 2014; Alnoaimi et al., 2016) and therefore, multi-
media models were also proposed for shale rocks. These models con-
sider microcracks/macropores and micropores in the matrix, where
these features are treated as dual-porosity media (Hudson, 2011;
Dehghanpour and Shirdel, 2011). Both coal and shale consist of multi-
scale pores and fractures and their cores are characteristic of dual-
porosity media. The pulse decay method is typically used to determine
the permeability of coal and shale cores. Therefore, studies on analysis
methods of pulse decay tests for dual-porosity cores have important
implications for the development of coalbed methane and shale gas.

A few studies have been carried out over the years concerning pulse
decay test for dual-porosity media. Numerical and experimental in-
vestigations have shown that the flow characteristics are different for
dual-porosity media compared to those for homogeneous media when
the cores contain penetrating cracks or thin alternating high and low
permeability layers (Kamath et al., 1990; Liu et al., 2016; Jia et al.,
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2017). A few simplified models have been proposed to analyze the re-
sults obtained from pulse decay tests of such cores (Ning et al., 1993;
Cronin, 2014; Liu et al., 2016). In these studies, the researchers merely
used an approximate formula to analyze partial test results. While these
simplified models are suitable to analyze the permeability of cores with
a few microcracks or alternating high and low permeability layers, they
are not suitable in cases where dense microcracks are present. Bajaalah
(2009) studied dual-porosity models for pulse decay tests, in which
their test is a two-dimensional flow in the radial plane of the cylindrical
sample, but the conventional test method is a one-dimensional flow
along the axial direction. In general, there is currently no analysis
method of conventional pulse decay tests for dual-porosity cores to
obtain all the parameters of dual-porosity models. So, it is necessary to
develop an improved method to analyze the results obtained from
conventional pulse decay tests for dual-porosity media.

In this paper, the analysis method of conventional pulse decay tests
for dual-porosity cores is studied. First, the finite difference method is
used to analyze the sensitivity of the relevant parameters of the dual-
porosity models. Then a pressure derivative analysis method was pro-
posed. Unlike conventional methods, the pressure derivative method
facilitates in distinguishing dual-porosity and homogeneous media
based on the early time pressure derivatives as well as identify pseu-
dosteady-state and transient interporosity flow models based on the late
time data. Finally, the proposed method is verified against the experi-
mental results of other researchers.

2. Pulse decay test method

2.1. Experimental setup for pulse decay tests

The schematic of a typical experimental setup used for pulse decay
tests is shown in Fig. 1 (Jones, 1997). The main components of the
experimental setup comprise the upstream vessel, downstream vessel,
and core holder. The rock sample is encased within a rubber sleeve in
the core holder. The confining pressure can be applied to the sample
from outside the rubber sleeve without interfering with the pore pres-
sure. One end is connected to the upstream vessel whereas the other
end is connected to the downstream vessel. The confining pressure is
applied prior to the test and following this, an initial pressure is applied
to the upstream vessel, downstream vessel, and pore space of the
sample until all of the pressures reach an equilibrium. Next, Valve 1
(Fig. 1) is turned off, cutting off connection between the upstream
vessel and core holder. The pressure of the upstream vessel is then in-
creased to a value typically less than 10% of the initial pressure. Valve 1
is then turned on, creating a pressure pulse in the core holder. The fluid
flows from the upstream vessel to the downstream vessel through the
sample. Consequently, the upstream vessel pressure decreases and the
downstream vessel pressure increases until these pressures reach an
equilibrium. The upstream and downstream vessel pressures and the
difference between these pressures are recorded as a function of time.
The variations of these pressures are dependent on the permeability of
the sample. The permeability can be determined by analyzing the
pressure-time histories. In practice, the pulse-decay test is not only used

to determine the permeability of homogeneous media, but also dual-
porosity media. The analysis method proposed in this work is also based
on the pulse decay test method shown in Fig. 1.

2.2. Analysis method for homogeneous media

The dimensionless governing equation for pulse decay tests in order
to determine the permeability of a homogeneous medium is given by
(Dicker and Smits, 1988):
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where p is pressure (Pa), the subscripts f and m represent macropores
and micropores, respectively, the subscripts u and d represent the up-
stream and downstream vessels, respectively, t is time (s), x is the axial
coordinate along the length of the sample beginning from the upstream
vessel (m), and L is the length of the sample (m). Vu,Vd, and Vp denote
the volumes of the upstream vessel, downstream vessel, and core pore,
respectively (m3), cL is the compressibility of the fluid used in the pulse-
decay test (Pa−1), ct is the total compressibility of the core (Pa−1), cVu
and cVd represent the compressibility of the upstream and downstream
vessels, respectively (Pa−1), ϕ is porosity (%), k is permeability (m2),
and μ is the fluid viscosity (Pa·s).

If the pressure pulse is very small, the dimensionless differential
pressure becomes an exponential function of time at the late stage
(Jones, 1997):
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It shall be noted that θ1 is the first root of the following equation:
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The slope s1 can be obtained by linearly fitting ln(ΔpD)-t with the
pulse decay test data at the late stage. The permeability of the cores can
then be determined by using equation (9).

3. Mathematical models for dual-porosity media

In this work, for convenience, fractures refer to relatively bigger
pores and microcracks whereas matrices refer to relatively smaller
pores. The permeability of dual-porosity media can be represented by

Fig. 1. Schematic of a typical experimental setup used for pulse decay tests
(after Jones, 1997).
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dual-porosity models, which are presented in Appendix A. The di-
mensionless governing equations of pseudosteady-state dual-porosity
models for pulse decay tests are given by:
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where the subscripts f and m denote macropores and micropores re-
spectively, and α is the shape factor.

The dimensionless initial conditions are:
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The dimensionless boundary conditions of the pseudosteady-state
dual-porosity model can be obtained if the dimensionless variable pD in
equations (3)–(6) is replaced by pfD.

Assuming that the core matrix is a slab, the dimensionless governing
equations for the transient dual-porosity model are:
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The following dimensionless variable is added to the list of the di-
mensionless variables defined in (13):
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where hm is the thickness of the slab matrix and z is the matrix co-
ordinate.

The dimensionless initial conditions are:
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In addition to the boundary conditions used in the pseudosteady-
state model, the transient dual-porosity model needs to fulfill the fol-
lowing boundary conditions:
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The pseudosteady-state and transient dual-porosity models can be
numerically solved and the details are given in Appendices B and C.

4. Simulation results and analysis

4.1. Comparison between dual-porosity and homogeneous models

Fig. 2 shows the upstream and downstream vessel pressure curves
for the pseudosteady-state and transient dual-porosity models and
homogeneous model. The variable pD is used for both the upstream and
downstream vessel pressures. It can be seen that the shapes of the
pressure curves at early time (tD > 10) are similar for the dual-porosity
and homogeneous models. It is apparent that the upstream and

downstream vessel pressures approach one another quickly. The up-
stream vessel pressures for the pseudosteady-state and transient dual-
porosity models decrease at a slower rate than those for the homo-
geneous model whereas the downstream vessel pressures of the dual-
porosity models show the opposite trend. A pressure plateau appears
(10 < tD < 102) after the pressures reach an equilibrium. The pres-
sures of the homogeneous model remain stable but the pressures of the
dual-porosity models decrease together (102 < tD < 105) to the same
final pressure Ad/(Au + Ad + AuAd) of the homogeneous model. The
differences between the dual-porosity and homogeneous models are
likely because the fluid flows faster in the fractures compared with that
in the matrix and more time is required for the pressure in the matrix to
achieve equilibrium. Using the same values for Au and Ad, the upstream
and downstream vessel pressures for different models eventually reach
the same value, in accordance with the law of conservation of mass.
Based on the parameters in Fig. 1, the pressures of the dual-porosity
models are almost equal at the early and last stages and the difference
between the pressure curves becomes obvious from the first plateau to
the second one. The shapes of the pulse decay curves are very similar to
that of a core with several penetrating fractures or alternating high and
low permeability layers. After the upstream and downstream pressures
converge into a plateau, they reduce together until the final equilibrium
(Ning et al., 1993; Cronin, 2014; Liu et al., 2016).

4.2. Effect of vessel volumes

Fig. 3 shows the effect of the upstream and downstream vessel vo-
lumes on the pressure curves. It shall be highlighted that the all of the
pressure curves of the pseudosteady-state and transient dual-porosity
models have the same storativity ratio and interporosity flow coeffi-
cient. It can be observed that the larger the vessel volume, the slower
the pressure change and the higher the plateau. For different values of
Au and Ad, the first pressure plateaus (for Au=Ad=1.0, 2< tD < 30)
are relatively close. In general, the difference in the pressure curves
between the dual-porosity and homogeneous models decrease with an
increase in the upstream and downstream vessel volumes. In other
words, it is difficult to distinguish between dual-porosity and homo-
geneous media based on the pressure curves if the upstream and
downstream vessel volumes are ten times larger than that of the core
pore.

4.3. Effect of storativity ratio

Fig. 4 shows the effect of storativity ratio on the pressure curves. It
can be seen that the larger the storativity ratio, the faster the upstream
vessel pressure changes and the slower the downstream vessel pressure
changes. The height of the first pressure plateau (8 < tD < 103) de-
creases as the storativity ratio increases because more fluid stays within
the fractures for large storativity ratios. The analytical pressure of the
first plateau is + +A A A A A ω/( )d u d u d if the flux transporting into the
matrix is negligible. Thus, the first pressure plateau approaches

+A A A/( )d u d when the storativity ratio decreases to zero. Based on the
definition of the storativity ratio, it can be deduced that the height of
the first pressure plateau increases as the matrix porosity increases
whereas it decreases as the fracture porosity increases.

4.4. Effect of interporosity flow coefficient

Fig. 5 shows the effect of interporosity flow coefficient on the
pressure curves. It is obvious that the interporosity flow coefficient
influences the duration of the first pressure plateau (for λ=10−5,
8 < tD < 5×102). The larger the interporosity flow coefficient, the
earlier the pressure drops from the first to the second plateau (for
λ=10−5, tD > 4×105). This is because a larger interporosity flow
coefficient indicates that fluid flows faster from the fracture to the
matrix. The behavior of the transient interporosity flow model is similar
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to that of the pseudosteady-state model, except that the pressure of the
former model drops slightly faster than that of the latter model. Based
on the definition of the interporosity flow coefficient, it can be deduced
that the duration of the first plateau increases with the fracture per-
meability whereas it decreases with the matrix permeability. When
λ=0.1, the pressure curves are very similar to the results of Alnoaimi
et al. (2016), who observed that the upstream and downstream pres-
sures decreased after convergence, which they called the “flowback
phenomenon”. This phenomenon is caused by the flow from the frac-
ture into the matrix after the upstream and downstream pressures
converge.

4.5. Comparison of permeability

The slope of the −Δp tln( )D D curve is conventionally used to de-
termine the permeability of rock cores based on the results obtained
from pulse decay tests. Intuitively, for a dual-porosity medium, the
fracture permeability is determined by the slope of the −Δp tln( )D D

curve at the early stage. However, this is not always the case. The
permeability and other parameters need to be provided in order to
perform numerical simulations using the finite difference method,
producing the synthetic pulse-decay curve. The permeability is then
determined from the synthetic pulse decay curve using semi-loga-
rithmic linear analysis. The permeability provided for the numerical

Fig. 2. Comparison of the upstream and downstream vessel pressures between the dual-porosity and homogeneous models.

Fig. 3. Effect of the upstream and downstream vessel volumes on the pressure curves.
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simulations is called the actual permeability. Fig. 6 shows the errors of
the permeability obtained by applying semi-logarithmic linear analysis
on the actual fracture permeability. It can be seen that the permeability
error dramatically increases with a decrease in the vessel volumes and it
slightly increases with a decrease in the storativity ratio. If the vessel
volumes are ten times larger than the pore volume, then both perme-
abilities will be very close. If Au= Ad<0.1, the permeability difference
is less than 2%. Analysis on the interporosity flow coefficient shows that
its effect is negligible and the results of the transient dial-porosity
model show very good agreement with those of the pseudosteady-state
dual-porosity models.

5. Proposed analysis method for dual-porosity media

Dual-porosity media cannot be distinguished intuitively based on
pressure curves at the early stage because the pressure curves for dual-
porosity models are quite similar to those for the homogeneous model.
The pulse decay test is usually stopped when the pressures are equal
and the permeability of the homogeneous medium is then determined
based on this pressure curve. In practice, the pulse-decay test is usually
stopped when the permeabilities obtained from a segment of the data
are almost constant. These pressure curves are not truncated properly
and the curves would have been dual-porosity curves if the pulse-decay

Fig. 4. Effect of storativity ratio on the pressure curves.

Fig. 5. Effect of interporosity flow coefficient on the pressure curves.
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test is continued until pressure equilibrium is achieved between the
fracture and matrix. Therefore, the pressure derivative-time curve was
proposed in this study to identify and quantify the dual-porosity media.
Even though the pressure derivative method is commonly used for well
test analysis, it has not been used to analyze the results of pulse decay
tests. Figs. 7–10 show the pressure derivative curves for the pseudos-
teady-state and transient dual-porosity models. It shall be noted that the
term “pressure derivative” refers to the absolute value of the pressure
derivative with respect to time.

5.1. Homogeneous and dual-porosity models

Fig. 7 shows that there are plateaus in the pressure derivative curves
for the dual-porosity models (for ω=0.01, 4×10−3 < tD < 0.1)
whereas there is no plateau in the pressure derivative curves for the
homogeneous model. The smaller the storativity ratio, the earlier the
onset of the pressure derivative plateau and the longer the plateau lasts.
Therefore, dual-porosity media can be identified based on the early
behaviors of the pressure derivative curves. In other words, the pulse
decay test must be carried until the fracture and matrix pressures
achieve equilibrium for cores when there is a plateau on the pressure

Fig. 6. Error of macropore permeability obtained from semi-logarithmic linear analysis.

Fig. 7. Pressure derivative curves of the dual-porosity models at the early stage.
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derivative curve. In addition, the pressure derivative curves are more
sensitive to the storativity ratio compared to pressure curves.

Fig. 8 shows the effect of interporosity flow coefficient on the
pressure derivative curves. It can be seen that an interporosity flow
coefficient less than 10−3 barely affects the pressure derivative curves
at the early stage. However, an interporosity flow coefficients greater
than 0.1 causes the pressure derivative curves to separate slightly at the
plateau, especially for the pseudosteady-state dual-porosity model. The
slopes of the downstream pressure derivative curves are less steep than
those for the upstream pressure derivative curves.

Fig. 9 shows the effect of the upstream and downstream vessel vo-
lumes on the pressure derivative curves at the early stage. In general,
the larger the vessel volume, the longer and smaller the pressure deri-
vative plateau (for Au = Ad=1.0, 4×10−3 < tD < 0.1). When
Au= Ad>10, the plateau is not very obvious and the pressure deri-
vative curves of the dual-porosity models do not coincide with those of
the homogeneous model. Based on the effects of the vessel volumes on

the pressure curves and pressure derivative curves, it can be deduced
that pressure derivative method is applicable if the volumes of the
upstream and downstream vessels are within one-tenth to ten times the
volume of the core pores. If the vessel volumes are more than ten times
the pore volume, a plateau appears in the pressure derivative curves of
the homogeneous model, rendering it difficult to distinguish between
the pressure curves of the dual-porosity models and homogeneous
model. In addition, there is a significance increase in the test duration.
Likewise, if the vessel volumes are less than one-tenth the pore volume,
the plateau of the pressure derivative curve is not apparent and
therefore, it is not possible to distinguish between the dual-porosity and
homogeneous models at the early stage.

5.2. Pseudosteady-state and transient interporosity flow models

There are two types of interporosity flow models based on the dif-
ferences in the permeability and interfacial states between the matrix
and fracture: (1) pseudo-steady state and (2) transient interporosity
flow models. It can be seen from Fig. 5 that the first pressure plateau to
the second pressure plateau is similar for the pressure curves of these
models obtained from pulse decay tests and thus, these models cannot
be distinguished from one another. Fig. 10 shows the pressure deriva-
tive curves during the transition from the first pressure plateau to the
second pressure plateau. Indeed, the characteristics of transient and
pseudosteady-state dual-porosity models are different. The pressure
derivative curves of the pseudosteady-state model have a plateau (for
λ=10−4, 20 < tD < 2×103) whereas the pressure derivative curves
of the transient model have a section of slant parallel lines for different
interporosity flow coefficients. The larger the interporosity flow coef-
ficient, the higher the pressure derivative plateau and the higher the
slant line. Therefore, the pressure derivative curves at the late stage can
be used as to identify the type of interporosity flow model. If this seg-
ment of the pressure derivative curve is a horizontal line, it can be
deduced that the model is a pseudosteady-state interporosity flow
model. In contrast, if the segment is an inclined straight line, the model
is a transient interporosity flow model.

It shall be highlighted that log-log plots (plots where both axes are
in the logarithmic scale) are used for Figs. 7–10. Log-log plots are

Fig. 8. Effect of interporosity flow coefficient on the pressure derivative curves at the early stage.

Fig. 9. Effect of the upstream and downstream vessel volumes on the pressure
derivative curves at the early stage.
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widely used in well test analysis. Hence, the curves of the dimensionless
and dimensional variables have the same shapes. Based on the afore-
mentioned analysis, the pressure derivative curves can be used to
choose the most appropriate model for the rock sample. The char-
acteristics of a dual-porosity medium can be obtained by fitting both
the pressure and pressure derivative curves in order to obtain more
precise results, rather than fitting only pressure curves. It can be seen
that the storativity ratio is primarily determined by the early-time data
whereas the interporosity flow coefficient is mainly determined by the
late-time data.

6. Discussion

The experimental results of Cronin (2014) and Alnoaimi et al.
(2016) were used to verify the applicability of the pressure derivative
method proposed in this study. Cronin (2014) performed pulse-decay
tests on samples of Barnett Shale composed of two different property
layers. Argon was used in the pulse decay tests. The properties of the
samples and test settings are presented in Table 1. The simulation re-
sults obtained in this study were compared with the experimental data
of Cronin (2014), as shown in Fig. 11 and Table 2. The transient in-
terporosity flow model was used for the simulations. It can be seen from
Fig. 11 that there is very good agreement in the dimensionless pressure

and pressure derivative curves between the transient interporosity flow
model and experimental results of Cronin (2014). In addition, it can be
seen from Table 2 that the permeability obtained from simulations is
very close to the permeability obtained by Cronin (2014). However, the
storativity ratio obtained from simulations is lower than the value ob-
tained by Cronin (2014). This is likely because Cronin (2014) assumed
that the gas does not flow into the low permeability layers when the
upstream and downstream pressures converge. Based on the results, it
can be deduced that the transient interporosity flow model is suitable to
determine the permeability of rock cores with alternating high and low
permeability layers.

For a given rock sample, upstream vessel pressure, and downstream
vessel pressure, the fracture permeability can be determined by fitting
the first plateau of the pressure derivative curve because this segment is
related only to the fracture permeability. The storativity ratio can be
determined from the starting time of this pressure derivative plateau.
The interporosity flow coefficient can then be obtained by fitting the
pressure derivatives during the interporosity flow stage. Finally, the
fracture permeability, storativity ratio, and interporosity flow coeffi-
cient determined previously can be used to fit the pressure and pressure
derivative histories. Due to the inaccuracy of identification and division
of the flow regimes on pressure derivative curves, these parameters
require a slight adjustment in order to improve the fitting of the his-
tories.

Alnoaimi et al. (2016) used helium in their pulse decay tests. The
properties of the samples and experimental settings are presented in
Table 1. The simulation results obtained from the transient inter-
porosity flow model were compared with the experimental results of
Alnoaimi et al. (2016), as shown in Fig. 12 and Table 2. In general,
there is very good agreement in the fracture permeability and stor-
ativity ratio obtained from simulations with those obtained by Alnoaimi
et al. (2016). Due to the lack of early-time data in this case, the data
could not be fitted according to the method used for Cronin (2014).
When a pressure derivative is transformed into a dimensionless value,
the fracture permeability determines the slope of the interporosity flow
stage and its time coordinate position; the value of the interporosity
flow coefficient determines its pressure derivative coordinate position
of the interporosity flow stage. Therefore they can be uniquely de-
termined by the pressure derivative fitting. Hence, the pressure

Fig. 10. Pressure derivative curves of the pseudosteady-state and transient dual-porosity models at the late stage.

Table 1
Properties of the samples and settings used in the pulse-decay tests.

Parameters Value Unit

Case 1 (Cronin,
2014)

Case 2 (Alnoaimi et al.,
2016)

Sample volume 19.85 25.51 cm3

Porosity 6.9 5.6 %
Length 1.746 5.20a cm
Downstream vessel

pressure
950 228.09 psi

Upstream vessel pressure 1078 621.49 psi
Temperature 30 28 °C

a The sample diameter is assumed to be 2.5 cm, which is usually used in the
literature.
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derivatives at tD < 100 (Fig. 12) were fitted to obtain the interporosity
flow coefficient and permeability. This was done by minimizing the
difference between the pressure derivatives obtained from simulations
and experiments. Following this, the pressures were fitted to obtain the
storativity ratio. It can be observed from Fig. 12 (a) that there is very
good agreement between the simulation results and experimental re-
sults of Alnoaimi et al. (2016), indicating that the transient inter-
porosity flow model is able to capture the flowback phenomenon after
the upstream and downstream pressures converge. It can be observed
from Fig. 12 (b) that there are only late-time pressure derivatives due to
the lack of early-time data. The pressure derivative data points appear
scattered due to small fluctuations in the pressure data. When the up-
stream and downstream pressures approach convergence, the pressure
derivatives are very small, with a value less than 10−5. The pressure
noise is not negligible with respect to the pressure decay at tD > 100,

Fig. 11. Comparison between the simulation results and experimental data of Cronin (2014) for (a) pressure histories and (b) pressure derivative histories (from
Cronin, 2014, Figure 2.5).

Table 2
Comparison between the simulation results obtained in this study and those of
Cronin (201) and Alnoaimi et al. (2016).

Parameters Case 1 Case 2 Unit

Experimental
results
(Cronin, 2014)

Simulation
results

Experimental
results
(Alnoaimi
et al., 2016)

Simulation
results

kf 0.092 0.11 1.75 1.50 μD
ω 0.48a 0.11 0.95a 0.92 –
λ – 3.1× 10−2 – 2.0× 10−3 –

a Because the gas compressibility is significantly higher than the pore com-
pressibility, the storativity ratio is almost the same as the rate of porosities.

Fig. 12. Comparison between the simulation results and experimental data of Alnoaimi et al. (2016) for (a) pressure histories and (b) pressure derivative histories
(from Alnoaimi et al., 2016, Fig. 7(c)).
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resulting in fluctuations in the pressure derivatives. Hence, the pressure
derivative values are not reliable at tD > 100 and the data within this
range cannot be used to verify the pressure derivative method. Overall,
the fitting of the pressure derivatives is acceptable and it can be de-
duced that the transient dual-porosity model is suitable to assess the
flow characteristics in Haynesville shale core, containing microcracks
within a size range of 3.0–4.5mm (Alnoaimi et al., 2016). This in-
dicates that the transient dual-porosity model is able to capture the flow
characteristics in cores with dense microcracks. The dual-porosity
model is also able to capture the flow characteristics in cores with
sparse microcracks, but further research is needed to verify the accu-
racy of the model.

These two experimental cases preliminarily verified the proposed
method, and more experiments would be carried out in the future to
further verify this method.

7. Conclusions

In this study, numerical simulations were conducted to analyze the
results of pulse decay tests for dual-porosity media. Based on the re-
sults, homogeneous and dual-porosity media can be distinguished based
on pressure curves because the pressures of dual-porosity media will
decrease gradually to + +A A A A A/( )d u d u d after the upstream and
downstream vessel pressures converge into a plateau. However, if the
volumes of the upstream and downstream vessels are ten times larger
than the pore volume, the permeability of the rock sample obtained
from conventional semi-logarithmic linear analysis is almost equal to
the permeability of the macropores (which is slightly influenced by the
storativity ratio), and this makes it difficult to distinguish between
homogeneous and dual-porosity media. Hence, the pressure derivative

method was proposed in this work in order to distinguish between
homogeneous and dual-porosity media. In general, both the pressure
and pressure derivative curves should be used to determine the para-
meters (permeability, storativity ratio, and interporosity flow coeffi-
cient) of the dual-porosity models. The applicability of the pressure
derivative method was verified by comparing the simulation results of
the transient interporosity flow model with the experimental data of
other researchers. The effects of the upstream and downstream vessel
volumes, storativity ratio, and interporosity flow coefficient on the
pressure derivative curves are summarized as follows:

(1) In order to distinguish dual-porosity media from homogeneous
ones, the volumes of the upstream and downstream vessels should
be within one-tenth to ten times the pore volume.

(2) The larger the storativity ratio, the faster the upstream pressure
changes and the slower the downstream pressure changes. The
height of the first pressure plateau decreases with an increase in the
storativity ratio.

(3) The effect of the interporosity flow coefficient on the pressure de-
rivative curves is more pronounced during the late stage. Hence, the
characteristics of the transient and pseudosteady-state dual-por-
osity models can be distinguished based on the pressure derivative
curves in the late stage.
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Appendix A. Dual-porosity model

Figure A-1 shows the schematic of the dual-porosity model. The following assumptions were made for the analysis: (1) The testing fluid is single
phase and slightly compressible; (2) The fluid compressibility and viscosity are constant; (3) The flow obeys the Darcy law with constant perme-
ability, and the quadratic pressure gradient is negligible; (4) The pore compressibility and porosity are constant; (5) The temperature is constant
throughout the experiment; (6) The upstream and downstream vessels are treated as isobaric bodies; (6) Gas leaks are negligible. According to the
governing equations of pseudosteady-state dual-porosity model (Warren and Root, 1963), the one-dimensional governing equation for pulse decay
test is given by:
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Fig. A1. Schematic of the dual-porosity model
Equation (A-1) represents the gas flow in the fracture whereas equation (A-2) represents the gas flow from the matrix to the fracture.
The initial conditions are:
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The boundary conditions are:
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Assuming that the core matrix is a slab, the governing equations of the transient dual-porosity model for the pulse decay test are (de Swaan,
1976):
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Equations (A-8) and (A-9) represent the flows in the fracture and matrix, respectively, whereas equation (A-10) represents the flow from the
matrix to the fracture. In addition to the previous initial conditions ((A-3)) and boundary conditions ((A-4)–(A-7)), the transient dual-porosity model
is subject to the following interfacial conditions:

∂
∂

=
=

p
z

0m

z h /2m (A-11)

==p pm z f0 (A-12)

Appendix B. Numerical solution for the pseudosteady-state dual-porosity model

The sample is assumed to be divided into N segments with a space interval of ΔxD and time interval of ΔtD. The finite difference schemes for
equations (11) and (12) of the pseudosteady-state dual-porosity model are:
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The finite difference schemes for the boundary conditions (equations (5) and (6)) are:
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Equations (B-1)–(B-4) can be simplified as:
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where the superscript n represents the nth time step and the subscript j represents the node number. Here, λ and θ are defined as:

= =λ Δt
Δx

θ Δt
Δx

,D

D

D

D
2 (B-9)

There are 2(N+1) dimensionless pressure variables at every time step. For (N+1) nodes, there are (N+1) equations (equation (B-6)) whereas for
(N–1) internal nodes, there are (N–1) equations (equation (B-5)). Equations (B-7) and (B-8) are used for the upstream and downstream nodes,
respectively. Therefore, there are 2(N+1) unknown variables and 2(N+1) equations, resulting in a matrix with a size of 2(N+1) × 2(N+1).
Gaussian elimination is used to solve the system of equations.

Appendix C. Numerical solution for the transient dual-porosity model

For the transient interporosity flow model, the sample is not only divided into N segments, but the semi-thickness of the slab matrix is also
divided into M segments. The space interval, matrix space interval, and time interval are denoted as ΔxD, ΔzD, and ΔtD, respectively. The finite
difference schemes for the dimensionless governing equations (equation (15) and (16)) of the transient dual-porosity model are:
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The finite difference schemes of the interfacial conditions (equation (19) are (20)) are:
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Equations (C-1)–(C-4) can be simplified as:

− + ⎛
⎝

+ + ⎞
⎠

− − =+
+ +

−
+ +λp λ λ θ ω p λp λ θ p ωp2

6 6fD j
n D

fD j
n

fD j
n D

mD j
n

fD j
n

, 1
1

1 ,
1

, 1
1

1 , (1)
1

, (C-5)

− + ⎛
⎝

+ − ⎞
⎠

− = −+
+ +

−
+λ λ p λ λ ω p λ λ p ω p

12 6
1

12
(1 )D

mD j k
n D

mD j k
n D

mD j k
n

mD j k
n1

, ( 1)
1 1

, ( )
1 1

, ( 1)
1

, ( ) (C-6)

− =+
−

+p p 0mD j M
n

mD j M
n

, ( )
1

, ( 1)
1

(C-7)

− =+ +p p 0mD j
n

fD j
n

, (0)
1

,
1

(C-8)

where

= =θ Δt
Δz

λ Δt
Δz

,D

D

D

D
1 1 2 (C-9)

There are (N+1) × (M+1) dimensionless pressure variables at every time step. For (N+1) nodes, there are (M–1) equations (equation (C-6))
and two interfacial conditions (equations (C-7) and (C-8)). Equation (C-5) is used for (N–1) internal nodes. Equations (B-7) and (B-8) are used for the
upstream and downstream nodes, respectively. Therefore, there are (N+1) × (M+1) unknown variables with the same number of equations,
resulting in a matrix with a size of [(N+1) × (M+1)] × [(N+1) × (M+1)]. Solving this matrix is time-consuming and therefore, the pressures of
the fracture and matrix can be fixed alternately in one iterative step in order to save computational time. When the matrix pressures are fixed,
equations (C-5), (B-7), and (B-8) constitute a tridiagonal matrix with a size of (N+1) × (N+1). When the fracture pressures are fixed, equations (C-
6), (C-7), and (C-8) constitute a tridiagonal matrix with a size of (M+1) × (M+1). This reduces the size of the matrices. A tridiagonal matrix can be
solved more efficiently by using the Thomas algorithm (Quarteroni et al., 2007).

Appendix. DSupplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jngse.2018.09.006.
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